
V6: Protein phosphorylation during cell cycle 

  

Olsen Science  

Signaling 3 (2010) 

Protein phosphorylation and dephosphorylation are highly controlled 

biochemical processes that respond to various intracellular and extracellular 

stimuli.  

 

Phosphorylation status modulates protein activity,  

- influencing the tertiary and quaternary structure of a protein,  

- controlling subcellular distribution, and  

- regulating interactions with other proteins. 

 

Regulatory protein phosphorylation is a transient modification  

that is often of low occupancy or “stoichiometry”  

 

This means that only a fraction of a particular protein may be phosphorylated  

on a given site at any particular time, and that occurs on regulatory proteins  

of low abundance, such as protein kinases and transcription factors. 
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CDK inhibitors 

  

Besson et al. Develop Cell 14, 

159 (2008) 

V1, V5: Progression through the cell-division cycle is regulated by the coordinated 

activities of cyclin/cyclin-dependent kinases (CDK) complexes. 

 

One level of regulation of these cyclin-CDK complexes is provided by their binding 

to CDK inhibitors (CKIs). 

 

There are two important families of CKIs: 

 

(1) Members of INK4 gene family (p16INK4a , p15INK4b , p18INK4c , and p19INK4d ) 

bind to CDK4 and CDK6 and inhibit their kinase activities by interfering with their 

association with D-type cyclins. 

 

(2) CKIs of the Cip/Kip family bind to both cyclin and CDK subunits and can 

modulate the activities of cyclin D-, E-, A-, and B-CDK complexes. 
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Cip/Kip Proteins 

  

Besson et al. Develop Cell 14, 

159 (2008) 

Cip/Kip family members: 

 

p21 Cip1/Waf1/Sdi1 (p21, encoded by cdkn1a) 

p27 Kip1 (p27, encoded by cdkn1b) 

p57 Kip2 (p57, encoded by cdkn1c) 

 

Cip/Kip family members have a general importance in restraining proliferation 

during development, differentiation, and response to cellular stresses. 

 

However, each Cip/Kip has specific biological functions. 

 

Different anti-proliferative signals tend to cause elevated expression  

of only a subset of the Cip/Kip proteins. 
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Review (V5): Crystal structure 

Nikola Pavletich 

(crystallographer) 

p27(Kip1)-CyclinA-Cdk2 Complex 

p27 (Kip1) is shown bound to the 

CyclinA-Cdk2 complex, provoking 

profound changes in the kinase 

active site and rendering it inactive 

(by blocking the ATP-binding site).  

 

p27 also interacts with the secondary 

substrate recognition site on the 

cyclin.  
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Cip/Kip Proteins 

  

Besson et al. Develop Cell 14, 

159 (2008) 

www.wikipedia.org 

p21 is an important transcriptional target of p53 and mediates  

DNA-damage-induced cell-cycle arrest in G1 and G2. 

 

p27 binds to and prevents the activation of cyclinE-CDK2 

or cyclinD-CDK4 complexes, and thus controls the 

cell cycle progression at G1. 

 

 

In contrast to p21 and p27, p57 has a tissue-restricted  

expression pattern during embryogenesis and in the adult.  

p57 is the only CKI that is required for embryonic development.  

 

The gene coding for p57 (cdkn1c ) is genetically imprinted  

with preferred expression of the maternal allele. 
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http://en.wikipedia.org/wiki/File:Protein_CDKN1B_PDB_1jsu.png


Cip/Kip Proteins 

  

Besson et al. Develop Cell 14, 

159 (2008) 

Initially, p21, p27, and p57 were considered as tumor suppressors  

based on their ability to block cell proliferation. 

 

However, p21, p27, and p57 are also involved in the regulation of  

cellular processes beyond cell-cycle regulation, including transcription,  

apoptosis and migration.  

 

These processes may be oncogenic under certain circumstances. 
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In tumors, inactivating mutations of the cdkn1b gene (p27)  are extremely rare. 

