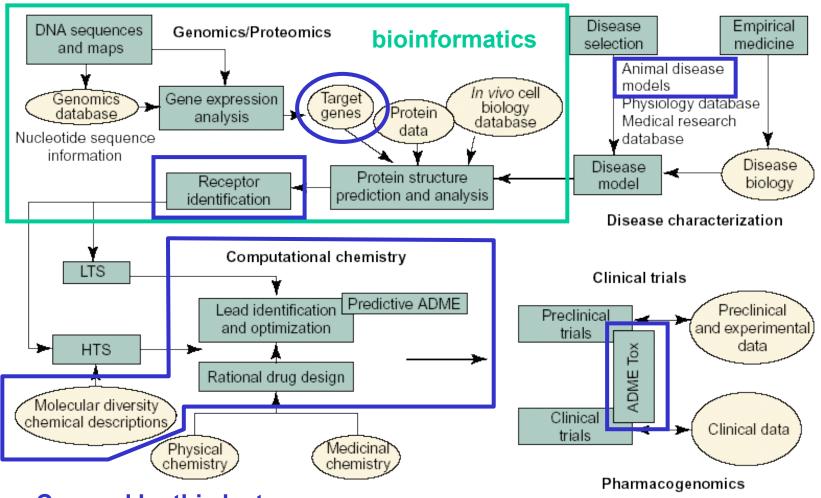

Modern Methods in Drug Discovery

Aims of this course:


- comprehensive knowledge about all processes in the drug discovery pipeline
- in particular in silico methods of drug design
- perfoming substance queries in databases

Picture source:

https://curesearch.org/Impact-Report-Winter-2016/images/research-pipeline.png

Flow of information in a drug discovery pipeline

Covered by this lecture

Drug Discovery Today

Related topics not covered by this lecture

medicinal chemistry organic synthesis biopharmaceutical aspects (tissue models, non-oral administration) immune system and monoclonal antibodies clinical aspects molecular modelling theory homology modelling theory docking basics and applications computational chemistry genome, proteome, metabolome, targetome,... bioethics, legal aspects, regulatory issues, and patent law

Required knowledge

Use of tools for sequence analysis, e.g. BLAST, CLUSTALO Use of visualizing tools, e.g. BALL, Chimera, Pymol, VMD, SPDBV

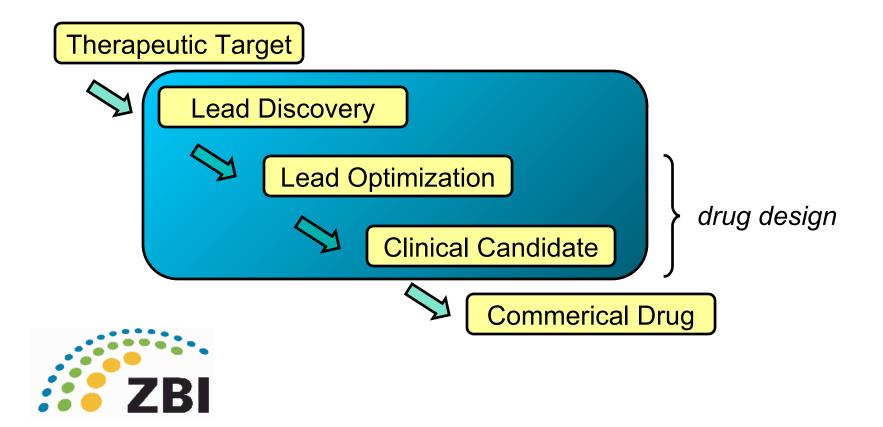
recommended prior courses:

Softwarewerkzeuge der Bioinformatik
Computational Chemistry
Bioinformatics I & II
Structural Bioinformatics

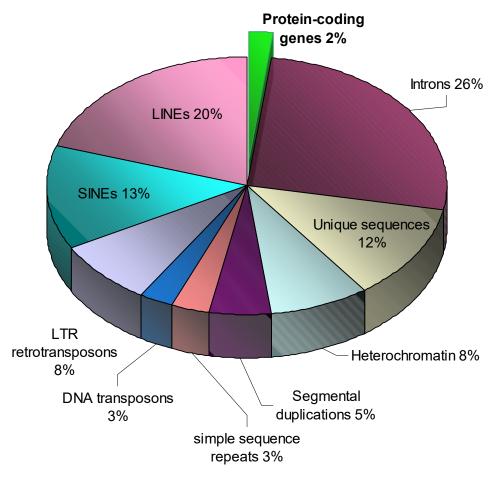
Master program

Actual applications during the excerices and homework:

multiple sequence alignment, homology in sequences analyzing protein-ligand interactions


SMILES and SMARTS notation of chemical structures using SMARTS with Open Babel

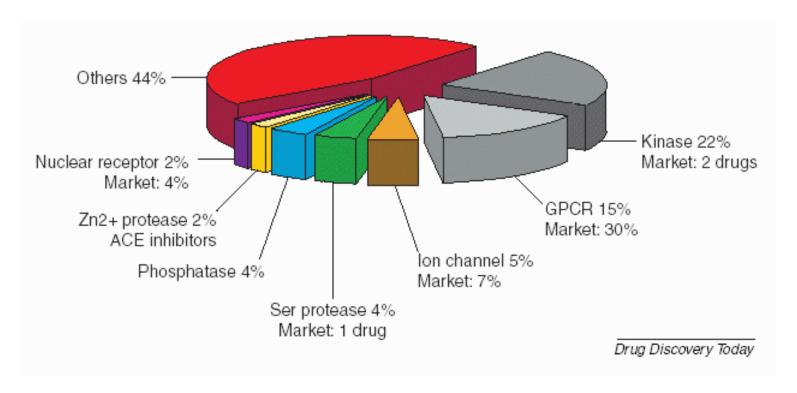
Database queries (PubChem, ChEMBL, DrugBank, ZINC, UniProt,...)



