
V2: Circadian rhythms, time-series analysis (intro) 
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Introduction: 3 paragraphs 
(1) What are circadian rhythms? Biological/medical relevance 
(2) Previous work, only single organs analyzed – here: profiling of 12 organs. 
(3) What has been achieved in this study? 

 
Methods section:  
(1) Animal Preparation and Organ Collection 
(2) Microarray Data 
(3) RNA-seq Data   question: why microarray and RNA-seq? 
(4) Oscillation Detection 
 



Oscillation detection: JTK_CYCLE 
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JTK_CYCLE applies the Jonckheere-Terpstra-Kendall (JTK) algorithm to 
alternative hypothesized group orderings corresponding to a range of user-
defined period lengths and phases. 
 
JTK is a special case of Kendall’s more general method of rank correlation. 
  
In effect, the JTK_CYCLE algorithm finds the optimal combination of period and 
phase that minimizes the exact p-value of Kendall’s tau correlation between an 
experimental time series and each tested cyclical ordering.  
 
For the ease of interpretation, group orderings are derived from cosine curves, 
although generally speaking, the choice of group order can be anything.  
 
Each minimal p-value is Bonferroni-adjusted for multiple testing. 
 
J Biol Rhythms. 2010;25:372-80. 



Results: start with overview of the data … 
How many circadian genes are detected in various organs? 
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Globally oscillating genes 
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Only 10 genes oscillated in all organs:  
Arntl, Dbp, Nr1d1, Nr1d2, Per1, Per2, and Per3 (core clock factors – as 
expected), and Usp2, Tsc22d3, and Tspan4.  
 
Usp2 - Ubiquitin carboxyl-terminal hydrolase 2 
Tsc22d3 - TSC22 domain family protein 3 
Tspan4 - The protein encoded by this gene is a member of the 
transmembrane 4 superfamily, also known as the tetraspanin family. 



Overlap of genes/organs (B), how many expected (C)? 
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(A) Phases + overlap, (B) similarity 
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Most circadian genes show 
organ-specific expression 
(small overlap). 
 
Peaks often at dawn and dusk. 
 
Developmentally related organs 
tend to share circadian genes. 
 
Tree generated by similarity of 
peak phases. 



Examples 

SS 2015 - lecture 2 Modeling Cell Fate  
7 

IGF1 is most produced 
in liver -> peaks at the 
same time throughout 
body, however PIK3r1 
receptor peaks at 
different times in organs. 

Two VEGF-receptors 
are expressed 
alternatively. 

Dtx4, a Notch pathway 
E3 ubiquitin ligase, 
oscillated in phase with 
Arntl in all organs 



Multiple coordinated pathways control PIK3-AKT-MTOR 
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Multiple synchronous receptors feed into 
PIK3-AKT-MTOR pathway that controls 
growth and apoptosis 



Relevance: mouse -> humans, drugs 
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How many are drug-target related? 
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How to proceed? 

  
Speculate what these authors will do next … 
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Introduction to time series analysis 

  
After book of Peter Brockwell &  
Richard A. Davis 
 
 
 
 
A time series is a set of observations xt , each one being recorded at a specific 

time t .  
 
A discrete-time time series is one in which the set T0 of times at which 

observations are made is a discrete set, e.g. when observations are made 
at fixed time intervals. 

  
Continuous-time time series are obtained when observations are recorded 

continuously over some time interval, e.g., when T0 = [0,1].    
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Introduction to time series analysis 
The Australian redwine sales, 
Jan.‘80–Oct.‘91 
(Brockwell & Davis) 
In this case the set T0 consists 
of the 142 times {(Jan. 1980), 
(Feb. 1980), ...,(Oct. 1991)}.  
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Given a set of n observations made at uniformly spaced time intervals,  
it is often convenient to rescale the time axis in such a way that  
T0 becomes the set of integers {1,2,...,n}.  
In the present example this amounts to measuring time in months with 
(Jan.1980) as month1. Then T0 is the set {1,2,...,142}.  
 
It appears from the graph that the sales have an upward trend and a seasonal 
pattern with a peak in July and a trough in January.  



