V12: gene-regulatory networks related to cancerogenesis

TCGA breast cancer study
Towards a breast cancer GRN ...

Motifs in GRNs ... TMmIR
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TCGA consortium analysed primary breast cancers by
- genomic DNA copy number arrays,

- DNA methylation,

- exome sequencing,

- messenger RNA arrays,

- microRNA sequencing and

- reverse-phase protein arrays.

Combining data from 5 platforms showed the existence of 4 main breast cancer
classes. Each of them shows significant molecular heterogeneity.

Somatic mutations in only 3 genes (TP53, PIK3CA and GATA3) occurred at >10%
incidence across all breast cancers.
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Breast cancer genomes in TCGA

Tumour samples are grouped by mRNA subtype: luminal A (n = 225), luminal B (n = 126), HER2E (n = 57) and
basal-like (n = 93). Clinical features: dark grey, positive or T2—4; white, negative or T1; light grey, N/A or

equivocal. N, node status; T, tumour size.

Right: significantly mutated genes with frequent copy number amplifications (red) or deletions (blue).
Far-right: non-silent mutation rate per tumour (mutations per megabase, adjusted for coverage).
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Review (bioinformatics lll) — GRN of E. coli

RegulonDB: database with information on transcriptional regulation and operon
organization in E.coli; 105 regulators affecting 749 genes

— 7 regulatory proteins (CRP, FNR, IHF, FIS, ArcA, NarL and Lrp) are sufficient
to directly modulate the expression of more than half of all E.coli genes
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Regulation of transcription factors in E. coli

When more than 1TF regulates a gene, the

order of their binding sites is as given in the
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Aim: construct GRN for breast cancerogenesis

Normal cohorts R i
1- RNA expressi&

2- DNA methylation

Z

3-miRNA expression

Diseased cohorts

@\‘?

4-Somatic mutations

We found

-1317 differentially expressed genes,
- 2623 differentially methylated genes,
- 121 differentially expressed miRNAs

between 131 tumor and 20 normal
tissues.

SS 2015 - lecture 12

l Prior ¥
. network

= zmm) | Bayesian » i‘

Learner

ted 1-TFs identifications

Differential Analysis

=|

Driver mutations

Modeling Cell Fate

ks 2-TFBS analysis
3-Add related interactions
from Regulatory Databases
ﬂ " Network |
Y pruning
J
Proximity interactions with | miRNA-mRNA interactions \ TF-mRNA interactions
somatic mutations
® 'S4
. - .
- -
e 9 g0
XYy’ Pt
e - ® . o o0
) \ %

i —3

Key drivers identification

4

Functional enrichment and druggability analysis

Hamed et al. BMC Genomics 16, S2 (2015)
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Organize genes into modules

The expression profiles of the 1317
identified differentially expressed
genes were used to compute the co-
regulation strength between genes.

An undirected co-expression network
was obtained by hierarchical
clustering (HCL).

HCL yielded 10 segregated network

modules that contain between 26 and
295 gene members (different colors).
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Table 1. The key driver elements identified TF-gene

Organize genes into modules

interactions and miRNA-mRNA interactions

Module Gene Top GO category Top KEGG categories Key Key drivers
count driver
count
TF-mRNA black 41 Regulation of transcription Pathways in cancer, Renal cell 5 SORBS3, ZNF43, ZNF681, RBMX,
interactions carcinoma POUZF1
blue 247 MNucleobase, nucleoside, Cell cycle, Prostate cancer, 9 AR, BRCAT1, ESR1, JUN, MYB, RPNI,
nucleotide and nucleic acid  Melanoma E2F1, E2F2, PPARD
metabolic process
brown 195 Anatomical structure Leukocyte transendothelial 5 TMOD3, CREB1, POUSF1, SP3, TERT
morphogenesis migration
green 110 Cellular macromolecule Endometrial cancer, Insulin 15 B4GALT7, 059, CDC34, MAN2CI,
metabolic process signaling pathway MYO1C, SH3GLB2Z, INPPSE, PLXNBT,
USF2, PPP1R12C, CDKS, DAP, E4FT,
E2F4, USF
grey 148 Anatomical structure Sulfur metabolism 18 AHCTF1, NQO2, FGFR2, CCDC130,