What is drug discovery?

rational and targeted search for new drugs

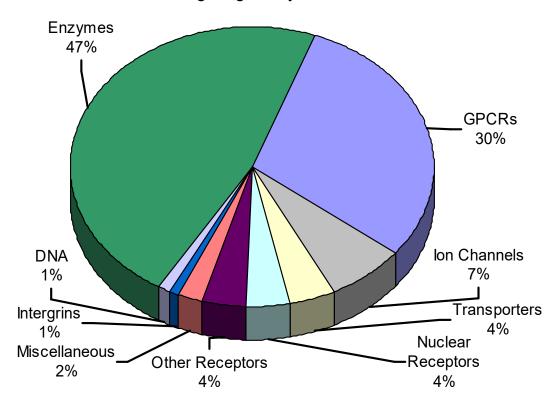
Content of the Human Genome



Fraction of protein-coding sequences

Data from the NHS National Genetics and Genomic Education Centre estimated in 2014.

Typical targets (I)



Contribution to the human genome and marketed drugs

Estimated drug targets: >3.000

Typical targets (II)

drug targets by biochemical class

Fractional content of marketed drugs according to their biochemical targets

data: Hopkins & Groom, Nat. Rev. Drug. Disc. 1 (2002) 727

Preliminary schedule (lectures/topics)

- Introduction, overview, recap of chemical structures
- 2. typical diseases
- 3. properties of drugs and their mode of action
- Substance databases and bioisosteric compounds
- 5. QSAR, statistics and descriptors
- 6. More about QSAR and statistics

- 7. ADME models
- 8. metabolism and toxicology
- target identification, animal models
- cytochrome P450, polymorphisms, transporters
- 11. more complex diseases malaria, obesity
- 12. current trends

Preliminary schedule (exercises/tutorials)

Biweekly online via MS-Teams meeting

- → you will be added to the corresponding MS-Teams after registration by email (conditions and restrictions apply, see our web-site)
- discussion of the assignments
- Hands-on tutorials about:
- chemical structures of drugs: SMILES and SMARTS
- substance databases and SMARTS queries
- enzyme-ligand interactions, analysis of .pdb files
- using PubChem and ChEMBL databases
- ortholog targets in model organisms

Requirements to obtain the certificate and the credit points

- 1. You will be enrolled to the course in the moodle system.
- Passing the two online tests (will be available in the moodle system) covering the topics of the previous assignments.
 - → You don't have to hand in the assignments!
- 3. 50% of all accomplishable points from the final exam taking place at the end of the lecture period. If necessary, repeated written exam or oral exam (subject to the corresponding study regulation).

Applies only to students enrolled in Bioinformatics: Please register for the final exam in the LSF timely.

Compound Databases

Size of typical substance libraries (2022)

