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• You are advised to work in groups of two people. If necessary, we will suggest teammates.

• Submit your solutions on paper at the beginning of the lecture in the lecture hall or in Room
3.02, both E2 1. Alternatively you may send an email with a single PDF attachment to
maryam.nazarieh@bioinformatik.uni-saarland.de. Late submissions will not be considered.

• Do not forget to mention your names/matriculation numbers.

• Discussion of this exercise will be on Tuesday, Jun 23th at 12:45 in the lecture room (E2 1
007).

Exercise 3.1: A Two-ODE System (50 points)

we have not yet built an oscillator model. Even though we were
able to produce sustained oscillations with a one-variable
Boolean model of a negative feedback loop (Figures 2A and
2D), translating the model into a differential equation eliminated
the oscillations.

Another way of representing the system’s behavior is through
a phase plot, which shows all possible activities of the system.
This is similar to the state-space plots that we used for the
Boolean analysis, but instead of having a few discrete states,
the phase plot displays a continuum, showing how the system’s
transition between states occurs through a smooth continuum
(as we would expect, given that the numerous CDK1 molecules
do not all activate simultaneously but ‘‘smoothly’’ turn on.).

The phase plot contains one dimension for each time-depen-
dent variable. Therefore, in this one-variable model, the phase
plot possesses one axis, representing the concentration of acti-
vated CDK1* (Figure 3B). In addition, the system’s phase plot
shows one stable steady state with CDK1!z0:43. If the system
starts off with CDK1 activity less or greater than 0.43, the system
will move along a trajectory back to 0.43. In other words, any
initial condition to the left or right of the steady state yields
a trajectory moving to the right or left, respectively.

A Two-ODE Model
Why did the one variable Boolean model produce oscillations
(Figures 2A and 2D), whereas the one-ODE model (Equation 2)
did not (Figure 3)? The discrete time steps of the Boolean model
help to segregate CDK1 activation from inactivation in time.
Thus, perhaps adding another ODE (Figure 4A), which acknowl-
edges the fact that APC regulation is not instantaneous, might
allow us to generate oscillations.

First, we write an ODE for the activation and inactivation of
CDK1 (Equation 3). We once again assume that CDK1 is acti-
vated by a constant rate of cyclin synthesis (a1). We assume
that the multistep process through which APC* inactivates
CDK1* is described by a Hill function. The inactivation rate is
therefore proportional to the concentration of CDK1* (the
substrate being inactivated) times a Hill function of APC*.

Now for APC (Equation 4), we assume that its rate of its activa-
tion by CDK1* is proportional to the concentration of inactive
APC (which, assuming the total concentration of active and inac-
tive APC to be constant, we take to be 1" APC!) times a Hill
function of CDK1*, and the rate of inactivation of APC* is
described by simple mass action kinetics. The resulting two-
ODE model is:

dCDK1!

dt
=a1 " b1CDK1

! APC!n1

Kn1
1 +APC1!n1 [Equation 3]

dAPC!

dt
=a2ð1" APC!Þ CDK1!n2

Kn2
2 +CDK1!n2 " b2APC

! [Equation 4]

Again, we choose kinetic parameters and initial condition (as
described in the caption to Figure 4) and integrate the ODEs
numerically. The results are shown in Figures 4B and 4C. The
CDK1 activity initially rises as the systemmoves from interphase
(low CDK1 activity) toward M phase (high CDK1 activity)
(Figure 4C). After a lag, the APC activity begins to rise too.
Then, the rate of CDK1 inactivation (driven by APC activation)
exceeds the rate of CDK1 activation (driven by cyclin synthesis),
and the CDK1 activity starts to fall. After a few wiggles up and
down, the system approaches a steady state with intermediate
levels of both CDK1 and APC activities. Thus, we have generated
damped oscillations, but not sustained oscillations.
Figure 4B shows the phase space view of these damped oscil-

lations. The phase space is now two dimensional because there
are two time-dependent variables. There is a stable steady state
that sits at the intersection of two curves called the nullclines
(green and red curves, Figure 4B). These two nullclines can be
thought of as stimulus-response curves for the two individual
legs of the CDK1/APC system. The red nullcline (defined by
the equation dCDK1!=dt = 0) represents what the steady-state
response of CDK1* to constant levels of APC activity would be
if there were no feedback from CDK1* to APC* (Figure 4B). The
green nullcline (defined by dAPC!=dt = 0) represents what the
steady-state response of APC* to CDK1* would be if there
were no feedback fromAPC* to CDK1* (Figure 4B). For thewhole