 

p27 is downregulated by other mechanisms, including proteolytic degradation,  

decreased transcription, cytoplasmic mislocalization, and by miRNAs. 



Cip/Kip Proteins 

  

Besson et al. Develop Cell 14, 

159 (2008) 

The Cip/Kip proteins are intrinsically unstructured. 

 

They adopt specific tertiary conformations only after binding to other proteins. 

 

This may explain why CKIs are capable of interacting with a  

wide diversity of proteins to regulate various cellular functions. 

 

The binding specificity of Cip/Kip proteins appears to be modulated by 

phosphorylation at specific residues, and by binding to other proteins. 

 

Phosphorylation of Cip/Kip proteins also affects their stability  

and their subcellular localization. 
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Cip/Kip Proteins and Apoptosis (cell death) 

  

Besson et al. Develop Cell 14, 

159 (2008) 

Cip/Kip proteins can inhibit 

apoptosis via the inhibition of 

cyclin-CDK complexes. 

 

But p21 and p27 may also be 

cleaved by caspases. Their 

degradation promotes cyclin-CDK 

activation during the apoptotic 

process.  
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p21and p57 may also directly prevent the induction of apoptosis 

by interfering with activation of the stress-signaling pathways; 

for instance, both bind to and inhibit the activity of JNK1/SAPK, 

and p21 can also inhibit ASK1/MEKK5.  



Transcriptional Regulation by Cip/Kip Proteins 

  

Besson et al. Develop Cell 14, 

159 (2008) 

The CKIs p21, p27, and p57 can indirectly 

repress transcription mediated by the TF 

E2F via the inhibition of cyclin-CDK 

complexes. 

 

Blocking cyclin-CDK keeps low phospho-

rylation levels of their targets in the Rb-

family proteins (Rb/p110, p107, and p130)  

in which they block E2F.  
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Cip/Kip proteins also regulate TFs directly. For instance, p57 and p27 can interact 

with MyoD and Neurogenin-2 (Ngn-2), respectively, stabilizing them and promoting 

transcription of their target genes.  

 

p21 also binds to E2F1, c-Myc, and STAT3 to inhibit their activities and derepresses 

p300/CBP targets by inhibiting the transcriptional repression domain of p300. 



  

Besson et al. Develop Cell 14, 

159 (2008) 

In the cytosol, p27 can bind to RhoA, preventing its activation by its GEFs (guanine-nucleotide exchange 

factors), leading to decreased actin stress fiber and focal-adhesion formation and resulting in several cell types 

in increased migration, invasion, and metastasis. PI3K-AKT induction of cytoplasmic localization of p27 is also 

involved in the inhibition of PTEN activation via p27-mediated inhibition of the RhoA-ROCK pathway.  

 

p21 cytoplasmic localization is induced by phosphorylation on T145 and S153 by Akt and PKC, respectively. 

Cytoplasmic p21 can bind to ROCK, inhibiting its kinase activity, resulting in decreased actin stress fibers 

formation.  

Cytoplasmic p57 can bind to LIMK and induce its translocation into the nucleus, resulting in loss of actin stress 

fibers. 
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In the nucleus, Cip/Kip proteins primarily 

function to restrict the activities of cyclin-CDK 

complexes.  

 

Phosphorylation of p27 on Ser-10 promotes 

its binding to the exportin CRM1 and nuclear 

export.  

 

On the other hand, phosphorylations on T157 

(by Akt) or T198 (by Akt or p90Rsk) promote 

binding to 14-3-3 proteins and prevent the 

reentry of p27 in the nucleus.  



Cell Cycle and the Phosphoproteome 

  

Aim: Analyze all proteins that are modified by phosphorylation during different 

stages of the cell cycle of human HeLa cells. 

 

Ion-exchange chromatography + HPLC +  MS + sequencing led to the identifi-

cation of 6695 proteins.  