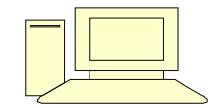
ACD 12,000,000 chemicals

World Drug Index 80,000 compounds

USAN <10,000 in clinical trials

virtual library ≈100,000 compounds company, in house

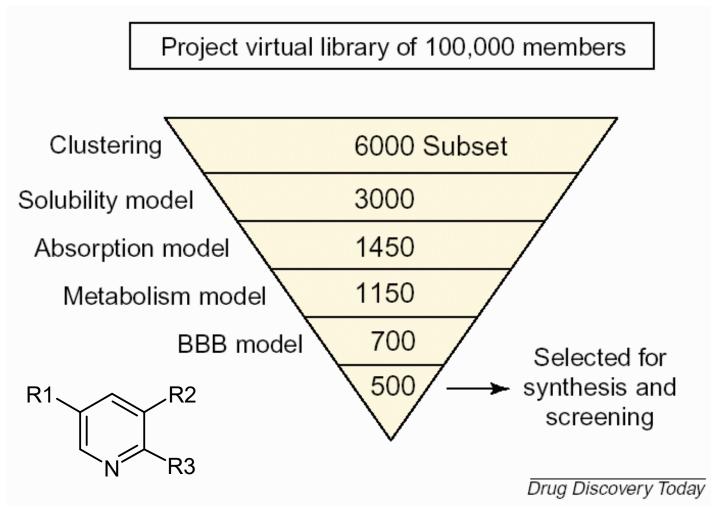
PubChem > 112,000,000 compounds NCBI


ChEMBL > 2,200,000 compounds EMBL

DrugBank > 500,000 drugs Uni. Alberta

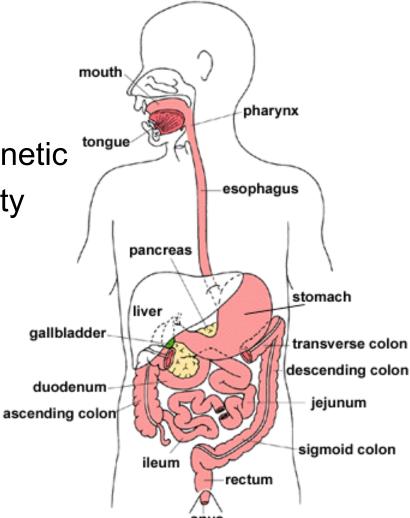
ZINC15 >750,000,000 compounds UCSF

academic


Investment per new chemical entity: >800,000 \$
New chemical entities per year: ca. 15 strongly fluctuating

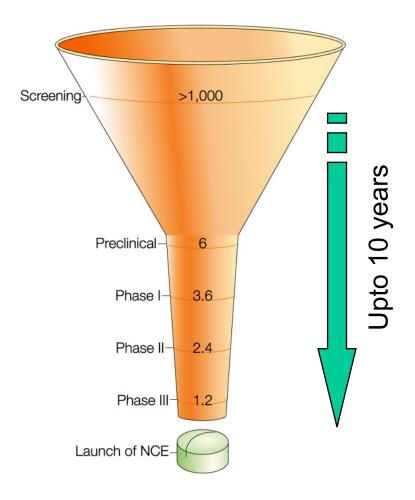
Methods of Combinatorial Synthesis for High Throughput Screening (HTS)

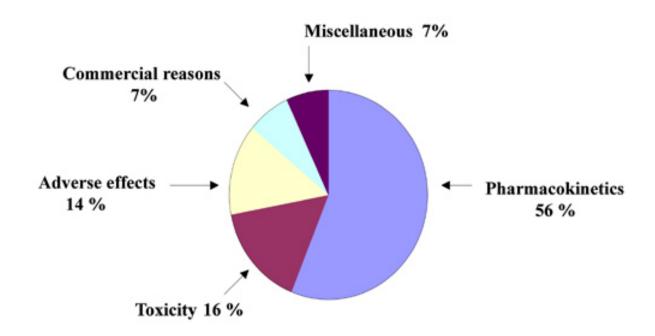
$$R1$$
 $R2$
 $R4$
 $R3$
 $R4$
 $R3$
 $R4$
 $R4$
 $R4$
 $R4$
 $R5$
 $R4$
 $R4$
 $R5$
 $R4$
 $R5$
 $R6$
 $R7$
 $R8$
 $R1$
 $R1$
 $R1$
 $R1$
 $R2$
 $R3$
 $R3$
 $R4$
 $R4$
 $R5$
 $R6$
 $R7$
 $R1$
 $R1$
 $R2$
 $R3$
 $R1$
 $R3$
 $R1$


Selection of compounds for High Throughput Screening (HTS)

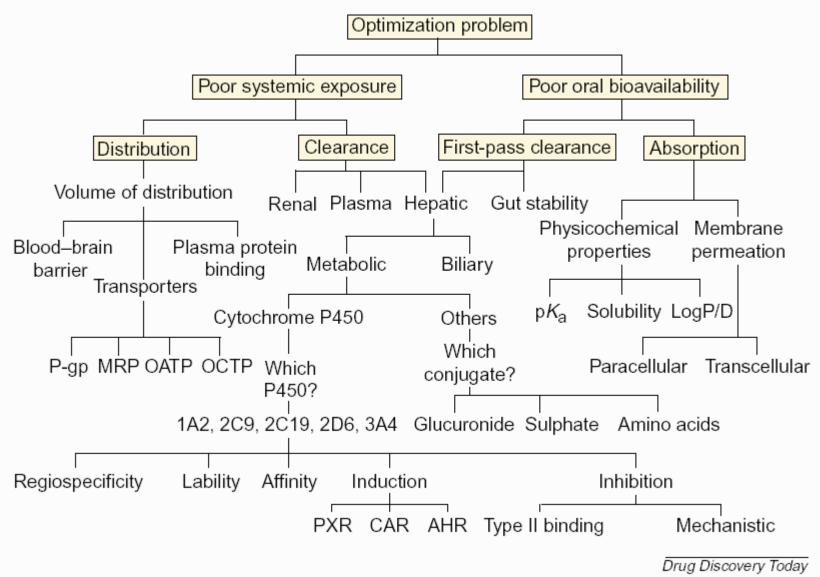
Predictive ADME

Absorption
Distribution
Metabolism
Elimination


Pharmacokinetic Bioavailability

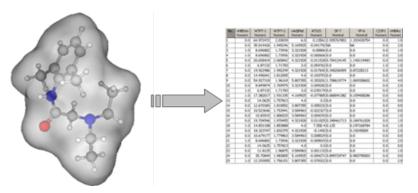

From the pipeline until the commerical launch

For each actual marketed drug (new chemical enitity, NCE) there have been more than 1000 substances that underwent screened in vitro. Without the use of available computer-based ADMET filters, this number would be even larger.