development

ABCG4, BIRC6, CA6, P4, RNF2,
SPRR1B, C160rfes, DNAJCSG, SNCAIP,
GRIKS, SLC6A4, SMADT, DADT, POU4F2

magenta 26 Regulation of metabolic p53 signaling pathway, 3 ATF6, NGEF, POGK
process Alzheimer's disease

pink 30 Iranscription initiation from  Basal transcription factors 4 CCDC92, TMEM70, ENF139, E2F5
RNA polymerase Il promoter

red a3 Regulation of cellular Endometrial cancer, 14 ATP1B1, STAT3, ABCBS8, MYC,

process MNeurotrophin signaling pathway TGFB1, SP1, TP53, PCGF1, SUMF2,
GTF3A, IPO13, GMPPA, HTRE, TGIF1
turquoise 295 Regulation of cellular p53 signaling pathway, i UBLS, RNF111
metabolic process Pancreatic cancer, Apoptaosis
yellow 132 Immune system process Chemokine signaling pathway, 19 APOC1, CD2, CD79B, LRRC28,
MNatural killer cell mediated DAPK1, FAMI124B, EML2, LAP3,
cytotoxicity TSPAN2Z, FCRL3, ELMO1, SLC7 A7,
RASSF5, SLC31AZ, TRAF3IP3, GALNTI 2,
[TGA4, SPIT, TEAP2A
Total 1317
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Enriched GO
categories

and KEGG
pathways
determined
among genes
in module by
hypergeometric
test (p < 0.05).

Hamed et al. BMC Genomics 16, S2 (2015)
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Key regulators (drivers) in the constructed modules were identified by determining
the minimal set of nodes that regulate the entire module.

These nodes typically include the nodes with highest degree plus some further
ones that are required to ,reach” the remaining target genes.

Hamed et al. BMC Genomics 16, S2 (2015)
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Functions of miRNAs

(@ e B Single stranded miRNAs are
MAM /_\ incorporated into the RISC complex.

Pri-miRNA

This complex then targets the miRNA
e.g. to the target 3’ untranslated region
of a mMRNA sequence to facilitate
repression and cleavage.

Mature miRNA

Target mRNA cleavage

AA, poly A tail;
m7G, 7-methylguanosine cap;
ORF, open reading frame.

SS 2015 - lecture 12 Modeling Cell Fate ~ Ryan et al. Nature Rev. Cancer (2010) 10, 389
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Mature miRNA molecules are partially complementary to one or more messenger

RNA (mMRNA) molecules.

solution NMR-structure of let-7 miRNA:/in-41 mRNA
complex from C. elegans
Cevec et al. Nucl. Acids Res. (2008) 36: 2330.

The main function of miRNAs is to down-regulate
translation of their target mMRNAs.

mMiRNAs typically have incomplete base pairing to a target

and inhibit the translation of many different mMRNAs with similar sequences.

In contrast, siRNAs typically base-pair perfectly and induce mRNA cleavage only
in a single, specific target.

www.wikipedia.org
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http://nar.oxfordjournals.org/content/36/7/2330/F5.large.jpg

The first two known microRNAs, lin-4
and let-7, were originally discovered in

the nematode C. elegans. a R - BB
They control the timing of stem-cell g ¢ cua
division and differentiation. v 2% b(;"'{} J{i a g °
let-7 was subsequently found as the o S g C g c
first known human miRNA. g X 5 % ;
let-7 and its family members are highly g o S o g
conserved across species in sequence U":" E o A U
and function. [;; j ,I 8 :
Misregulation of let-7 leads to a less g c o ¢ U
differentiated cellular state and the % Ué’ 3(, 0
development of cell-based diseases such 7 ;-;' X
as cancer. ¢ 8 ¢q g X
Pasquinelli et al. Nature (2000) 408, 86 6 U
www.wikipedia.org C. elegans D. melanogaster  H. sapiens chr22
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For the 7 smallest modules, we collected the related directed regulatory
interactions available in 3 online regulatory databases (JASPAR, TRED, MsigDB).

