V6: Protein phosphorylation during cell cycle

Protein phosphorylation and dephosphorylation are highly controlled
biochemical processes that respond to various intracellular and extracellular
stimuli.

Phosphorylation status modulates protein activity,

- influencing the tertiary and quaternary structure of a protein,
- controlling subcellular distribution, and

- regulating interactions with other proteins.

Regulatory protein phosphorylation is a transient modification
that is often of low occupancy or “stoichiometry”

This means that only a fraction of a particular protein may be phosphorylated
on a given site at any particular time, and that occurs on regulatory proteins
of low abundance, such as protein kinases and transcription factors.

Olsen Science
Signaling 3 (2010)
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CDK inhibitors

V1, V5: Progression through the cell-division cycle is regulated by the coordinated
activities of cyclin/cyclin-dependent kinases (CDK) complexes.

One level of regulation of these cyclin-CDK complexes is provided by their binding
to CDK inhibitors (CKIls).

There are two important families of CKis:

(1) Members of INK4 gene family (p16/NK4a  p15NK4b 01 8INKic "gnd p19!NK4d)
bind to CDK4 and CDKG6 and inhibit their kinase activities by interfering with their
association with D-type cyclins.

(2) CKiIs of the Cip/Kip family bind to both cyclin and CDK subunits and can
modulate the activities of cyclin D-, E-, A-, and B-CDK complexes.

Besson et al. Develop Cell 14,
159 (2008)
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Cip/Kip Proteins

Cip/Kip family members:

p21 Cipl/Wafl/Sdil (n21  encoded by cdknla)
p27 Kirl (p27, encoded by cdknlb)
p57 KirZ (p57, encoded by cdknic)

Cip/Kip family members have a general importance in restraining proliferation
during development, differentiation, and response to cellular stresses.

However, each Cip/Kip has specific biological functions.

Different anti-proliferative signals tend to cause elevated expression
of only a subset of the Cip/Kip proteins.

Besson et al. Develop Cell 14,
159 (2008)
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Review (V5): Crystal structure

Nikola Pavletich
(crystallographer)

p27 (Kipl) is shown bound to the
CyclinA-Cdk2 complex, provoking
profound changes in the kinase
active site and rendering it inactive
p27(Kip1)-CyclinA-Cdk2 Complex (by blocking the ATP-binding site).

p27 also interacts with the secondary
substrate recognition site on the
cyclin.
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Cip/Kip Proteins

p21 is an important transcriptional target of p53 and mediates
DNA-damage-induced cell-cycle arrest in G1 and G2.

p27 binds to and prevents the activation of cyclinE-CDK2
or cyclinD-CDK4 complexes, and thus controls the
cell cycle progression at G1.

In contrast to p21 and p27, p57 has a tissue-restricted
expression pattern during embryogenesis and in the adult.
p57 is the only CKI that is required for embryonic development.

The gene coding for p57 (cdknlc ) is genetically imprinted
with preferred expression of the maternal allele.

Besson et al. Develop Cell 14,
159 (2008)

_ www.wikipedia.org
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http://en.wikipedia.org/wiki/File:Protein_CDKN1B_PDB_1jsu.png

Cip/Kip Proteins

Initially, p21, p27, and p57 were considered as tumor suppressors
based on their ability to block cell proliferation.

However, p21, p27, and p57 are also involved in the regulation of
cellular processes beyond cell-cycle regulation, including transcription,

apoptosis and migration.

These processes may be oncogenic under certain circumstances.

In tumors, inactivating mutations of the cdknlb gene (p27) are extremely rare.

p27 is downregulated by other mechanisms, including proteolytic degradation,
decreased transcription, cytoplasmic mislocalization, and by miRNAs.

Besson et al. Develop Cell 14,
159 (2008)
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Cip/Kip Proteins

The Cip/Kip proteins are intrinsically unstructured.
They adopt specific tertiary conformations only after binding to other proteins.

This may explain why CKIls are capable of interacting with a
wide diversity of proteins to regulate various cellular functions.

The binding specificity of Cip/Kip proteins appears to be modulated by
phosphorylation at specific residues, and by binding to other proteins.

Phosphorylation of Cip/Kip proteins also affects their stability
and their subcellular localization.

