Review (V1) - The Hallmarks of Cancer

Cell, Vol. 100, 57-70, January 7, 2000, Copyright ©2000 by Cell Press

Self-sufficiency in

The Hallmarks of Cancer growth signals

Evading Insensitivity to
apoptosis anti-growth signals

Douglas Hanahan® and Robert A. Weinberg?
*Department of Biochemistry and Biophysics and
Hormone Research Institute

University of California at San Francisco

San Francisco, California 94143

TWhitehead Institute for Biomedical Research and
Department of Biology

Massachusetts Institute of Technology
Cambridge, Massachusetts 02142

Sustained Tissue invasion
angiogenesis & metastasis

Limitless replicative
potential

Figure 1. Acquired Capabilities of Cancer

Robert A. Weinberg

SS 2015 - lecture 11 Modeling Cell Fate



Review (V1) - The Hallmarks of Cancer
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Figure 4. Parallel Pathways of Tumorigen-
esis

While we believe that virtually all cancers
must acquire the same six hallmark capabili-
ties (A), their means of doing so will vary sig-
nificantly, both mechanistically (see text) and
chronologically (B). Thus, the order in which
these capabilities are acquired seems likely
be quite variable across the spectrum of can-
cer types and subtypes. Moreover, in some
tumors, a particular genetic lesion may confer
several capabilities simultaneously, decreas-
ing the number of distinct mutational steps
required to complete tumorigenesis. Thus,
loss of function of the p53 tumor suppressor
can facilitate both angiogenesis and resis-
tance to apoptosis (e.g., in the five-step path-
way shown), as well as enabling the charac-
teristic of genomic instability. In other tumors,
a capability may only be acquired through the
collaboration of two or more distinct genetic
changes, thereby increasing the total number
necessary for completion of tumor progres-
sion. Thus, in the eight-step pathway shown,
invasion/metastasis and resistance to apo-
ptosis are each acquired in two steps.
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Review (V1) - Cancer driver genes belong to 12 pathways
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Selective
growth

advantage

Modeling Cell Fate

Cancer cell signaling pathways
and the cellular processes they
regulate.

All known driver genes can be
classified into one or more of 12
pathways (middle ring) that
confer a selective growth
advantage (inner circle; see main
text).

These pathways can themselves
be further organized into three
core cellular processes (outer

ring).

B Vogelstein et al. Science 2013;
339:1546-1558



V11 — DNA viruses involved in Cancerogenesis

Human papilloma virus (HPV) causes transformation in cells through interfering
with tumor suppressor proteins such as p53.

Interfering with the action of p53 allows a cell infected with the virus to move into
S phase of the cell cycle, enabling the virus genome to be replicated.

Some types of HPV increase the risk of, e.g., cervical cancer. '

Harald zu Hausen
Noble price for
medicine 2008
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The Epstein—Barr virus (EBV), also called human herpesvirus 4 (HHV-4), is a
virus of the herpes family, and is one of the most common viruses in humans.

Most people on earth become infected with EBV and gain adaptive immunity.

EBV infects B cells of the immune system and epithelial cells. While most of the
time the infection causes little damage, sometimes the growth activating genes
may cause the infected B-cells to turn into cancers in certain people.

Epstein-Barr virus is associated with four types of cancers

- Post-Transplant Lymphoma and AlIDS-Associated Lymphoma

- Burkitt's Lymphoma

- Hodgkin's Lymphoma

- cancer of the nasopharynx (the upper part of the throat behind the nose)

The mechanisms how EBV is related to cancerogensis are poorly understood.
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Computational systems biology of cancer

LETTER

Interpreting cancer genomes using systematic host
network perturbations by tumour virus proteins

Orit Rozenblatt-Rosen™>*, Rahul C. Deob*%*, Megha Padi>®”*, Guillaume Adelmant®*®*, Michael A. Calderwood® %,
Thomas Rolland"*'®, Miranda Grace™, Amélie Dricot"*'®, Manor Askenazi®*®, Maria Tavares®>>®, Samuel J. Pevzner®'®!®,
Fieda Abderazzag™®, Danielle Byrdsong™*'®, Anne-Ruxandra Carvunis™'®, Alyce A. Chen™'?, Jingwei Cheng®*, Mick Correll®,
Melissa Duarte™*", Changyu Fan"*'®, Mariet C. Feltkamp"®, Scott B. Ficarro™*®, Rachel Franchi~*', Brijesh K. Garg"*%,

Natali Gulbahce>*'*Y Tong Hao“*'°, Amy M. Holthaus'", Robert James>®"'®, Anna Korkhin“*>, Larisa Litovchick*>,

Jessica C. Mar™®7, Theodore R. Pak'®, Sabrina Rabello™**¢, Renee Rubio®®, Yun Shen"*'?, SauravSingh*®, Jennifer M. Spangle™,
Murat Tasan™*!3, Shelly Wanamaker®!%!°, Tames T. Webber*®, Jennifer Roecklein-Canfield®'®, Eric Johannsen®!!,

Albert-LAszl4 Barabasi™**'®, Rameen Beroukhim™'**, Elliott Kieff ", Michael E. Cusick™®'®, David E. Hill>*'®, Karl Miinger™*?,
Jarrod A. Marto'*%, Tohn Quackenbush™®7, Frederick P. Roth®**!® Tames A. DeCaprio"*® & Marc Vidal*+*!°

doi:10.1038/nature11288

Working hypothesis:
Authors propose that viruses and genomic variations alter local and global
properties of cellular networks in similar ways to cause pathological states.