These were used as a prior for a Bayesian learner to learn the causal probabilistic
regulatory interactions and to generate a directed network topology.

We removed 89 inferred interactions whose target genes are downregulated and
their expression profiles showed absolute anti-correlation measure > 0.65 with
their methylation profiles.

In those cases we reasoned that downregulation of these target genes was most
likely due to their promoter methylation and not due to TF binding

Hamed et al. BMC Genomics 16, S2 (2015)
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For the set of differentially expressed miRNAs, which were either up- or down-
regulated between the tumor and normal samples, we used miRTrail via
MicroCosm Targets V5 to extract their target mMRNAs (regulated genes) and
overlapped them with the identified differentially expressed mRNAs.

*

We used the experimentally validated database TransmiR to retrieve the
regulatory genes (TFs) that potentially regulate the differentially expressed
miRNAs.

Hamed et al. BMC Genomics 16, S2 (2015)
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MiRNA-mRNA interactions in breast cancer network

miRNA- Genes Gene  Top GO category Top KEGG categories Key Key drivers
mRNA count driver
interactions count
869 Regulation of Pathways in cancer, Pancreatic 17 MYC, ATGAC, TGFB1, NFKB1, AKT1,
macromaolecule metabolic cancer, Prostate cancer EGR1, TP53, S0OX10, SPI1, MECP2,
process E2F3, CREB1, TCF3, TPP1, FLICE, LPS,
PACST
miRMNAs  miRNA  Top functional categories Top HMDD categories Key Key drivers
count driver
count
120 miRMNA tumor suppressors, Breast cancer (65), Neoplasms 68 mir-126, mir-609, mir-438, mir-191,
immune response, Onco- (58), Melanoma (56), Ovarian mir-200c, mir-200a, mir-30a, mir-30d,
miBMA, cell death, human MNeoplasms (51), Pancreatic mir-335, mir-190b, mir-223, mir-106b,
embryonic stem cells Meoplasms (38), Prostatic mir-51%e, mir-210, mir-379, mir-203,
regulation Meoplasms (38) mir-205, mir-708, mir-29¢, mir-293a,

mir-182, mir-183, mir-127, mir-187,
mir-425, let-7g, let-7d, mir-152, mir-155,
mir-21, mir-22, mir-758 mir-921, mir-922,
mir-375, mir-377, mir-181a-2, mir-657,
mir-302d, mir-100, mir-10b, mir-10g,
mir-625, mir-629, mir-92a-2, mir-26b,
mir-25, mir-145, mir-143, mir-141,
mir-221, mir-193k, mir-193a, mir-374a,
mir-134, mir-146a, mir-31, let-7a-2,
mir-27a, mir-27b, mir-133a-1, let-7i,
mir-%3, mir-23a, mir-148a, mir-1596a-2,
mir-487b, mir-149

For the 10 gene modules identified in TF-mRNA interactions, we list counts of the involved genes, the most significant GO and KEGG terms, and the identified
key driver genes from each module. Similarly for the miRNA-mRMA interactions, we list the key driver molecules of both genes and miRNAs. The driver genes,
whose protein products are known to be targeted by drugs, are in bold.

Hamed et al. BMC Genomics 16, S2 (2015)
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Regulatory interactions of driver genes

Regulatory interactions of the
17 key driver genes identified
from miIRNA-mRNA
interactions.

Large nodes: key driver genes

small nodes : miRNAs, which
regulate or are regulated by
these driver genes.

Square nodes : driver genes

that are targeted by available
drug molecules.
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Cancer