From this 6027 quantitative cell cycle profiles were obtained.  

 

A total of 24,714 phosphorylation events were identified.  

20,443 of them were assigned to a specific residue with high confidence. 

 

Finding: about 70% of all proteins get phosphorylated. 
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Review: protein quantification by SILAC 

Schwanhäuser et al. Nature 473, 337 (2011) 

Quantification protein turnover and levels.  

Mouse fibroblasts are transferred to medium with 

heavy amino acids (SILAC) 

.  

Protein turnover is quantified by mass spectrometry 

and next-generation sequencing, respectively. 

SILAC: „stable isotope labelling by 

amino acids in cell culture“ means that 

cells are cultivated in a medium 

containing heavy stable-isotope 

versions of essential amino acids.  

 

When non-labelled (i.e. light) cells are 

transferred to heavy SILAC growth 

medium, newly synthesized proteins 

incorporate the heavy label while pre-

existing proteins remain in the light 

form. 
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Rates of protein translation 

Schwanhäuser et al. Nature 473, 337 (2011) 

Mass spectra of peptides for 

two proteins. 

 

Top: high-turnover protein 

Bottom: low-turnover protein. 

 

Over time, the heavy to light 

(H/L) ratios increase. 

 

H-concentration of high-turnover 

protein saturates. 

That of low-turnover protein still 

increases. 
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This example was introduced to illustrate the 

principles of SILAC and mass spectroscopy 

signals (peaks). 

In the Olson et al. study, the authors used H and 

L forms to label different stages of the cell cycle.  



Quantitative proteomic analysis 

  

Olsen Science 

Signaling 3 (2010) 

HeLa S3 cells were SILAC-labeled with  

3 different isotopic forms (light – medium –heavy) 

of arginine and lysine.  

 

3 individual populations of heavy and light SILAC 

cells were synchronized with a thymidine block 

(analog of thymine, blocks entry into S phase).  

Cells were then collected at six different time 

points across the cell cycle after release from the 

thymidine arrest.   

 

2 samples were collected after a cell cycle arrest 

with nocodazole and release. (Nocodazole 

interferes with polymerization of microtubules.) 
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Cells were lysed and mixed in equal amounts using an asynchronously growing cell 

population as the internal standard to allow normalization between experiments.  

3 independent experiments were performed to cover six cell cycle stages. 



FACS profiles of individual HeLa populations 

  

Olsen Science 

Signaling 3 (2010) 

Cells were fixed and collected 

by centrifugation. 

 

Then the DNA content of the 

cells was determined with 

propidium iodide. 

 

This is the basis for classifying 

the state along the cell cycle. 
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Quantification of cell cycle markers 

  

Olsen Science 

Signaling 3 (2010) 

Immunoblot analysis of known 

cell cycle marker proteins in the 

different cell populations. 

 

The abundance of a fifth of the 

proteome changed by at least 

fourfold throughout the 

cell cycle (difference between 

lowest and highest abundance). 

 

Because a fourfold change 

also best accounted for the 

dynamics of already described 

cell cycle components, this ratio 

was used as a threshold for 

subsequent analysis. 
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Monitoring of protein abundance by MS 

  

Olsen Science 

Signaling 3 (2010) 

Representative MS data showing how the abundance of 

the proteins was monitored in three experiments (Exp. 1, 

Exp. 2, Exp. 3) to obtain information from the 6 stages of 

the cell cycle.  

 

The data show the MS analysis of a tryptic SILAC peptide 

triplet derived from the cell cycle marker protein Geminin.  