Besson et al. Develop Cell 14,
159 (2008)
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Cip/Kip Proteins and Apoptosis (cell death)

Anticancer agents

Cytotoxic drugs, irradiation CIp/KIp prOtEinS can inhibit
| Caspase cleavage . T
apoptosis via the inhibition of

o
\/ @ cyclin-CDK complexes.

Cyclin

/.

Apoptosis

But p21 and p27 may also be
cleaved by caspases. Their
degradation promotes cyclin-CDK
activation during the apoptotic
process.

p2land p57 may also directly prevent the induction of apoptosis
by interfering with activation of the stress-signaling pathways;
for instance, both bind to and inhibit the activity of INK1/SAPK,
and p21 can also inhibit ASK1/MEKKS5.

SS 2015 - lecture 6 Modeling Cell Fate Besson et al. Develop Cell 14,
159 (2008) 8



Transcriptional Regulation by Cip/Kip Proteins

/ The CKIs p21, p27, and p57 can indirectly
@ — BRI repress transcription mediated by the TF
E2F via the inhibition of cyclin-CDK

Cyclin '— )77 ————— | Nen-2
— complexes.
‘BP Blocking cyclin-CDK keeps low phospho-
\/ . rylation levels of their targets in the Rb-
family proteins (Rb/p110, p107, and p130)
E2F \52 By, [oMyde, [STaT, in which they block E2F.
/\ . ZEN

Cip/Kip proteins also regulate TFs directly. For instance, p57 and p27 can interact
with MyoD and Neurogenin-2 (Ngn-2), respectively, stabilizing them and promoting
transcription of their target genes.

p21 also binds to E2F1, c-Myc, and STAT3 to inhibit their activities and derepresses
p300/CBP targets by inhibiting the transcriptional repression domain of p300.

Besson et al. Develop Cell 14,

SS 2015 - lecture 6 Modeling Cell Fate 159 (2008)



CYTOPLASM

In the nucleus, Cip/Kip proteins primarily

PI3K
are— ) function to restrict the activities of cyclin-CDK
/[“;{‘i{‘ complexes.

Ruoy) .
Phosphorylation of p27 on Ser-10 promotes
l its binding to the exportin CRM1 and nuclear

» g@ |\ export.
| On the other hand, phosphorylations on T157

(by Akt) or T198 (by Akt or p90Rsk) promote
J_ binding to 14-3-3 proteins and prevent the
—_—— reentry of p27 in the nucleus.

MIGRATION J—

Neurite extension Actin Stress Fibers
Axoneregeneration | «———  Focal Adhesions
INVASION

METASTASIS

In the cytosol, p27 can bind to RhoA, preventing its activation by its GEFs (guanine-nucleotide exchange
factors), leading to decreased actin stress fiber and focal-adhesion formation and resulting in several cell types
In increased migration, invasion, and metastasis. PI3K-AKT induction of cytoplasmic localization of p27 is also
involved in the inhibition of PTEN activation via p27-mediated inhibition of the RhoA-ROCK pathway.

p21 cytoplasmic localization is induced by phosphorylation on T145 and S153 by Akt and PKC, respectively.
Cytoplasmic p21 can bind to ROCK, inhibiting its kinase activity, resulting in decreased actin stress fibers

formation.
Cytoplasmic p57 can bind to LIMK and induce its translocation into the nucleus, resulting in loss of actin stress

fibers.

SS 2015 - lecture 6 Modeling Cell Fate Besson et al. Develop Cell 14,
159 (2008) 10



Cell Cvcle and the Phosphoproteome

CELL CYCLE
Quantitative Phosphoproteomics Reveals Widespread
Full Phosphorylation Site Occupancy During Mitosis

Jesper V. Olsen,'2* Michiel Vermeulen,’®* Anna Santamaria,** Chanchal Kumar,'**
Martin L. Miller,2® Lars J. Jensen,? Florian Gnad,' Jiirgen Cox,' Thomas S. Jensen,’
Erich A. Nigg,* Saren Brunak,®>? Matthias Mann'-2t

{Fublished 12 January 2010; Volume 3 l=sue 104 rad}

v, SCIENCESIGHNALING.org 12 January 2010 Vol 3 Issue 104 ra3

Aim: Analyze all proteins that are modified by phosphorylation during different
stages of the cell cycle of human HelLa cells.

lon-exchange chromatography + HPLC + MS + sequencing led to the identifi-
cation of 6695 proteins.
From this 6027 quantitative cell cycle profiles were obtained.