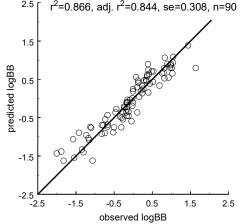

Nature Reviews | Drug Discovery

Why is the prediction of ADME parameters that important?

Reasons that lead to failure or withdrawl of a potential drug by the mid 1990's


Pharmacokinetics and Bioavailability

(Some) descriptors based on molecular properties used to predict ADME properties


logP water/octanol partitioning coefficient

topological indices count of hydrogen-bonds polar surface area

Multiple linear regression analysis
QSAR quantitative structure activity relationship
QSPR quantitative structure property rel.

Metabolism

(bio-)chemical reactions of xenobiotics in the body

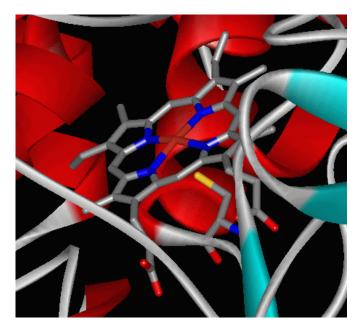
First pass effect:

Extensive metabolization of mainly lipophilic molecules, such with MW>500, or those that have a specific affinity to certain transporters, during the first passage through the liver

Phase I:

Oxidation, reduction and hydrolysis → esp. cytochrome P450 enzymes

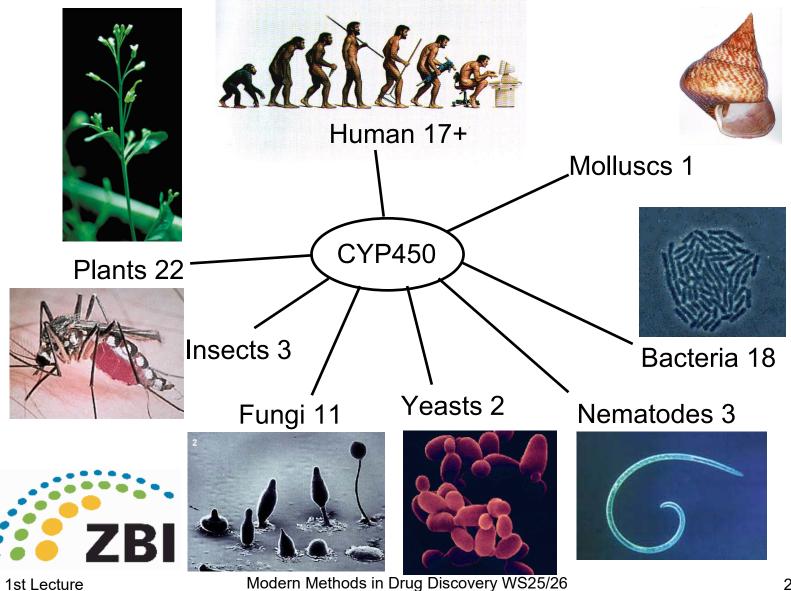
Phase II:


Conjugation with small molecules (e.g. glutamine) mediated by transferases

Phase III:

elimination by transporters

Cytochrome P450 Enzymes (I)


Drug-R +
$$O_2$$
 $\xrightarrow{\text{CYP}}$ Drug-OR + H_2 O NADPH NADP

flavin monooxygenase isoenzyme (FMO)
monoamine dehydrogenase (MAO)
aldo-keto reductase (AKR)
alcohol dehydrogenase
aldehyde oxidase

Further phase I enzymes

Cytochrome P450 gene families

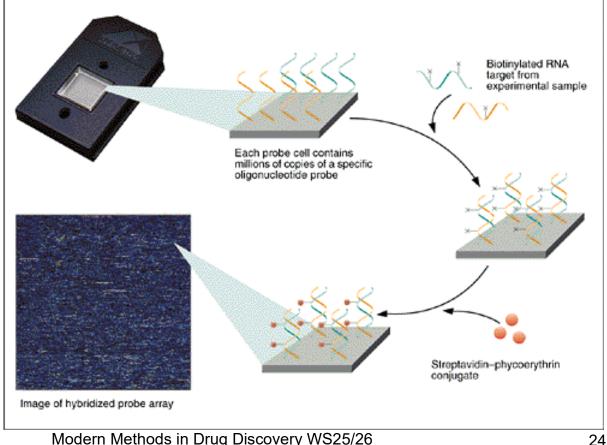
Cytochrome P450 polymorphism

"Every human is (more or less) different"

Determination of the phenotype by the actual activity or the amount of the expressed enzyme.

In contrast, the genotype is determined by the individual DNA sequence.

Thus, the same genotype enables several different phenotypes


According to their metabolic activity of CYP there is a classification into normal (*extensive metabolizer*), weak (*poor metabolizer*), und accelerated (*ultra-rapid metabolizer*) metabolism.

Lit: K. Nagata et al. Drug Metabol. Pharmacokin 3 (2002) 167

Genotyping of CYP P450 alleles

By using immobilized, synthetic copies of P450 nucleotides, the Affymetrix company (USA) has developped mircoarrays (gene chips) that allow the identification of all clinically relevant alleles.

