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TCGA breast cancer study 
 
Towards a breast cancer GRN ... 
 
Motifs in GRNs ... TMmiR 
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TCGA consortium analysed primary breast cancers by  
- genomic DNA copy number arrays,  
- DNA methylation,  
- exome sequencing,  
- messenger RNA arrays,  
- microRNA sequencing and  
- reverse-phase protein arrays. 
 
Combining data from 5 platforms showed the existence of 4 main breast cancer 
classes. Each of them shows significant molecular heterogeneity.  
 
Somatic mutations in only 3 genes (TP53, PIK3CA and GATA3) occurred at >10% 
incidence across all breast cancers.  
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Breast cancer genomes in TCGA 
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Tumour samples are grouped by mRNA subtype: luminal A (n = 225), luminal B (n = 126), HER2E (n = 57) and 
basal-like (n = 93). Clinical features: dark grey, positive or T2–4; white, negative or T1; light grey, N/A or 
equivocal. N, node status; T, tumour size.  
Right: significantly mutated genes with frequent copy number amplifications (red) or deletions (blue).  
Far-right: non-silent mutation rate per tumour (mutations per megabase, adjusted for coverage).  

Nature 490, 61–70 (2012) 
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Review (bioinformatics III) – GRN of E. coli 
RegulonDB: database with information on transcriptional regulation and operon 
organization in E.coli; 105 regulators affecting 749 genes 
 
 7 regulatory proteins (CRP, FNR, IHF, FIS, ArcA, NarL and Lrp) are sufficient 
to directly modulate the expression of more than half of all E.coli genes. 

Martinez-Antonio, Collado-Vides, Curr Opin Microbiol 6, 482 (2003) 
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Review (bioinformatics III) – Regulatory cascades in E.coli 
  

When more than 1TF regulates a gene, the 
order of their binding sites is as given in the 
figure.  
 
Arrowheads indicate positive regulation when 
the position of the binding site is known.  
 
Horizontal bars indicates negative regulation 
when the position of the binding site is known.  
 
In cases where only the nature of regulation 
is known, without binding site information,  
+ and – are used to indicate positive and 
negative regulation.  
 
The DNA binding domain families are 
indicated by circles of different colours 
.  
The names of global regulators are in bold.  Babu, Teichmann, Nucl. Acid Res. 31, 1234 (2003) 
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Aim: construct GRN for breast cancerogenesis 
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Hamed et al. BMC Genomics 16, S2 (2015) 

We found 
-1317 differentially expressed genes,  
- 2623 differentially methylated genes, 
- 121 differentially expressed miRNAs 
between 131 tumor and 20 normal 
tissues.  
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Organize genes into modules 
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The expression profiles of the 1317 
identified differentially expressed 
genes were used to compute the co-
regulation strength between genes. 
 
An undirected co-expression network 
was obtained by  hierarchical 
clustering (HCL).  
 
HCL yielded 10 segregated network 
modules that contain between 26 and 
295 gene members (different colors).  

Hamed et al. BMC Genomics 16, S2 (2015) 
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Hamed et al. BMC Genomics 16, S2 (2015) 

Enriched GO 
categories  
and KEGG 
pathways 
determined 
among genes 
in module by 
hypergeometric 
test (p < 0.05). 
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Key driver genes 
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Key regulators (drivers) in the constructed modules were identified by determining 
the minimal set of nodes that regulate the entire module. 
 
These nodes typically include the nodes with highest degree plus some further 
ones that are required to „reach“ the remaining target genes. 

Hamed et al. BMC Genomics 16, S2 (2015) 
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Functions of miRNAs 
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Single stranded miRNAs are 
incorporated into the RISC complex. 
 
This complex then targets the miRNA 
e.g. to the target 3′ untranslated region 
of a mRNA sequence to facilitate 
repression and cleavage.  

AA, poly A tail;  
m7G, 7-methylguanosine cap;  
ORF, open reading frame. 
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Binding partners of miRNAs 

  

www.wikipedia.org 

Mature miRNA molecules are partially complementary to one or more messenger 
RNA (mRNA) molecules. 
 
 solution NMR-structure of let-7 miRNA:lin-41 mRNA  
 complex from C. elegans 
 Cevec et al. Nucl. Acids Res. (2008) 36: 2330.  
 
The main function of miRNAs is to down-regulate  
translation of their target mRNAs.  
 
miRNAs typically have incomplete base pairing to a target  
and inhibit the translation of many different mRNAs with similar sequences.  
 
In contrast, siRNAs typically base-pair perfectly and induce mRNA cleavage only 
in a single, specific target. 
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http://nar.oxfordjournals.org/content/36/7/2330/F5.large.jpg
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discovery of let7 
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Pasquinelli et al. Nature (2000) 408, 86 
www.wikipedia.org 

The first two known microRNAs, lin-4  
and let-7, were originally discovered in 
the nematode C. elegans.  
 
They control the timing of stem-cell 
division and differentiation.  
let-7 was subsequently found as the  
first known human miRNA.  
 
let-7 and its family members are highly 
conserved across species in sequence 
and function.  
Misregulation of let-7 leads to a less 
differentiated cellular state and the 
development of cell-based diseases such 
as cancer. 
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Construct regulatory interactions 
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* For the 7 smallest modules, we collected the related directed regulatory 
interactions available in 3 online regulatory databases (JASPAR, TRED, MsigDB). 
 