A total of 24,714 phosphorylation events were identified.
20,443 of them were assigned to a specific residue with high confidence.

Finding: about 70% of all proteins get phosphorylated.

SS 2015 - lecture 6 Modeling Cell Fate
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Review: protein quantification by SILAC
ARTICLE

doi:10.1038/nature10098

@ SILAC light
Global quantification of mammalian gene |
:mxsgilfui?:gi}}}i'(:itig[lhnnm‘ Johannes Schuchhardt?, Jana Wolf', Wei Chen' @ (St:’Lt/;Z)heavy
. . . 00
SILAC: ,stable isotope labelling by :°8£§§
amino acids in cell culture” means that
cells are cultivated in a medium e l evitadized

. HIL ratio Pfojeins

L ¥4
o /

H
T

containing heavy stable-isotope
versions of essential amino acids.

Intensity

m/z

When non-labelled (i.e. light) cells are

transferred to heavy SILAC growth Quantification protein turnover and levels.
medium, newly synthesized proteins Mouse fibroblasts are transferred to medium with

_ _ heavy amino acids (SILAC)
incorporate the heavy label while pre-

existing proteins remain in the light Protein turnover is quantified by mass spectrometry
form. and next-generation sequencing, respectively.

Schwanhauser et al. Nature 473, 337 (2011)

SS 2015 - lecture 6 Modeling Cell Fate
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Rates of protein translation

Mass spectra of peptides for

two proteins. o0 6 t,(1.5h) . t, (4.5 h) e 100 1:(135H) °
Rrm2 Rrm2 Rrm2
2 80 (APTNPSVEDEPLLR) ~ 80 | (APTNPSVEDEPLLR) 80§ (APTNPSVEDEPLLR)
T h h . § & H/L ratio = 0.24 60 © H/Lratio=1.26 60 H/L ratio = 12.8
op: high-turnover protein =
p g p . g 40 ﬁ 40 40
Bottom: low-turnover protein. 3z ,, 20 20 L
0 'lllhl ll L Ill 1 i 0 lll .l b l
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. . j / ki
Over time, the heavy to light ) " ) " Laash
Hist1ht
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2 g Hist1hic 80 Hist1hic 80 H/L ratio = 0.63 H
2 (SEAAPAAPAAAPPAEK) (SEAAPAAPAAAPPAEK) o
£ 60 H/L ratio = 0.05 60 H/L ratio = 0.19 60
H-concentration of high-turnover = < 40 H 4
. @ 20 20 20
protein saturates. . o I | ‘ | ]
0 | l A ol 03 | l A 1 0 | A | L
That of low-turnover protein sill 746 748 TS0 746 748 750 752 746 748 TS0 752

Increases.

Schwanhauser et al. Nature 473, 337 (2011)
SS 2015 - lecture 6

This example was introduced to illustrate the
principles of SILAC and mass spectroscopy

signals (peaks).
In the Olson et al. study, the authors used H and
L forms to label different stages of the cell cycle.

Modeling Cell Fate
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Quantitative proteomic analysis

[CHelLa S3 cells were SILAC-labeled with
3 different isotopic forms (light — medium —heavy)
of arginine and lysine.

3 individual populations of heavy and light SILAC
cells were synchronized with a thymidine block
(analog of thymine, blocks entry into S phase).
Cells were then collected at six different time

2 samples were collected after a cell cycle arrest
with nocodazole and release. (Nocodazole
interferes with polymerization of microtubules.)

Cells were lysed and mixed in equal amounts using an asynchronously growing cell
population as the internal standard to allow normalization between experiments.
3 independent experiments were performed to cover six cell cycle stages.

SS 2015 - lecture 6 Modeling Cell Fate Olsen Science
Signaling 3 (2010) 14



FACS profiles of individual HeLa populations

% Cells
(34 5 (3 Wl
1. Asynchronous 6 27 e
2 Thymidine block 50 a3 a
3 Thymidine block + release 2% h 36 B0 4
4, Thymidine block + release 5% h 23 Ji 7
S Thymidine block + release 7% h 15 70 15
6. Mocodazole block + release 2 h 1 11 HE
7.Mocodazole block 4+ release 3 h Bz 12 £

Cell number

SS 2015 - lecture 6

Modeling Cell Fate

Cells were fixed and collected
by centrifugation.