Study was submitted on June 8, 2011 and accepted only on June 7, 2012!
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Adenovirus: Nine full length ORFs

Epstein-Barr Virus (EBV). Eighty-one EBV ORFs

Human Papillomaviruses (HPV). Seven HPV types were chosen for this study:

HPVG6Db, 11, 16, 18 and 33 of the alpha genus, and HPV5 and HPV8 of the beta
genus

Polyomaviruses: ORF clones were obtained from nine polyomaviruses: BK,
HPyV6, HPyV7, JCCY, JCMad1, MCPyV, SV40, TSV and WU.
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Virome-to-variome network model

Perturbations  Cellular networks  Phenotypes The virome-to-variome network
model proposes that genomic
variations (point mutations,
amplifications, deletions or

—a—
T v
B ---m

1 x translocations) and expression of
Variomes L tumour virus proteins induce
%

related disease states by similarly
influencing properties of cellular
networks.

Virome
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HPY Experimental pipeline for identifying
Py  AdS — @ Viral ORFs: 144 virus—host interactions.
EBV |

v v 123 selected cloned viral ORFs
[ Y2H vectors: 123 J [Retroviral vectors: 87 : were Subjected to yeast 2-hybrid
e § Transduction (Y2H) screens against 13000
ORFeome ['MR-% cell lines: 75 human ORFs (left), and introduced
5.1 } QC: 64 into IMR-90 lung fibroblast cell lines
M Protein ¥ *'HNA for both TAP—MS and microarray
gQ.ag *8'0'. ' analyses (right).
Y2H: 53 TAP-MS: 54 Microarray: 63
Protein—protain interactions " Expression | Numbers of viral ORFs that were

successfully processed at each step

are indicated in red.
Comment: Y2H and TAP-MS are experimental

methods to detect physical interactions of 2
(Y2H) or more (TAP-MS) proteins.
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Binary virus-host PPIs identified by Y2H
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iral protein
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Lines stand for detected protein-
protein interactions between viral
proteins (open hexagons) and

human host proteins (full circles).

“‘Degree” of a protein: number of

interaction partners.
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31 host target proteins showed more binary
interactions with viral proteins (red circles) than
would be expected given their ‘degree’ in the
current binary map of the human interactome
network HI-2.

This suggests a set of common mechanisms by
which different viral proteins rewire the host
interactome network

Rozenblatt-Rozen et al.
Nature 487, 491 (2012) M
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Enriched GO terms for targeted host proteins

With what types of human proteins do viral
proteins physically interact?

EBY
Polyomavirus
Adenovirus

ATPase activity
GPl-anchor transamicase complex Enrichment of GO terms for host proteins
Mitatic cell cycle physically interacting with viral proteins.

Proteasome complex

HEEE

Apoptosis

Procollagen-proline 4-dioxygenase activity
Protein phosphatase 2A hinding

BH domain binding

mRNA 3'UTR hinding

1 ;-

Odds Ratio

SS 2015 - lecture 11 Modeling Cell Fate Rozenblatt-Rozen et al.
Nature 487, 491 (2012) 12



Viral EG protein associates with host E6G-AP ubiquitin-protein ligase, and
inactivates tumor suppressors TP53 and TP73 by targeting them to the
26S proteasome for degradation.

EG/EGAP also degrades other cellular targets including Bak, Fas-associated death
domain-containing protein (FADD) and procaspase 8 what causes inhibition of
apoptosis.

EG also inhibits immune response by interacting with host IRF3 and TYK2.
These interactions prevent IRF3 transcriptional activities and inhibit TYK2-mediated
JAK-STAT activation by interferon alpha resulting in inhibition of the interferon
signaling pathway.

SS 2015 - lecture 11 Modeling Cell Fate
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Check protein complex associations mediated by E6 proteins from 6 distinct HPV
types representing 3 different disease classes:

- high-risk mucosal (dt. (Nasen-)schleim)
- low-risk mucosal
- cutaneous (dt. kutan, d.h. Haut betreffend)

E6 and E7 proteins encoded by high-risk mucosal HPVs are strongly oncogenic.

Multiple host proteins associate with E6 proteins from 2 or more different HPV
types ( P < 0.001).

