
V3: Circadian rhythms, time-series analysis (contd‘) 
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Introduction: 5 paragraphs 
(1) Insufficient sleep - Biological/medical relevance 
(2) Previous work on effects of insufficient sleep in rodents (dt. Nagetiere) 
(3) Metabolic effects of 2-week sleep loss. 
(4) Lack of understanding of sleep loss in humans. Problem: tissue not 
accessable, except for blood. 
(5) Relationship of sleep loss and circadian rhythms. 

 
Problem with Intro: paragraph 5 seems somehow misplaced. 



Cross-over design study 
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26 participants were first put (top) into sleep-restricted conditions with 6 hours of 
sleep opportunity per night 
and then into conditions of sufficient sleep with 10 hours of sleep opportunity. 
-> effects of genetic pre-disposition are mimimized by using „matched samples“ 
 
My problem with study design: no data are collected during phases of „control“ 
vs. „sleep restriction“, only the behavior during „constant routine“ (week 
illumination, no sleep) 

PNAS 110, E1132 (2013) 



Task: identify genes affected 
by sleep-conditions 
 
2 strategies 
 
Left: identify circadian genes 
(similar to V2) 
 
Right: identify time-awake-
dependent transcripts 

Analysis during „constant routine“ 
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PNAS 110, E1132 (2013) 



Is there an upward trend in gene expression? -> Cumulative upward trend (CuT) 
 
Is there a downward trend in gene expression? -> Cumulative downward trend (CdT) 

Trend analysis during „constant routine“ 
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PNAS 110, E1132 (2013) 

CdT 

CuT 

α 

tan α = CuT / CdT 
arctan (tan α ) = α = arctan (CuT / CdT) 

Compare arctan (CuT / CdT ) for real time series to that of randomly resampled 
(shuffled) data. 
 
 
 
 
-> p-value 



Standard linear model 

SS 2015 - lecture 3 Modeling Cell Fate  
5 

Suppose that you observe n data points y1, y2, … yn,  and that you want to 
explain them by using n values for each of p explanatory variables 
x11 , …, x1p, x21 , …, x2p , …, xn1, …, xnp . 
 
The xij values can be either regression-type continuous variables or dummy 
variables indicating class membership.  
 
The standard linear model for this setup is 
 
 
 
 
where β1 , …, βp are unknown fixed-effects parameters to be estimated and  
ε1 , …, εn are unknown independent and identically distributed normal 
(Gaussian) random variables with mean 0 and variance σ2. 

SAS/STAT9.2 user guide 



Standard linear model 
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These equations 
 
 
can also be written using vectors and a matrix, as follows: 
 
 
 
 
 
For convenience, simplicity and extendability, this entire system is written as 
 
 
where y denotes the vector of observed yi ‘s , X is the known matrix of xij ‘s,  
β is the unkown fixed-effects parameter vector and ε is the unobserved vector of 
independent and identically distributed Gaussian random errors. 

SAS/STAT9.2 user guide 



Formulation of the Mixed Model 
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The general linear model     is certainly useful. 
 
However, often the distributional assumption about ε (i.e. indepence) is too 
restrictive. 
 
The mixed model  extends the general linear model by allowing a more flexible 
specification of the covariance matrix of ε. 
 
Thus, it allows for both correlation and heterogeneous variances among the 
elements of ε, although you still assume normality (Gaussian distribution). 
 
The mixed model is written as 
 
Everything is the same as in the general linear model except for the addition of the 
known design matrix Z and the vector of unknown random-effects parameters γ.  

SAS/STAT9.2 user guide 



Formulation of the Mixed Model 
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The matrix Z can contain either continuous or dummy variables, just like X. 
 
The name mixed model comes from the fact that the model contains both  
fixed-effects parameters β and random-effects parameters γ. 
 
A key assumption is that γ and  ε  are normally distributed with   

SAS/STAT9.2 user guide 



Formulation of the Mixed Model 
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The variance of the observed data points y is therefore  
 
    V = Z G Z‘ + R 
 
You can model V by setting up the random-effects design matrix Z and by 
specifying covariance structures for G and R. 
 
Estimating parameters is more difficult in the mixed model than in the general 
linear model. Not only do you have β as in the general linear model, you have 
unknown parameters in γ , G and R as well. 
 
Least squares is not longer the best method for parameter estimation. 
  
Generalized least squares (GLS) is more appropriate, minimizing  

SAS/STAT9.2 user guide 



ANOVA = Analysis of variance 
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ANOVA is a collection of statistical models that analyze the differences  
between group means and the variation between and among groups. 
 
ANOVA somehow generalizes the t-test to more than two groups. 

wikipedia.org 



Results … more in V4 
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(1) Main effect of sleep condition („sleep restricted“ vs „control“) 
 

On 711 genes. 444 were down-regulated, 267 were upregulated. 
 
(2) Circadian rhythm 
 
Given sufficient sleep, 1855 (8.8%) genes are classified as circadian. 
 
After sleep restriction, this number declined to 1481 (6.9%). 
 
(3) Response of gene expression to acute sleep loss 
 
Given sufficient sleep, 122 genes were classified as „time-awake genes“. 
After sleep restriction, this number increased to 856 genes. 
 
In both cases, more genes have downward trends than upward trends. 

wikipedia.org 



Introduction to time series analysis (2) 

  
After book of Peter Brockwell &  
Richard A. Davis 
 
 
 
 
End of lecture V2 … 
 
Instead of complete probabilistic time series models, we often specify only 
the first- and second-order moments of the joint distributions, i.e., the 
expected values EXt and the expected products E(Xt +hXt ), t = 1, 2, . . ., h = 0, 1, 
2, . . ., focusing on properties of the sequence {Xt} that depend only on these. 
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Some zero-mean models: iid noise 
Perhaps the simplest model for a time series is one in which there is no trend or 
seasonal component and in which the observations are simply independent and 
identically distributed (iid) random variables with zero mean.  
 