 

Relative peptide abundance changes were normalized to 

the medium SILAC peptide derived from the asynchro-

nously grown cells in all three experiments. The inset 

shows the combined six-time profile of Geminin over the 

cell cycle. 
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Bioinformatics Workflow (1) 

Olsen Science 

Signaling 3 (2010) 
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Bioinformatics Workflow (2) 

  

Olsen Science 

Signaling 3 (2010) 
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Bioinformatics Workflow (3) 

  

Olsen Science 

Signaling 3 (2010) 

SS 2015 - lecture 6  

20 

Modeling Cell Fate 

For each protein a peak time 

index was calculated by 

weighted mean of its maximal 

expression at time point ti  w.r.t 

its adjacent time points 

ti-1 and ti+1.  

 

 

 

 

The proteins were then 

clustered according to their 

increasing peak time indices. 



Bioinformatics Workflow (4) 
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Olsen Science 

Signaling 3 (2010) 



  

Olsen Science 

Signaling 3 (2010) 
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Dynamics of the proteome during the cell cycle 

Proteins whose abundance changed at least 

fourfold during the cell cycle were clustered in 

all cell cycle stages by calculating a time peak 

index by weighted mean of the ratio of 

maximal abundance.  

 

For each cell cycle stage, there are clear 

patterns of up- and down-regulation.  



Determine protein peaks 

  

Olsen Science 

Signaling 3 (2010) 

(B) A circularized representation of the data shown in (A) was used to determine the 

angle in the cell cycle where the abundance of particular proteins peaks. 

Coordinately regulated protein complexes and organellar proteins at each cell cycle 

stage are indicated around the circle. 
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Comparison of mRNA and protein dynamics 

  

Olsen Science 

Signaling 3 (2010) 

Comparison of mRNA and protein dynamics during the cell cycle. Measured 

protein dynamics were correlated to published mRNA data.  

 

Proteins were grouped on the y axis in four categories from top to bottom:  

 - unchanging mRNA and protein 

 - changing mRNA and unchanging protein 

 - unchanging mRNA and changing protein 

 - and changing mRNA and changing protein.  

The x axis shows clustered gene ontology (GO) biological process terms enriched 

in at least one of the above four categories. High and low represent statistical over- 

or underrepresentation, respectively. 
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Olsen Science 

Signaling 3 (2010) 
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Absolute phosphorylation site stochiometry 

Now we want to derive the phosphorylation state of protein residues during the cell cycle. 

We need to substract out the changes of protein abundance. 

-> we want to know (1) and (2) below 



Available experimental data 

Olsen Science 

Signaling 3 (2010) 

To determine phosphorylation sites that show dynamic profiles due to changes in phosphory-

lation state rather than due to changes in protein abundance, we consider the measured 

phosphopeptide H/L ratios. 

  

From the experiment we have:  

- the SILAC ratio x for phosphopeptide 

- the SILAC ratio y for non-phosphopeptide (the unphosphorylated version of the 

phosphopeptide),  

- and protein ratio z (the total amount of the protein in both phosphorylated and 

nonphosphorylated forms). 
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Olsen Science 

Signaling 3 (2010) 
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Absolute phosphorylation site stochiometry 



Example: Dynamic phosphorylation of CDK1 

  

Olsen Science 

Signaling 3 (2010) 

Dynamic profile of two CDK1 

phosphopeptides during the cell 

cycle. 

 

The activating site T161 peaks 

in mitosis, whereas 

phosphorylation of the inhibitory 

sites T14 and Y15 is decreased 

in mitosis 
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Total phosphosite occupancy in different stages of cell cycle 

  

Olsen Science 

Signaling 3 (2010) 

Fifty percent of all mitotic phosphorylation sites have occupancy of 75% or more. 
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Differential phosphorylation 

  

Olsen Science 

Signaling 3 (2010) 

SS 2015 - lecture 6  

30 

Modeling Cell Fate 

Gene ontology (GO) analysis of protein and phosphoproteins subcellular 

localization. All proteins identified by MS were clustered according to their GO 

annotation for sub-cellular localization (Blue bars). The same clustering was done for 

all phosphoproteins (Red bars).  

y-axis : percentage of the 

indicated sub-cellular fractions 

from the total.  