Then the DNA content of the
" cells was determined with
~ propidium iodide.

" This is the basis for classifying
the state along the cell cycle.

Olsen Science
Signaling 3 (2010)
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Quantification of cell cycle markers

T e e e o cm— T

¥

5 5
o Q),‘ﬁ’ SOV ®
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CyclinD1
CyclinE
Cyclin A
CyclinB1

Geminin

¢-Tubulin

Modeling Cell Fate

Immunoblot analysis of known
cell cycle marker proteins in the
different cell populations.

The abundance of a fifth of the
proteome changed by at least
fourfold throughout the

cell cycle (difference between
lowest and highest abundance).

Because a fourfold change
also best accounted for the
dynamics of already described
cell cycle components, this ratio
was used as a threshold for
subsequent analysis.

Olsen Science
Signaling 3 (2010) 16



Felative abundance

Monitoring of protein
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abundance by MS

B, 3 Early &
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Representative MS data showing how the abundance of
the proteins was monitored in three experiments (Exp. 1,
Exp. 2, Exp. 3) to obtain information from the 6 stages of
the cell cycle.

The data show the MS analysis of a tryptic SILAC peptide
triplet derived from the cell cycle marker protein Geminin.

Relative peptide abundance changes were normalized to
the medium SILAC peptide derived from the asynchro-
nously grown cells in all three experiments. The inset
shows the combined six-time profile of Geminin over the
cell cycle.

Olsen Science

Signaling 3 (2010) 17



Proteins

Bioinformatics Workflow (1)

Unclustered proteomics data
Time points

o
— e =
i,
Z =
Select a protein jwith fold | =
eXperssion ratios v
for & time points = _
b =
=
n
Lo
—
I I
1 2
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Tirme points

Olsen Science
Signaling 3 (2010)
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Bioinformatics Workflow (2)

1.0

Lags[Feld change ratic |
nn

T T T T
1 H 3 4 B &
Tirme points

(For each protein | transform expression fold rafios to [O,D

0.5

Logz[Fold change ratio |

]
= ‘

1 2 3 4 H 11
Time points

0

SS 2015 - lecture 6 Modeling Cell Fate

Olsen Science
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Bioinformatics Workflow (3)

Logz[Fold changeratio |

(L]

L]
3 L] g 3
Timea points

Assign peak timeifpeakij) by weighted mean of maximal expression
ratio and cluster all proteins according to increasing peak time

SS 2015 - lecture 6

J

Clustered proteomics data
Time points

Modeling Cell Fate

For each protein a peak time
index was calculated by
weighted mean of its maximal
expression at time point t; w.r.t
its adjacent time points

t, and t,,.

The proteins were then
clustered according to their
increasing peak time indices.

Olsen Science
Signaling 3 (2010)
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Bioinformatics Workflow (4)

Further functional bicinformatics
analysis for drcular enrichment of
Geane OntologwiGo) categaorias,

Clustered proteamics data
Tirne points

Azsign angular peak
MeasUr el peakijito each
protein j based onits peak
timeft peakijl and arrange

increasing order of B paakij)

kY £

Proteins

Olsen Science
Signaling 3 (2010)
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Dynamics of the proteome during the cell cycle

2 o
&

\ N x )

Sl ol Proteins whose abundance changed at least
PTTG1 (Securin) . .

fourfold during the cell cycle were clustered in
consi cvein81) @ll cell cycle stages by calculating a time peak
CDKA . . .

index by weighted mean of the ratio of

maximal abundance.

|

For each cell cycle stage, there are clear
__ patterns of up- and down-regulation.

CDK7

WEEA
GMNN

i

[ @ SS 2015 - lecture 6 Modeling Cell Fate Olsen Science
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Determine protein peaks

PTTG1 (Securin)

CONBH (Cyclin BY)
PLK1
CDK1

IR

1)

T

ANA polymerase ey, e
core complex

WEET
GMNN

(B) A circularized representation of the data shown in (A) was used to determine the
angle in the cell cycle where the abundance of particular proteins peaks.
Coordinately regulated protein complexes and organellar proteins at each cell cycle
stage are indicated around the circle.