Figure 4. A Two-ODE Model of CDK1 and
APC Regulation
(A) Schematic of the model. The parameters
chosen for the model were a1 = 0.1, a2 = 3, b1 = 3,
b2 = 1, K1 = 0.5, K2 = 0.5, n1 = 8, and n2 = 8.
(B) Phase space depiction of the system. The red
and green curves are the two nullclines of the
system, which can be thought of as the steady-
state response curves for the two individual legs of
the feedback loop. The filled black circle at the
intersection of the nullclines (with CDK1*z0.42
and APC*z0.37) represents a stable steady state.
One trajectory is shown, starting at CDK1*[0] = 0,
APC[0] = 0, and spiraling in toward the stable
steady state.
(C) Time course of the system, showing damped
oscillations approaching the steady state.
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Figure 1: Schematic of the Two-ODE model.

The ODE for CDK1 is defined as:

dCDK1
dt = α1 − β1.CDK1. APCn1

K
n1
1 +APC1n1

In words, CDK1 is activated by a constant rate of cyclin synthesis (α1), while its inactivation by
APC is described by a Hill function. The inactivation rate is proportional to the concentration of
CDK1 times a Hill function of APC.
The ODE for APC activation is:

dAPC
dt = α2.(1 −APC) CDKn2

K2n2+CDK1n2
− β2.APC

For APC, the activation by CDK is proportional to the concentration of inactive APC (assuming
that the total concentration of active and inactive APC is constant) times a Hill function of CDK1
while the rate of inactivation of APC is described by simple mass action kinetics.

(a) Implement the model in Python (or similar). Start with all concentrations = 0 and simulate
with t = [0; 25]. Use the following parameters.

• α1 = 0.1
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• α2 = β1 = 3

• β2 = 1

• K1 = K2 = 0.5

• n1 = n2 = 8

(b) Plot both the CDK1 and APC activity against time. Explain the oscillation (if any) and
the behaviour.

(c) Investigate the oscillation behaviour by plotting the concentration of CDK1 against APC.
Also, plot the nullcline curves, i.e. plot the steady state concentration of CDK1 with fixed
APC using the interval [0;1] and vice versa. Those curves describe the concentration change
if there was no regulation of APC by CDK1 (and vice versa, see Figure2). Show the ranges
for x,y = CDK1, APC between [0;1]. Explain your findings.

(d) Repeat the previous steps with different concentrations for APC and CDK. Explain your
conclusions.
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Figure 2: The nullcline models

Exercise 3.2: Boolean Network (50 points)

In the following, we consider the yeast cell cycle network described in Orlando et al: Global control
of cell-cycle transcription by coupled CDK and network oscillators. Nature 453, 2008.
The statements describe the dependencies of the network:

• MBF is activated by CLN3.

• If CLN3 or MBF is transcribed and at least one of the inhibitors YOX1 and YHP1 is inactive,
SBF is active.

• YOX1 is active if both its transcription factors MBF and SBF are present. The same applies
to HCM1.

• YHP1 can be activated independently by MBF and SBF.

• SBF and HCM1 jointly activate SFF.

• ACE2 require SFF to be active. The same applies to SWI5.

• CLN3 requires the presence of SWI5 and ACE2 and the inactivity of at least one of the
inhibitors YOX1 and YHP1 to be activated.

(a) Construct a Boolean network (conditional tables) from these statements and save it to a
file boolean nw.txt. Load the network into BoolNet using the function loadNetwork and
visualize its wiring with plotNetworkWiring(). (BoolNet is an R package that provides tools
for assembling, analyzing and visualizing synchronous and asynchronous Boolean networks
as well as probabilistic Boolean networks.)

(b) Plot the trajectory starting from (MBF, CLN3, YOX1, YHP1, SBF, HCM1, SFF, ACE2,
SWI5) = (0,1,1,1,1,1,1,1,1) for next two state transitions. (solve on paper)

Have fun!