Transcriptional regulators CREBBP and EP300 only associate with E6 proteins
from cutaneous HPV types, but not with those from mucosal classes.

In contrast, no group of host proteins showed class-specific targeting by HCV E7
proteins.

SS 2015 - lecture 11 Modeling Cell Fate Rozenblatt-Rozen et al.
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Protein complex associations involving E6 proteins
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Left: Network of protein complex associations of the six E6 viral proteins from 6 HPV types
(hexagons, coloured according to disease class) with host proteins (grey circles).

Host proteins that associate with 2 or more E6 proteins are colored according to the disease
class(es) of the corresponding HPV types. Circle size is proportional to the number of
associations between host and viral proteins in the E6 networks.

Middle: Distribution plots of 1,000 randomized networks and experimentally observed data
(green arrows) for the number of host proteins targeted by 2 or more viral proteins in the
corresponding subnetworks. Inset: representative random networks from this distribution.
Right: ratio of the probability that a host protein is targeted by viral proteins from the same
class to the probability that it is targeted by viral proteins from different classes.

Inset: representative random networks from this distribution.
SS 2015 - lecture 11 Modeling Cell Fate Rozenblatt-Rozen et al.
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Besides targeting protein-protein interactions, viral proteins functionally perturb
their hosts through downstream effects on gene expression.

— Profile transcriptome of viral ORF-transduced cell lines to trace pathways
through which viral proteins could alter cellular states.

-> 2944 frequently perturbed host genes.
- Clustering gives 31 clusters

- Many of the clusters are enriched for specific GO terms and KEGG pathways
(p <0.01)

- ldentify enriched TF binding motifs in gene promoters or enhancers from data on
cell-specific chromatin accessibility and consensus TF-binding motifs.

SS 2015 - lecture 11 Modeling Cell Fate Rozenblatt-Rozen et al.
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Heatmap of transcriptome perturbations

x-axis: 63 microarray experiments where IMR-90 cells

were transfected with the indicated viral protein.
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Enriched GO terms and KEGG pathways are listed adjacent to the numbered expression clusters. TFs with
enriched binding sites and gene targets enriched for the listed GO and/or KEGG pathways that are physically
associated with or differentially expressed in response to viral proteins are shown, with * denoting multiple
members of a TF family. Up to 5 TFs are shown for any cluster. Blocks show which viral proteins associate
with the indicated host proteins, as detected in our data set (grey) or manually curated (green).
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To test this, examine transcript levels of Notch pathway
genes and potential Notch target genes with a predicted
RBPJ (also known as CSL) binding site in their promoter
across all HPV EG cell lines as well as in cells depleted
for MAMLA1.
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Perturbations in Notch
signalling can confer
either oncogenic or
tumour-suppressive
effects.

Because both inhibition of
the Notch pathway and
the expression of HPV8
E6 promote squamous
cell carcinoma, we
reasoned that binding of
HPVS5 and HPV8 EG to
MAML1 might inhibit
Notch signalling.

Rozenblatt-Rozen et al.
Nature 487, 491 (2012)
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Transcript levels of several Notch targets were significantly decreased in IMR-90
cells (blue fields) that were either depleted for MAML1 (first line) or expressing
either HPVS5 or HPV8 EG6 (lines 2 and 3).

This indicates that the association of HPV5 and HPV8 E6 proteins with MAML1
inhibits Notch signalling.
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How viral proteins interact with proteins in Notch signaling
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— viral proteins from all 4 DNA tumour viruses target proteins of the Notch

pathway (P < 0.002).

This highlights the central role of Notch signalling in both virus—host perturbations
and tumorigenesis, and supports observations that implicate MAML1 in cancer

pathogenesis.
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To which extent do viral proteins globally target host proteins that have been
causally implicated in cancer?

Compare the viral targets, identified through binary interactions, protein complex
associations and TF-binding-site analyses, against a gold standard set of 107 high-

confidence causal human cancer genes in the COSMIC Classic (CC) gene set.

=>»Viral targets were significantly enriched among CC genes (P=0.01).

SS 2015 - lecture 11
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Virus-host network model
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Diagram describing the
composition of VirHost (947
proteins identified by TAP-MS
with at least 3 unique peptides,
Y2H and TF) and overlap with
COSMIC Classic (CC) genes.

‘VirHost’ set includes 16
proteins encoded by CC genes
(P=0.007), among which tumour
suppressor genes were
significantly over-represented
(P=0.03).

Rozenblatt-Rozen et al.
Nature 487, 491 (2012) 22



Viral proteins. transcription factors and clusters
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Compare cancer mutations and PPis with viral proteins
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If the mechanisms of cancer formation induced by genetic mutations and by DNA
viruses are indeed similar,

this opens up interesting possibilities to study cancerogeneis by controlled viral
infection.

Network view correponds to modern field of cancer systems biology.
Important for drug design.

Follow-up study which individuals are susceptible to viral infection and which ones
are not?
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