Prediction of molecular properties (I)

The keynote of rational drug design

The general question is:

What is the connection between the biological space (activity) and the chemical space (structure)?

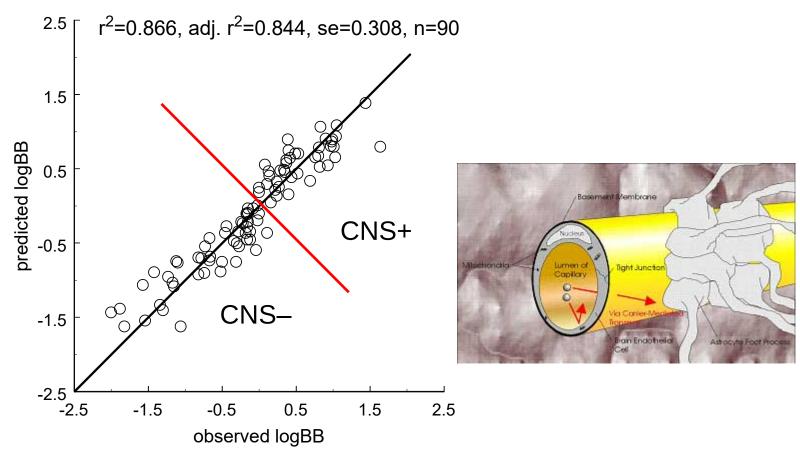
How are we able to make structure-based prediction?

- → QSAR and QSRP, regression analysis
- → other statistical methods, e.g. partial least square
- → decision trees, machine learning algorithms, e.g. support vector machines, boosting,

neural networks, deep learning,...

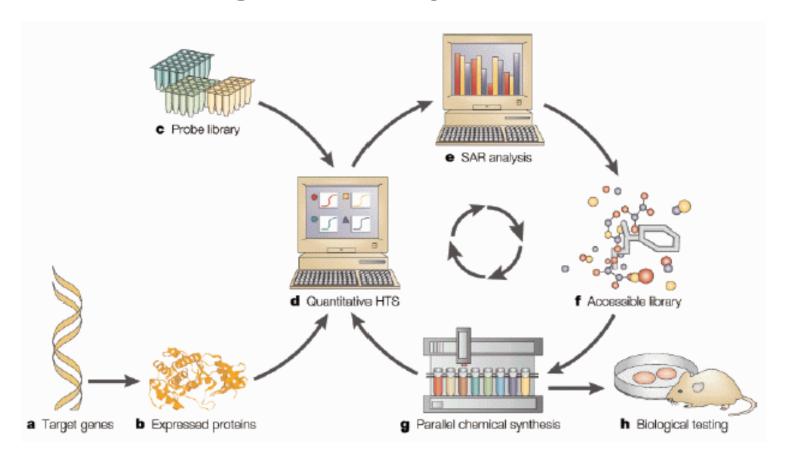
Prediction of molecular properties (II)

What are (physical) molecular properties?


observables

molecular weight MW (from the sum formula $C_{12}H_{11}N_3O_2$) melting point boiling point vapour pressure solubility (in water) charge dipole moment polarizability ionization potential electrostatic potential

Directly computable from the electronic wave function of a molecule


BBB-model with 12 descriptors

Descriptors mainly from QM calculations: electrostatic surface, principal components of molecular geometry, H-bond properties

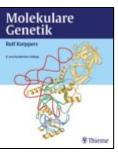
Lit: M. Hutter *J. Comput.-Aided.Mol.Des.* **17** (2003) 415. Modern Methods in Drug Discovery WS25/26

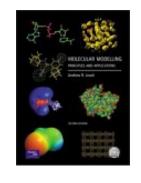
Cycle of optimization in the drug discovery pipeline

Source: D.K. Agrafiotis et al. Nature.Rev.Drug.Discov. 1 (2002) 337.

Accompanying books and further reading (I)

Andrew R. Leach*
Molecular Modelling. Principles and Applications
2nd edition, Prentice Hall, 2001

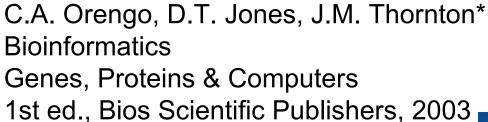

Rolf Knippers*
Molekulare Genetik
8. Auflage, Thieme, 2001


The Merck Index*

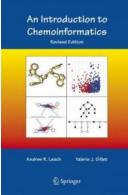
13th edition, Merck & CO., Inc., 2001

J.M. Berg, L. Stryer*
Biochemie, Spektrum Verlag
Biochemistry, W.H. Freeman & Co Ltd.