SS 2015 - lecture 6 Modeling Cell Fate Olsen Science

Signaling 3 (2010)
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Comparison of mRNA and protein dynamics

I High
A = Fegulated
= Nor-Regulated
I Low
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Comparison of mMRNA and protein dynamics during the cell cycle. Measured
protein dynamics were correlated to published mRNA data.

Proteins were grouped on the y axis in four categories from top to bottom:

- unchanging mRNA and protein

- changing mRNA and unchanging protein

- unchanging mRNA and changing protein

- and changing mRNA and changing protein.

The x axis shows clustered gene ontology (GO) biological process terms enriched
In at least one of the above four categories. High and low represent statistical over-
or underrepresentation, respectively.

SS 2015 - lecture 6 Modeling Cell Fate Olsen Science
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Absolute phosphorylation site stochiometry

Now we want to derive the phosphorylation state of protein residues during the cell cycle.
We need to substract out the changes of protein abundance.
-> we want to know (1) and (2) below

NPHDS

(1) Proportion of phosphorylated to unphosphorylated peptide in Light SILAC state: W = d
L
NFHOS is the total copy number of a given phosphopeptide in the light SILAC state, and N}YO™F

is the total copy numberthe corresponding unphosphorylated peptide in the light SILAC state

NEHOS
(2) Proportion of phosphorylated to unphosphorylated peptide in Heavy SILAC state: W =b
H

Nf95 is the total copy number of a given phosphopeptide in the heavy SILAC state, and

Nﬁ}r”“P is the total copy number the corresponding unphosphorylated peptide in the heavy
SILAC state

NPHOS . yNonP ] NPHOS .y NonP
(3)  Weexpect that PROTEIN - PROTEIN
Ny N,

NFPROTEIN s the total copy number of the phosphoprotein in the light SILAC state, and

NJROTEIN s the total copy number the phosphoprotein in the heavy SILAC state

Olsen Science

SS 2015 - lecture 6 Modeling Cell Fate Signaling 3 (2010)
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Avalillable experimental data

| |
Il. |I |I II II |I

To determine phosphorylation sites that show dynamic profiles due to changes in phosphory-
lation state rather than due to changes in protein abundance, we consider the measured
phosphopeptide H/L ratios.

From the experiment we have:

- the SILAC ratio x for phosphopeptide

- the SILAC ratio y for non-phosphopeptide (the unphosphorylated version of the
phosphopeptide),

- and protein ratio z (the total amount of the protein in both phosphorylated and
nonphosphorylated forms).

SS 2015 - lecture 6 Modeling Cell Fate Olsen Science
Signaling 3 (2010)
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Absolute phosphorylation site stochiometry

From the MS data we know:
NPHOS

H
(4)  Relative phosphopeptide ratio = ~Fyr5z = X
L
NNonP

_ _ _ H —
(5) Relative unphosphorylated peptide ratio = _NNOTIP =Y
L
NPROTE‘!N

H
(6) Relative total phosphoprotein ratio = W =2

If we know x, y and zthen we can solve equations 1 and 2 by substituting in equations 3:

NPHOS

Z=Yy
I
(1) Occupancy rate in Light SILAC state: W =a= —
L z
NSHGS x-(z= )
(2) Occupancy rate in Heavy SILAC state: ==frm—m — =
Ngﬂnp Y- (x-2z)

PHOS NonP _ PHOS NonP _ _
We expect that N; + Ny = NH + NH = 100% = 1

and can therefore calculate the phosphorylation site occupancy in the Light and Heavy SILAC state as:
(3) Light SILAC occupancy: a/(1+a) and Heavy SILAC occupancy: b/{1+b)

SS 2015 - lecture 6 Modeling Cell Fate Olsen Science

Signaling 3 (2010)
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Example: Dynamic phosphorylation of CDK1

C (DK phosphorylation site kinetics

100

—
)

o IGEGRTRYGYYE pT 14 & BV 15 finhibitory sites|
= VYPTHEWTLWY R pT161 factivation locp)

—

Marmalized intensity

2,1

\

G Gy
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Early & Late s

Celloyrle sage

Dynamic profile of two CDK1
phosphopeptides during the cell
cycle.