 

Compared to the proteome 

distribution, phosphorylated 

proteins are over-represented 

in the nucleus and under-

represented amongst 

mitochondrial and secreted 

proteins. 



Dynamics of the Phosphoproteome 

  

Olsen Science 

Signaling 3 (2010) 

Dynamics of the phosphoproteome 

during the cell cycle.  

 

Clustering of regulated phosphorylation 

sites in all cell cycle stages. 

 

More than half of all identified 

regulated phosphorylation sites  

peak in mitosis. 
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Who phosphorylates? -> NetPhorest algorithm 

  

Miller Science 

Signaling 1 (2008) 
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NetPhorest algorithm 

  

Miller Science 

Signaling 1 (2008) 
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Analyze in vivo protein-phosphorylation 

sites that are linked to at least one kinase 

[Phospho.ELM] or phospho-binding 

domain [DOMINO]. 

map both in vivo and in vitro data onto phylogenetic trees of the kinase and 

phospho-binding domains, which capture how similar the domains are to one 

another and thereby how likely they are to have similar substrate specificities. 

Analyze in vitro assays that 

interrogate kinase specificity by 

degenerate peptide libraries 



NetPhorest algorithm 

  

Miller Science 

Signaling 1 (2008) 
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NetPhorest algorithm: applications 

  

Miller Science 

Signaling 1 (2008) 
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Cell Cycle-regulated kinase substrates 

  

Olsen Science 

Signaling 3 (2010) 
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The NetPhorest algorithm was used to 

predict kinase-substrate relationships of all 

serine and threonine phosphorylated 

proteins. 

 

The heat map shows over- (yellow) and 

underrepresentation (blue) of predicted 

kinase substrates during different stages 

of the cell cycle compared to a background 

of phosphorylation sites that did not change 

with the cell cycle.  

 

Predicted CDK2 and CDK3 substrates were 

most highly phosphorylated in M phase. 

 

ATM_ATR substrates are high in S phase. 



PPI network of DDR kinase substrates 

  

Olsen Science 

Signaling 3 (2010) 

Substrates of the DNA damage response (DDR) kinases ATM, the related 

kinase ATR, and DNA-dependent protein kinase (DNA-PK) are significantly 

overrepresented in S phase. 

This is likely due to coupling between DNA replication and repair.. 
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Figure shows the protein-protein 

interaction network of DDR 

kinase substrates. 

 

The network was extracted from 

the STRING database 

 

The color-coded nodes belong to 

10 significant protein clusters. 



Proteomic phenotyping of phosphorylation site stochiometry 

  

Olsen Science 

Signaling 3 (2010) 
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Phenotypic 

phosphoproteome 

comparison organized 

by GO biological process 

for mitotic (left) and S 

phase (right) cells.  

 

Proteins involved in 

metabolic processes have 

high-occupancy 

phosphorylation sites 

during mitosis, but low-

occupancy sites during S 

phase  

color scale: yellow, high overrepresentation; dark blue, high underrepresentation.  

The phospho proteins were divided into five quantiles on the basis of their maximum 

phosphorylation-site occupancy and analyzed for GO category (biological process and cellular 

compartment) enrichment by hypergeometric testing. 



GO cellular compartment analysis 

  

Olsen Science 

Signaling 3 (2010) 
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Proteomic 

phenotype 

analysis of GO 

cellular 

compartment 

level.  



Summary 
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Phosphorylation of protein residues is an important mechanism to regulate protein 

structure, protein activity, protein localization, and protein interactions. 

 

About 70% of all cellular proteins are phosphorylated to some extent. 

 

Phosphorylation is a dynamic state variable during the cell cycle. 

 

Phosphorylation levels are controlled by the ca. 518 different human kinases as 

well as by phosphatases. 

 

-> these are important potential drug targets (problem is achieving specificity) 