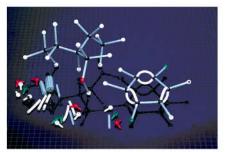
*Available in the "Semesterapparat"

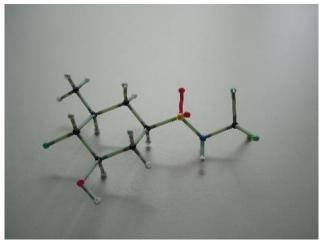


Accompanying books and further reading (II)


Gerhard Klebe Drug Design, Springer, 2025 "Wirkstoffdesign" 3. Auflage 2023 online verfügbar über SULB

A.R. Leach, V. Gillet*
An Introduction to Chemoinformatics revised ed., Springer, 2007





^{*}Available in the "Semesterapparat" located at the library in E2.3

Further hands-on tools

Molecular model sets / Molekülbaukasten

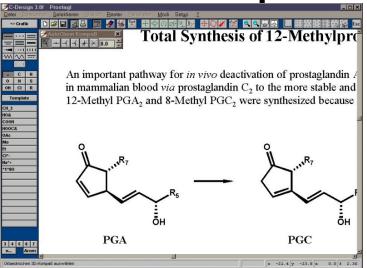
Commerically available at various price ranges

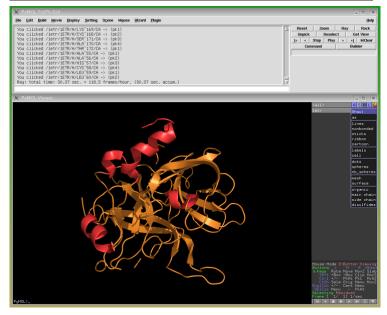
Other useful software to make nice pictures

Chemical structures and other objects:

C-Design 3.0f

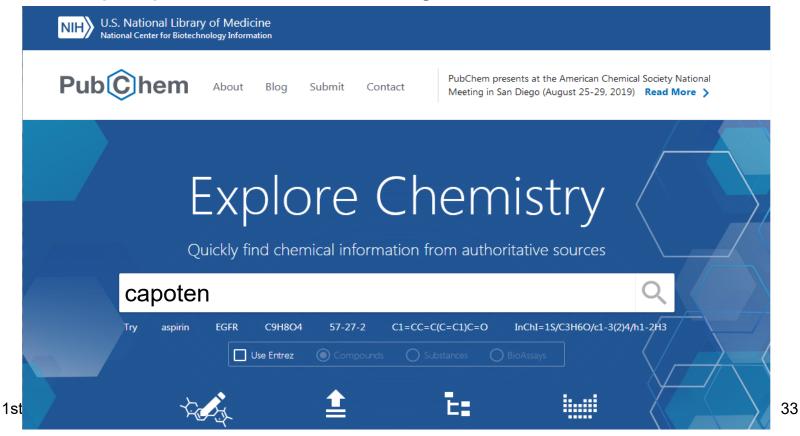
Windows-Platform


Protein structures:


PyMOL www.pymol.org

Chimera

Linux, Mac OS X, Windows


1st assignment (I)

Refer to a prescription medicine of your own choice

Write down the active ingridient

Try to find out its molecular structure:

https://pubchem.ncbi.nlm.nih.gov/

1st assignment (II)

About

Blog Submit

Contact

PubChem presents at the American Chemical Society National Meeting in San Diego (August 25-29, 2019) Read More >

COMPOUND BEST MATCH

Captopril; 62571-86-2; L-Captopril; Capoten; Lopirin; Captopryl; Cesplon; Tensoprel; ...

Compound CID: 44093

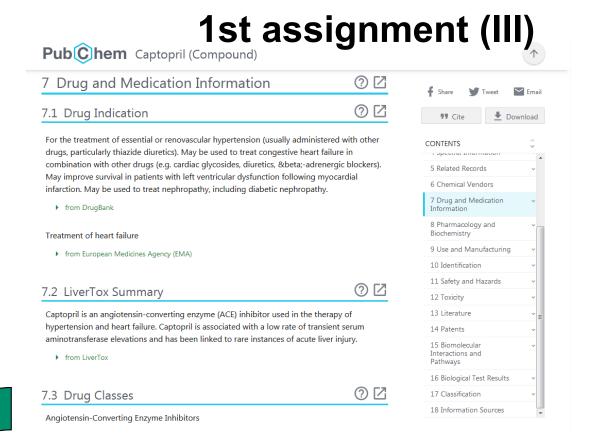
MF: C₉H₁₅NO₃S MW: 217.29g/mol

InChIKey: FAKRSMQSSFJEIM-RQJHMYQMSA-N

IUPAC Name: (2S)-1-[(2S)-2-methyl-3-sulfanylpropanoyl]pyrrolidine-2-carboxylic acid

Create Date: 2005-06-24

Summary

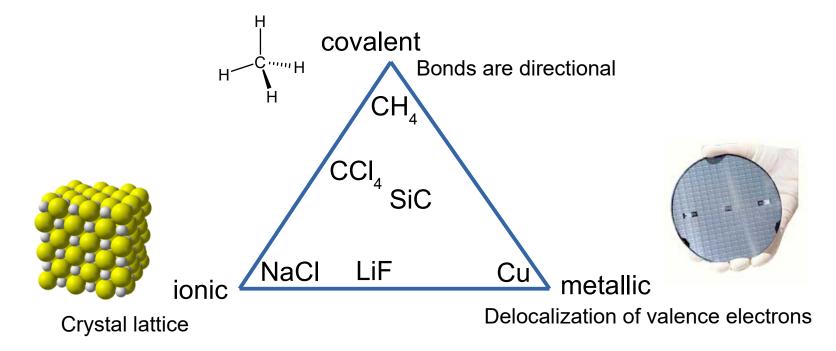

Similar Structures Search

Related Records

PubMed (MeSH Keyword)

Compounds	Substances	Literature
(2)	(19)	(80)

Searching chemical names and synonyms including IUPAC names and InChIKeys accross the compound collection. Note that annotations text from compound summary pages is not searched. Read More...