The activating site T161 peaks
In mitosis, whereas
phosphorylation of the inhibitory
sites T14 and Y15 is decreased
In mitosis

Olsen Science

Signaling 3 (2010)

Modeling Cell Fate
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Total phosphosite occupancy in different stages of cell cycle

100
a0 = fsync
e flitosis
20 == (5]
e 5115
f0
=a— Barly 5 Mitosis
&l —= late i
— 5052
50

40
a0
240
10
0

Fhosphosite stoichiometry (6)

0 10 20 20 40 50 i) F0 20 =0 100
Cumulative phosphosite fraction (94)

Fifty percent of all mitotic phosphorylation sites have occupancy of 75% or more.

Olsen Science
Signaling 3 (2010)
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Fraction of subcellular localization

Differential phosphorylation

Gene ontology (GO) analysis of protein and phosphoproteins subcellular
localization. All proteins identified by MS were clustered according to their GO
annotation for sub-cellular localization (Blue bars). The same clustering was done for
all phosphoproteins (Red bars).

y-axis : percentage of the

045 - indicated sub-cellular fractions
040 | -0« from the total.

Phohoproteome

030 Compared to the proteome

o =252 distribution, phosphorylated

proteins are over-represented
in the nucleus and under-
represented amongst
mitochondrial and secreted
proteins.

0.20 -

Q.15 1

Q.10 4
p=41e-20

Q.05 4

. > ; . S
5@\‘* £Q & B (\b‘@ < 2 & ) e &
Q0 [
ol o - <2 & N :
& & & < S Olsen Science

Probability of significant difference by Two-sided Fisher exact test: Significance p < 1e-03 S'gna“ng 3 (2010)

SS 2015 - lecture 6 Modeling Cell Fate
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Dvnamics of the Phosphoproteome
A Helaphosphopeptide clusters

¢ e o™ e Dynamics of the phosphoproteome
during the cell cycle.

Clustering of regulated phosphorylation
sites in all cell cycle stages.

M phase
More than half of all identified
requlated phosphorylation sites
peak in mitosis.

Gy

Gqf5

Early &

late s

Gy

Olsen Science
Signaling 3 (2010)
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COMPUTATIONAL BIOLOGY

Linear Motif Atlas for Phosphorylation-Dependent
Signaling

Martin Lee Miller,"?* Lars Juhl Jensen,?** Francesca Diella,® Claus Jergensen,*

Michele Tinti,? Lei Li,® Marilyn Hsiung,* Sirlester A. Parker,” Jennifer Bordeaux,’

Thomas Sicheritz-Ponten,’ Marina Olhovsky,* Adrian Pasculescu,* Jes Alexander,?
Stefan Knapp,® Nikolaj Blom,' Peer Bork,?'® Shawn Li,® Gianni Cesareni,” Tony Pawson,*
Benjamin E. Turk,’ Michael B. Yaffe,?! Saren Brunak,'?' Rune Linding*®''

{Published 2 September 2008}

Systematic and quantitative analysis of protein phosphorylation is revealing dynamic regulatory net-
works underlying cellular responses to environmental cues. However, matching these sites to the ki-
nases that phosphorylate them and the phosphorylation-dependent binding domains that may
subsequently bind to them remains a challenge. NetPhorest is an atlas of consensus sequence motifs
that covers 179 kinases and 104 phosphorylation-dependent binding domains [Src homology 2 (SH2),
phosphotyrosine binding (PTB), BRCA1 C-+erminal (BRCT), WW, and 14-3-3]. The atlas reveals new
aspectsofsignalingsystems,includingthe observation thattyrosine kinases mutated incancerhave lower
specificitythantheirnon-oncogenic relatives. Theresource ismaintained by an automated pipeline, which
usesphylogenetic trees to structure the currently available in vivo and in vitro data to derive probabilistic
sequence models of linear motifs. The atlas is available as acommunity resource (http://netphorest.info).