We refer to such a sequence of random variables X1 , X2 , . . . as iid noise.  
 
By definition we can write, for any positive integer n and real numbers x1 , . . . , xn, 
 
 
where F (·) is the cumulative distribution function of each of the identically distributed 
random variables X1 , X2 , . . .  
(due to the indepence, the joint probability (left)  is equal to the product of the individual probabilities.) 

 
(Note that the distribution function F of a random variable X is defined by 
 
for all real x.) 
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iid noise 
In the iid model there is no dependence between observations.  
 
In particular, for all h ≥ 1 and all x1 , . . . , xn, 
 
 
showing that knowledge of X1 , X2 , . . . Xn ,  is of no value for predicting the behavior 
of Xn+h.  
 
Given the values of X1 , X2 , . . . Xn , the function f that minimizes the mean squared 
error                                                          is in fact identically zero.  
 
Although this means that iid noise is a rather uninteresting process for forecasters,  
it plays an important role as a building block for more complicated time series 
models.  
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A binary process 
As an example of iid noise, consider the sequence of iid random variables  
{Xt , t = 1 , 2 , . . . , }  
 
with      w  where p = 0.5. 
 
The time series obtained by tossing a penny repeatedly and scoring + 1 for each 
head and − 1 for each tail is usually modeled as a realization of this process.  
 
A priori we might well consider the same process  
as a model for the all-star baseball games.  
 
However, even a cursory inspection of the results 
from 1963–1982, which show the National League  
winning 19 of 20 games, casts serious doubt on the  
hypothesis  
in this case. 
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Models with Trend and Seasonality 
In several of the previous time series examples there was a clear trend in the data. 
 
E.g. an increasing trend was apparent in both the Australian red wine sales  and the 
population of the U.S.A..  
 
In both cases a zero-mean model for the data is clearly inappropriate.  
 
The graph of the population data, which contains  
no apparent periodic component, suggests  
trying a model of the form 
 
 
where mt  is a slowly changing function known as the trend component  
and Yt has zero mean.  
 
A useful technique for estimating mt is the method of least squares. 
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Least Squares Method 
In the least squares procedure we attempt to fit a parametric family of functions, 
e.g.,     to the data 
 
by choosing the parameters a0, a1, and a2, to minimize  
 
 
To fit a function of this form to the US population data we relabel the time axis so that 
t = 1 corresponds to 1790 and t = 21 corresponds to 1990.  
 
 
This gives the fitting curve shown 
on the right. 
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Harmonic Regression 
Many time series are influenced by seasonally varying factors, the effect of which 
can be modeled by a periodic component with fixed known period.  
 
E.g. the accidental deaths series showed a repeating annual pattern with peaks in 
July and troughs in February, strongly suggesting a seasonal factor with period 12.  
 
In order to represent such a seasonal effect, allowing for noise but assuming no 
trend, we can use the simple model, 
where st  is a periodic function of t with period d ( s t−d = s t ).  
 
A convenient choice for st is a sum of harmonics (or sine waves) given by 
 
 
 
where a0 , a1 , ..., ak and b1 , ... , bk are unknown parameters and λ1, ... , λk are fixed 
frequencies, each being some integer multiple of 2 π/d . 
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E.g. the accidental deaths 
 
To fit a sum of two harmonics with 
periods 12 months and 6 months to 
the monthly accidental deaths data  
x1 , ... , xn with n = 72,  
we choose k = 2,  
f1  = n/12 = 6, and  
f2 = n/6 = 12. 
 
Shown is the fitted curve with 
optimized parameters. 

Harmonic Regression 
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The previous examples  illustrate a general approach to time series analysis. 
 
• Plot the series and examine the main features of the graph, checking in 
particular whether there is 
(a) a trend, 
(b) a seasonal component, 
(c) any apparent sharp changes in behavior, 
(d) any outlying observations.. 

General Approach to Time Series Modeling 

SS 2015 - lecture 3 Modeling Cell Fate  
20 



• Remove the trend and seasonal components to get stationary residuals.  
 
To achieve this goal it may sometimes be necessary to apply a preliminary 
transformation to the data.  
 
E.g. if the magnitude of the fluctuations appears to grow roughly linearly with the 
level of the series, then the transformed series { ln X1 , . . . , ln Xn } will have 
fluctuations of more constant magnitude.  
 
Whichever method is used, the aim is to produce a stationary series, whose 
values we shall refer to as residuals. 

General Approach to Time Series Modeling 
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• Choose a model to fit the residuals, making use of various sample statistics in- 
cluding the sample autocorrelation function. 
 
• Forecasting will be achieved by forecasting the residuals and then inverting the 
transformations described above to arrive at forecasts of the original series {Xt } . 

General Approach to Time Series Modeling 
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Loosely speaking, a time series {Xt , t = 0 , ± 1 , . . .} is said to be stationary  
if it has statistical properties similar to those of the “time-shifted” series  
{X t+h , t = 0 , ± 1 , . . .} , for each integer h .  
 
Restricting attention to those properties that depend only on the first- and second-
order moments of {Xt }, we can make this idea precise with the following definitions. 

Stationary Time Series 
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Stationary Time Series 
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As preparation of assignment 1: discuss fitting of sine-waves to data on blackboard 

Discuss as example: autocorrelation 
of a water dipole moment 



- In V4, we will focus on the results part of the sleep loss paper 
 

- How is enrichment of gene ontology terms computed? 
 

- What is the role of taking the melatonin profiles? 

For V4 
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