Target gene | Drug and antineoplastic agents CTD PharmGKB
Resource
ABCBS docetaxel; Cyclosporine; Progesterone 1 0 0
ABCG4 indole-3 carbinol; Methotrexate; exemestane; Vincristine 1 0 0
AHCTF1 Methotrexate; bisphenol A 1 0 0
AKTI U 9126;tyrph(?stin AG 1478; Ursn')d.eoxych.oli(? Acid;Valproic | 0 |
Acid;tyrphostin AG 1024; trametinib; Tretinoin
APOCI1 tanshinone; Quercetin; Fluorouracil; bexarotene; Cisplatin; Tamoxifen 1 0 1
AR Dihydrotestosterone; Acetylcysteine; celecoxib 1 0 0
ATF6 Nelfinavir; Tretinoin;bisphenol A; Cyclosporine; Curcumin 1 0 0
ATG4C epigallocatechin gallate 1 0 0
ATPIBI resveratrol; Ranitidine; vorinostat; Genistein; Progesterone; epigallocatechin | 0 0
gallate
B4GALT7 Cytarabine; Cyclosporine 1 0 0
BIRCS Din.aldri.n;. Cyclospprine; Cispla.tin; fluotouracil; Doxorubicin; | 0 0
Epirubicin;Estradiol; zoledronic acid; bisphenol A
BRCAI1 Tretinoin; trichostatin A; Estradiol; transplatin; troglitazone; Tunicamycin; 1 0 1
fulvestrant
CA6 Tretinoin;Carmustine 1 0 0
CCDC130 Quercetin;Tamoxifen;Cyclosporine;bisphenol A 1 0 0
CCDC92 Quercetin; Folic Acid 1 0 0
CD2 Dexamethasone; Methotrexate; Cyclophosphamide 1 0 0
CD79B Cyclophosphamide 1 0 0
CDC34 Estradiol; bortezomib; Fluorouracil; Tamoxifen 1 0 0
DAPKI paclitaxel;gemcitabine 0 1 0
EGRI Fluorouracil; gemcitabine 0 0 1
ESR1 exemestane;tamoxifen 0 1 1
andrographolide; cinnamic aldehyde; Daunorubicin; decitabine;
JUN . . .. 0 0 1
Cisplatin;Doxorubicin
LRRC28 gemcitabine 0 0 1
MYB Fluorouracil;gemcitabine;Quercetin 0 0 1
MYC alitretiongip; Amsarcine; bicalutamide; Camtothecin; decitabine; Cisplatin; 0 0 |
Doxorubicin
NFKBI Curcumin; de_citabine; Doorgbicin; Echinomycin; Fluorouracil; gefitinib; 0 0 |
indole-3-carbinol; parthenolide
NQO2 doxorubicin; cyclophosphamide 0 1 0
089 alitretionoin 0 0 1
SP1 Etoposide; indole-3-carbinol; lonidamine; Quercetin; Adaphostin 0 0 1
STAT3 azaspirane; bis.phenol A;. Capsaicin;. Fluorouracil; interferon alfacon-1; 0 0 |
resveratrol;sulindac sulfide; Tamoxifen
TGFB1 Doxorubicin; Fluorouracil; Thalidomide; Entinostat; Hyaluronidase 0 0 1
TP53 4-biphenylmine; alliin; Apigenin; 0 0 1

Atropine;bicalutamide;butylidenephthalide

SS 2015 - lecture 12
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We identified 94 driver
genes from the TF-mRNA
interactions and 17 driver
genes from the miRNA-
MRNA interactions. 5
breast cancer associated
genes CREB1, MYC,
TGFB1, TP53, and SPI1
were common in both sets

-> in total 106 driver genes.

31% (33 proteins) of the
proteins belonging to the
identified driver genes are
binding targets of at least

one anti-breast cancer drug

-> validates our approach

Hamed et al. BMC Genomics 16, S2 (2015)
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TFmiR: identify regulatory motifs in GRNs
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Table S1.The integrated databases and interaction types in TFmiR.

Interaction Databases (P/E) * Genes | miRNAs | Regulatory links | Version /frozen date
TF-> gene TRANSFAC (E) (1) 1279 |- 2943 V114
OregAnno (E)(2) 1132 -- 1083 Nov 2010
TRED (P) (3) 3038 |- 6462 2007
TF-> miRNA TransmiR (E) (4) 158 175 567 V1.2, Jan 2013
PMID20584335 (E) (5) 58 56 102 Apr 2009
ChipBase (P) (6) 119 1380 33087 V1.1, Nov 2012
miRNA - gene [miRTarBase (E)(7) 2244 551 5640 V4.5, Nov 2013
TarBase (E) (8) 1422 79 492 V7.0
miRecords (E)(9) 543 157 780 Mar 2009
starBase (P)(10) 5720|249 56051 V2.0, Sept 2013
miRNA-2> miRNA [PmmR (P) (11) -- 312 3846 Mar 2011