Introduction to time series analysis 
Results of the all-star baseball 
games,1933–1995, by plotting, 
where  
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This is a series with only two possible values, ±1.  
 
It also has some missing values, since no game was played in1945, and two 
games were scheduled for each of the years 1959–1962.  



Introduction to time series analysis 
The monthly accidental deaths 
data,1973–1978, in USA.  
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Like the red wine sales, the monthly accidental death figures show a strong 
seasonal pattern, with the maximum for each year occurring in July and the 
minimum for each year occurring in February.  
 
The presence of a trend in this figure is much less apparent than in the wine 
sales. We shall later consider the problem of representing the data as the sum of 
a trend, a seasonal component, and a residual term. 



Introduction to time series analysis 
The series {X } of 
 
 
where {Nt} is a sequence of independent normal 
random variables, with mean 0 and variance 0.25. 
Such a series is often referred to as signal plus 
noise, the signal being the smooth function,  
St = cos( t / 10) in this case.  
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Given only the data Xt, how can we determine the unknown signal component? There are many 
approaches to this general problem under varying assumptions about the signal and the noise.  
One simple approach is to smooth the data by expressing Xt as a sum of sine waves of various 
frequencies and eliminating the high-frequency components.  
If we do this to the values of {Xt} shown in the figure and retain only the lowest 3.5% of the 
frequency components, we obtain the estimate of the signal also shown in the figure.  
The waveform of the signal is quite close to that of the true signal in this case, although its 
amplitude is somewhat smaller.  



Introduction to time series analysis 
Population of the USA at ten-year 
intervals,1790–1990. 
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The graph suggests the possibility of fitting a quadratic or exponential trend to the 
data.  



Introduction to time series analysis 
Strikes in the USA.,1951–1980.  
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 The number of strikes appears to fluctuate erratically about a slowly changing level. 



Objectives of time series analysis 
An important part of the analysis of a time series is the selection of a suitable 
probability model (or class of models) for the data.  
 
To allow for the possibly unpredictable nature of future observations it is natural to 
suppose that each observation xt is a realized value of a certain random variable Xt . 
 
Definition: A time series model for the observed data {xt} is a specification of the 
joint distributions (or possibly only the means and covariances) of a sequence of 
random variables {Xt} of which {xt} is postulated to be a realization. 
 
Remark. We shall frequently use the term time series to mean both the data and 
the process of which it is a realization. 
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Objectives of time series analysis 
The figure shows one of many 
possible realizations of  
{St , t = 1, . . . , 200}, where {St } is 
a sequence of random variables.  
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In most practical problems involving time series we see only one realization. 
 
For example, there is only one available realization of Fort Collins’s annual rainfall 
for the years 1900–1996, but we imagine it to be one of the many sequences that 
might have occurred.  



Objectives of time series analysis 
A complete probabilistic time series model for the sequence of random variables 
{X1, X2, . . .} would specify all of the joint distributions of the random vectors 
(X1, . . . , Xn)‘, n = 1, 2, . . ., or equivalently all of the probabilities 
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Such a specification is rarely used in time series analysis, since in general it will 
contain far too many parameters to be estimated from the available data.  
 
Instead we specify only the first- and second-order moments of the joint 
distributions, i.e., the expected values EXt and the expected products E(Xt +hXt ), t = 
1, 2, . . ., h = 0, 1, 2, . . ., focusing on properties of the sequence {Xt} that depend 
only on these. 
 



Objectives of time series analysis 
Such properties of {Xt } are referred to as second-order properties.  
 
In the particular case where all the joint distributions are multivariate normal,  
the second-order properties of {Xt } completely determine the joint distributions and 
hence give a complete probabilistic characterization of the sequence.  
 
In general we shall loose a certain amount of information by looking at time series 
“through second-order spectacles”. 
 
As we shall see later, the theory of minimum mean squared error linear prediction 
depends only on the second-order properties, thus providing further justification for 
the use of the second-order characterization of time series models.  
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For V3 
For next week: 
 
Read paper „Effects of insufficient sleep …“ 
 
Only Intro + Methods section 
 
In V3: results and discussion 
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