These were used as a prior for a Bayesian learner to learn the causal probabilistic 
regulatory interactions and to generate a directed network topology. 
 
* We removed 89 inferred interactions whose target genes are downregulated and 
their expression profiles showed absolute anti-correlation measure > 0.65 with 
their methylation profiles.  
 
In those cases we reasoned that downregulation of these target genes was most 
likely due to their promoter methylation and not due to TF binding 

Hamed et al. BMC Genomics 16, S2 (2015) 
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Construct regulatory interactions involving miRNAs 
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* For the set of differentially expressed miRNAs, which were either up- or down-
regulated between the tumor and normal samples, we used miRTrail via 
MicroCosm Targets V5 to extract their target mRNAs (regulated genes) and 
overlapped them with the identified differentially expressed mRNAs.  
 
* We used the experimentally validated database TransmiR to retrieve the 
regulatory genes (TFs) that potentially regulate the differentially expressed 
miRNAs.  

Hamed et al. BMC Genomics 16, S2 (2015) 
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miRNA-mRNA interactions in breast cancer network 
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Nh is  

Hamed et al. BMC Genomics 16, S2 (2015) 
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GRN modules 
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Gene network modules of 
TF-gene interactions.  
(a) Topological overlap 
matrix (TOM) heatmap 
corresponding to the 10 co-
expression modules.  
Each row and column of the 
heatmap represent a single 
gene. Spots with bright 
colors denote weak 
interaction whereas darker 
colors denote strong 
interaction. Dendrograms on 
the upper and left sides 
show the hierarchical 
clustering tree of genes.  

(b), (c), and (d) are the final GRN networks highlighting the 
identified key drivers genes for the green, magenta, and 
red modules, respectively. Square nodes : identified driver 
genes that are targeted by drugs.  

Hamed et al. BMC Genomics 16, S2 (2015) 
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Regulatory interactions of driver genes 
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Regulatory interactions of the 
17 key driver genes identified 
from miRNA-mRNA 
interactions.  
 
Large nodes: key driver genes 
  
small nodes : miRNAs, which 
regulate or are regulated by 
these driver genes.  
 
Square nodes : driver genes 
that are targeted by available 
drug molecules.  

Hamed et al. BMC Genomics 16, S2 (2015) 
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Hamed et al. BMC Genomics 16, S2 (2015) 

We identified 94 driver 

genes from the TF-mRNA 

interactions and 17 driver 

genes from the miRNA-

mRNA interactions. 5 

breast cancer associated 

genes CREB1, MYC, 
TGFB1, TP53, and SPI1 
were common in both sets 

-> in total 106 driver genes. 

 

31% (33 proteins) of the 

proteins belonging to the 

identified driver genes are 

binding targets of at least 

one anti-breast cancer drug 

 

-> validates our approach 
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TFmiR: identify regulatory motifs in GRNs 
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Hamed et al. Nucl Acids Res 43: W283-W288 (2015) 
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Data sources used for TFmiR 
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Hamed et al. Nucl Acids Res 43: W283-W288 (2015) 
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Possible co-regulatory motifs 
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We postulated that a TF and a 
miRNA may act occasionally 
on the same gene (or its 
transcribed mRNA). 
 
In motif (a), a TF could first 
stimulate gene expression. 
 
Later, the miRNA would 
degrade the transcript. 
 
-> search generated networks 
for such co-regulatory motifs 

Hamed et al. Nucl Acids Res 43: W283-W288 (2015) 
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Statistical significance of motifs 
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To evaluate the significance of each FFL motif type, we compare how often they 
appear in the real network to the number of times they appear in randomized 
ensembles preserving the same node degrees.   
 
We applied a degree preserving randomization algorithm.  
 
Each random network was generated by 2 * number of edges steps, where in each 
step we choose 2 edges e1 = (v1, v2) and e2 = (v3, v4) randomly from the network 
and swap their start and end nodes, i.e. e3 = (v1, v4) e4 = (v3, v2).  
 
We construct 100 such random networks and count the motifs in them. 
 
Nmotif_random is the number of random networks that contain more than or equal 
numbers of a certain motif than the real network 
 
The we compute the p-value for the motif significance as p = Nmotif_random / 100 
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Identified composite FFL motif 
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Hamed et al. Nucl Acids Res 43: W283-W288 (2015) 
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Enriched biological functions in breast cancer network 
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Hamed et al. Nucl Acids Res 43: W283-W288 (2015) 
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Drug Targets in breast cancer network 
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Hamed et al. Nucl Acids Res 43: W283-W288 (2015) 
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End of lecture 
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This concludes our small tour on modeling cell fate. 
 
We looked at: 
- Circadian clocks 
- Cell cycle 
- Cell differentiation 
- Cancerogenesis 

 
We showed you all the necessary techniques to generate GRNs by yourself. 

 
Next week: mini-test 3, no lecture 
 
Also open: assignment #6 
 
 
If you like to conduct a Master thesis in these areas please contact me. 