* (P) means predicted interactions and (E) means experimentally validated interactions.
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Possible co-regulatory motifs
We postulated that a TF and a
mMiRNA may act occasionally q @

on the same gene (or its
In motif (a), a TF could first (a) Co-regulation-FFL (b) TF-FFL

transcribed mRNA).
stimulate gene expression.

| } miRNA
Later, the miRNA would q {K\D

degrade the transcript. .
for such co-regulatory motifs (c) miRNA-FFL (d) Composite-FFL

-> search generated networks

Hamed et al. Nucl Acids Res 43: W283-W288 (2015)
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To evaluate the significance of each FFL motif type, we compare how often they
appear in the real network to the number of times they appear in randomized
ensembles preserving the same node degrees.

We applied a degree preserving randomization algorithm.

Each random network was generated by 2 * number of edges steps, where in each
step we choose 2 edges e, = (v4, V,) and e, = (v, v,) randomly from the network
and swap their start and end nodes, i.e. e; = (v4, V4) €4 = (V3, V5).

We construct 100 such random networks and count the motifs in them.

N ot random 18 the number of random networks that contain more than or equal
numbers of a certain motif than the real network

The we compute the p-value for the motif significance as p = N, rangom 7/ 100

SS 2015 - lecture 12 Modeling Cell Fate
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Identified composite FFL motif

Figure S4. A composite FFL motif involves the TF SPII, the miRNA has-mir-155, and the target gene FLII. The
co-regulated nodes are also visualized and are further tested whether they compose a cooperative functional module

in breast cancerogenesis (see Fig S5).

Hamed et al. Nucl Acids Res 43: W283-W288 (2015)
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Table S2. The most significant functions and diseases enriched in the miRNA nodes of the breast cancer disease
network (12).

Category Term miRNAs Count P-value
Function Epithelial-mesenchymal transition 17 0.022
Function glucose metabolism 4 0.048
Disease Breast Neoplasms 67 1.43E-25
Disease Lung Neoplasms 50 4.33E-17
Disease Neoplasms 44 3.15E-15
Disease Ovarian Neoplasms 43 1.30E-14
Disease Adenocarcinoma 27 2.59E-13
Disease Pancreatic Neoplasms 39 7.30E-13
Disease Prostatic Neoplasms 41 3.49E-12
Disease Melanoma 45 1.25E-11
Disease Colonic Neoplasms 32 4.67E-11
Disease Colorectal Neoplasms 45 5.69E-11

Hamed et al. Nucl Acids Res 43: W283-W288 (2015)
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Table S4. The identified key gene nodes in the breast cancer network (12) whose protein products are targeted by
anti-cancer drugs. (1) means that at least one drug that targets this gene product is reported in this database, and (0)
means no drugs are reported for the respective gene in this database. Not included are substances that are known to
be cancerogenous or mutagenic.

Target gene Drug and antineoplastic agents CTD PharmGKB Cancer
Resource

AKTIL U 0126:tyrphostin AG 1478: Ursodeoxycholic Acid:Valproic 1 0 1
Acid:tyrphostin AG 1024: trametinib: Tretinoin

BRCA2 Tret'mmu: trichf}statln A: Estradiol: transplatin; troglitazone: 1 0 1
Tunicamycin: fulvestrant

ESRI1 exemestane:tamoxifen 0 1 1

TGFB1 Doxorubicin: Fluorouracil: Thalidomide: Entinostat: Hyaluronidase 0 0 1
4-biphenylmine: alliin; Apigenin:

53 Ry . < .
TP Atropine:bicalutamide:butylidenephthalide 0 0 :
Hamed et al. Nucl Acids Res 43: W283-W288 (2015)
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This concludes our small tour on modeling cell fate.

We looked at:

- Circadian clocks

- Cell cycle

- Cell differentiation

- Cancerogenesis

We showed you all the necessary techniques to generate GRNs by yourself.

Next week: mini-test 3, no lecture

Also open: assignment #6

If you like to conduct a Master thesis in these areas please contact me.
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