Explain why the medicine has a completely different name compared to the actual substance.

Try to find out some information about its actual molecular target (here: Angiotensin-Coverting Enzyme) e.g. using Wikipedia

Recapitulation: The Chemical Bond

Entirely covalent, ionic, or metallic bonds between atoms are the extrem cases. More often the actual kind of bonding is somewhere in between and is subject to the difference in electronegativity of the atoms/elements involved.

→ Uneven distribution of electrons between the atoms

Representation of chemical structures (I)

The valence electrons of the atoms are pairwise grouped together

Such Lewis structures reflect covalent bonds between atoms in a molecule.

Therefore any molecule can be regarded as graph with the atoms being the nodes and the bonds as vertices.

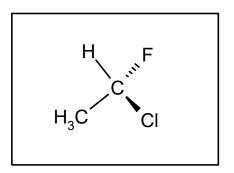
Representation of chemical structures (II)

(electron) lone pairs are often not shown for visual clarity

octet rule and hypervalent atoms

Equal bond lengths!

$$H-N$$
 O
 $H-C$
 O


Representation of chemical structures (III)

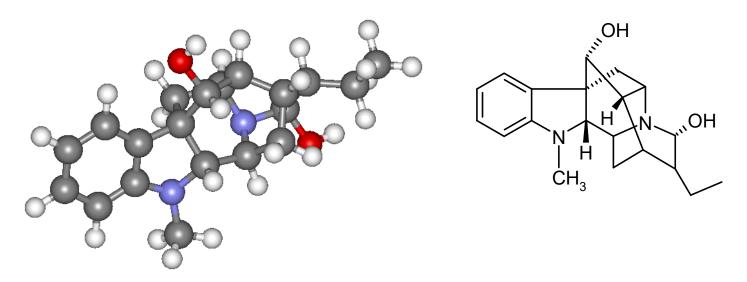
Also carbon atoms are often omitted

Corners and end of lines denote carbon atoms saturated with the appropriate number of hydrogen atoms

Representation of chemical structures (IV)

Stereochemistry

Solid wedges denote atoms in front of the plane, dashed wedges denote atoms behind


Four different substituents at a carbon atom cause chirality. Similar: silicon, sulfur, phosphorus,...

Examples: Most amino acids, sugars, many natural compounds,...

Representation of chemical structures (V)

Particular for more complex molecules, these 2D structural drawings provide more clarity than a picture of an actual 3D representation does.

Exercise: Construct this molecule using a molecular model set. Specify the chiral carbon atoms.

Bond distances and bond dissociation energies (I)

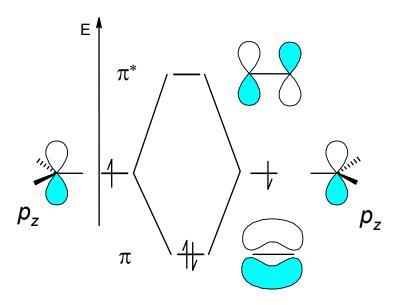
distance [Å] D_o [kJ/mol] (homolytic cleavage) bond H = H0.742 432 e.g. H• •H C–H 1.09 ± 0.01 411 ± 7 C-C345 1.54 C=C 1.34 - 1.40* 602 ± 21 *aromatic bond C≡C 1.20 835 C-N 1.47 305 longer C=N 1.35 615 C≣N 1.16 887 Н He Li Be B С longer, weaker C-O 1.43 358 Na Mg Al Si P K | Ca | Ga | Ge | As | Se | Br | Kr 1.20 526 C=O Rb Sr In Sn Sb Te C-Si 1.85 318 Cs Ba TI Pb Bi Po At Rn C-P 1.84 264 Adapted from: J.E.Huheey C-S 1.82 272 Inorganic Chemistry, Wiley. C=S 1.60 577 ± 21

Bond distances and bond dissociation energies (II)

bond	distance [Å]	D _o [kJ/mol]	
C-F	1.35	485	
C-CI	1.77	327	
C-Br	1.94	285	
C–I	2.14	213	
C-H	1.09	411 non-po	olar hydrogen
О–Н	0.96	459	polar hydrogens,
N–H	1.01	386 ± 8	exchangable in polar
S-H	1.34	363 ± 5	solvents, e.g. water
N-N	1.45	247 ± 13	reason:
N=N	1.25	418	N, O, and S are more
N-O	1.40	201	electronegative than C;
N=O	1.21	607	heterolytic cleavage
P-O	1.63	≈335	that leads to ions
P=O	≈1.50	≈544	e.g. O⁻ H⁺

Bond angles (I)