Miller Science
Signaling 1 (2008)

SS 2015 - lecture 6 Modeling Cell Fate
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Analyze in vivo protein-phosphorylation
sites that are linked to at least one kinase
[Phospho.ELM] or phospho-binding

domain [DOMINO].
A

NetPhorest algorithm

Analyze in vitro assays that
interrogate kinase specificity by
degenerate peptide libraries

Organizati on In vivo phosphorylation sites Phylogenetic trees In vitro assays
== , Fixed residue
H PGACSTVI|LMFYWHKRQMNDEGTY
In vivo 51 T
35 .
E [ q :
i g H »e
B Invitro ;o oVEdL
o]
STY
B
Compilation Extraction of positive and negative examples for each domain or family of related domains
Positive
Excluded

C
map both in vivo and in vitro data onto phylogenetic trees of the kinase and

phospho-binding domains, which capture how similar the domains are to one
another and thereby how likely they are to have similar substrate specificities.

SS 2015 - lecture 6

Modeling Cell Fate

Miller Science
Signaling 1 (2008)



NetPhorest algorithm

Redundancy
reduction

= Phosphosite
= Peptide
= Full length

Elimination of examples that are too similar at the sequence level

N |
[ N [ —
[ —
Kee p I Discard

Similar peptide
eemmsssesss:

e ——
s Tree Similar full-length sequence
BRSNS B -~ — e —

Partitioning

Round-=rohin distribution of examples into training, test, and validation sets

SS 2015 - lecture 6

Miller Science

Signaling 1 (2008)
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NetPhorest algorithm: applications

Motif atlas

CH2 family

o — i
" REAT AN S NSRS
N"'q"' + %+ + + 4+ 4

Detection of
purification biases

[+

Design of
consensus antibodies

XXXpSDED
XXXpSEED

XXXpSDDE <Q>
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Cell Cycle-regulated kinase substrates

Heat map of cell cycle—regulated kinase substrates The NetPhorest algorithm was used to

e predict kinase-substrate relationships of all
serine and threonine phosphorylated
proteins.
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The heat map shows over- (yellow) and
underrepresentation (blue) of predicted
kinase substrates during different stages

of the cell cycle compared to a background
of phosphorylation sites that did not change
with the cell cycle.

PN s, qou redicted CDK2 and CDK3 substrates were
E?@zﬁ%ufgfp most highly phosphorylated in M phase.
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ATM_ATR substrates are high in S phase.
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PPl network of DDR kinase substrates

Substrates of the DNA damage response (DDR) kinases ATM, the related
kinase ATR, and DNA-dependent protein kinase (DNA-PK) are significantly
overrepresented in S phase.

This is likely due to coupling between DNA replication and repair..

Figure shows the protein-protein
interaction network of DDR
kinase substrates.

The network was extracted from
the STRING database

The color-coded nodes belong to
10 significant protein clusters.
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Proteomic phenotyping of phosphorylation site stochiometry

A Regulated M phase Regulated Sphase
. 13 13 13 e " 5 . . e H
AT A e N LN & Phenotypic
phosphoproteome
ibo bi i — Matabolic pocassas . .
i mopse comparison organized
RMA alongation - . .
by GO biological process
] __C}rtqldresis . .
| W mmolecubr Actin cytoskelets| for mitotic (left) and S
“ —  biosynithasi .
E ﬁxm:ll:"njlracinjeSIS = DNAreplication phase (rlght) Ce”S
E = bicswnt hasis “hmmosome condensation
B
o . ) . . .
g et Proteins involved in
2 Mucleart rt H
‘% RA xport metabolic processes have
§ = DNA processing high-occupancy
da = DA damage raespon s . .
: e sl Ppacasing Strass rasponse phosphorylation sites
? - during mitosis, but low-
Callcve bk 1 1
\ et oiquitination occupancy sites during S
ha
"m.sf _ phase
Regulation of matabalic ]
procassas I Ribiosome biogenasis

color scale: yellow, high overrepresentation; dark blue, high underrepresentation.

The phospho proteins were divided into five quantiles on the basis of their maximum
phosphorylation-site occupancy and analyzed for GO category (biological process and cellular
compartment) enrichment by hypergeometric testing.
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GO cellular compartment analysis
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Summary

Phosphorylation of protein residues is an important mechanism to regulate protein
structure, protein activity, protein localization, and protein interactions.

About 70% of all cellular proteins are phosphorylated to some extent.
Phosphorylation is a dynamic state variable during the cell cycle.

Phosphorylation levels are controlled by the ca. 518 different human kinases as
well as by phosphatases.

-> these are important potential drug targets (problem is achieving specificity)
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