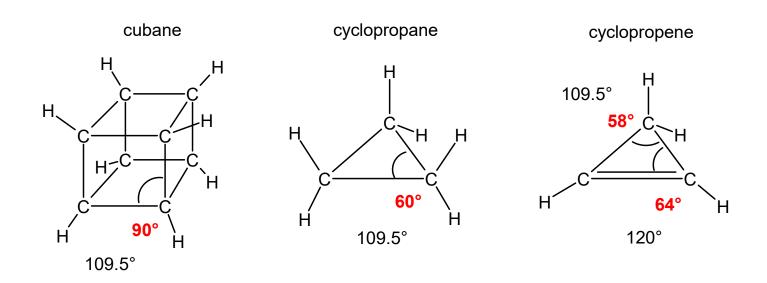
Strongly dependend on the hybridization


The C–C σ-bond is formed by overlap of the 1s orbitals

These are hybrizided atomic orbitals. Do not confuse with molecular orbitals (=linear combination of atomic orbitals)

Molecular Orbitals

MO = linear combination of atomic orbitals (LCAO)


 π -bond of ethylene $H_2C=CH_2$

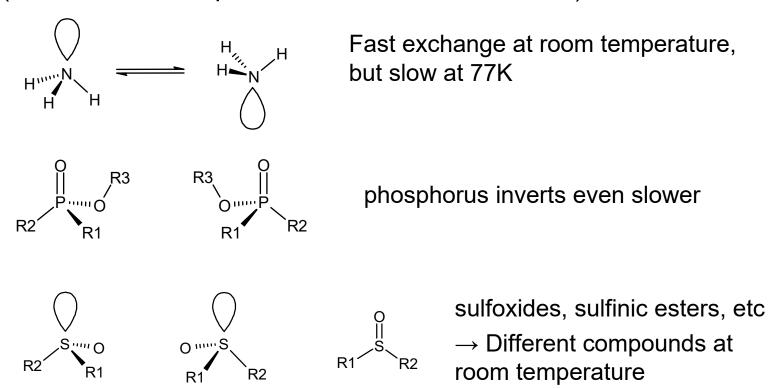
The two combinations usually result in one bonding and one anti-bonding MO

Bond angles (II)

Extreme deviations from ideal bond angles

gives rise to strain energy in small rings

 \rightarrow problems in force fields. More than one atom type for each hybridization state (e.g. Csp^3) neccessary.


Stereoisomers

Gives rise to different orientation in 3D-space despite identical 2D-topology

cis-trans isomers in ring systems

Chiral atoms

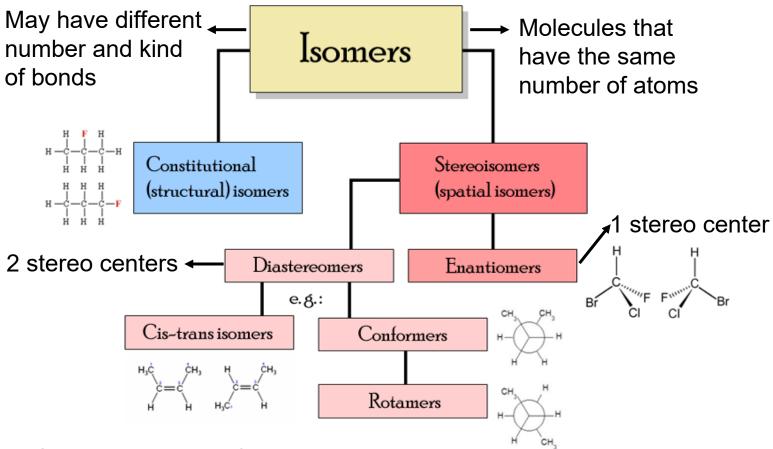
Further elements showing chirality/stereochemistry (the lone electron pair behaves like a substituent)

Furthermore: As, Si, ..., compounds with transition elements, esp. octahedral and square planar metal complexes e.g. Pt

Axial Chirality

Even without a chiral center, stereochemistry can occur due to aggregated double bonds or steric hindrance caused by bulky groups.

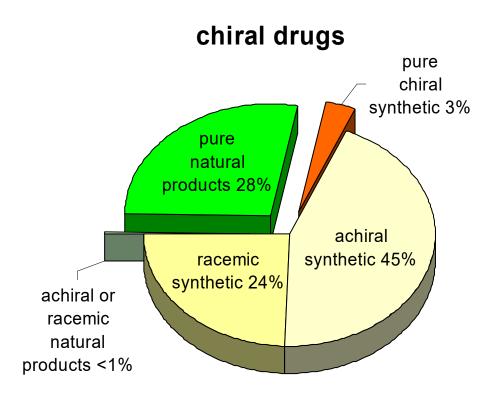
Axial chirality in allenes


Atropisomers in ortho substituted biaryls.

Recent examples: daraxonrasib, navlimethostat, sosimerasib, zoldonrasib.

→ correct isomer needed for docking

Half-life of racemization > 1000 years telenzepine


Isomers

Source: enhanced from wikipedia

Question: Which kind of computational method(s) allow(s) to calculate differences in energy between the respective isomers?

Is stereochemistry important?

Data from 1982: Böhm, Klebe & Kubinyi, Wirkstoffdesign