
V8: Hematopoeisis 

  

Moignard et al., 
Nature Biotech.  
33, 269 (2015) 

Blood has long served as a model to study organ 
development owing to the accessibility of blood cells and 
the availability of markers for specific cell populations.  
 
Blood development initiates at gastrulation from multipotent 
Flk1+ mesodermal cells, which initially have the potential to 
form blood, endothelium and smooth muscle cells.  
 
Blood development represents one of the earliest stages 
of organogenesis, as the production of primitive 
erythrocytes is required to support the growing embryo.  
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Flk1 and Runx1 
staining in E7.5 
mesoderm and blood 
band, respectively 



Early stages of hematopoesis 

  

Moignard et al., 
Nature Biotech.  
33, 269 (2015) 

The first wave of primitive hematopoiesis originates from Flk1+ mesoderm,  
with all hematopoietic potential in the mouse contained within  
the Flk1+ population from E7.0 onwards.  
 
Single Flk1+ cells were flow sorted at E7.0 (primitive streak, PS),  
E7.5 (neural plate, NP) and E7.75 (head fold, HF) stages.  
 
We subdivided E8.25 cells into putative blood and endothelial populations by 
isolating GFP+ cells (four somite, 4SG) and Flk1+GFP− cells (4SFG−), respectively  
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Material 

  

Moignard et al., 
Nature Biotech.  
33, 269 (2015) 

Cells were sorted from multiple 
embryos at each time point, with 
3,934 cells going on to subsequent 
analysis.  
 
 
Total cell numbers and numbers of 
cells of appropriate phenotypes 
present in each embryo were 
estimated from fluorescence-
activated cell sorting (FACS) data. 
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What experiments should be performed 

  

Moignard et al., 
Nature Biotech.  
33, 269 (2015) 

Genes essayed 
- 33 transcription factors known to be 
involved in endothelial and 
hematopoietic development  
- 9 marker genes (needed for FACS-

sorting) 
- 4 house-keeping genes (needed for 

quality checks and normalization) 
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Discard cells that did not express all  
4 house-keeping genes, or for which 
their expression was more than 3 
standard deviations from the mean. 



Fluidigm biomark: collect gene expression in single cells 

  

www.fluidigm.com 

“Fluidigm’s revolutionary integrated fluidic circuits (IFCs) empower life science 
research by automating PCR reactions in nanoliter volumes.” 
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Hierarchical clustering of gene expression data 

  

Moignard et al., 
Nature Biotech.  
33, 269 (2015) 

3 main clusters: 
 
Cluster I (right side) 
contains mostly PS and 
NP cells 
 
Cluster III contains 
exclusively 4SG cells 
 
Cluster II is mixed (NF, 
4SFG- , …) 
 
 Cell differentiation 
progresses  
asynchronously 
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Dimensionality reduction: diffusion maps 

  

Moignard et al., 
Nature Biotech.  
33, 269 (2015) 

Similarity of expression in cells i and j :  
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P(i,j) is normalized so that 
 
The cells are organized in 2D or 3D such that 
the Euclidean distance between the cells 
corresponds to the diffusion metric P(i,j) .  
 
The quantity P(i,j) can then be interpreted as 
the transition probability of a diffusion process 
between cells.  
 
Axes: eigenvectors of matrix P with largest 
eigenvalues. 



Quorum sensing of Vibrio fischeri 

LuxR
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LuxI

AI

luxICDABEluxR
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LuxB
LuxALuxR
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Boolean Networks 

Densities of the species  

Progress in time 

Network of dependencies 

<=> discrete propagation steps 

<=> discrete states:  on/off,  1/0 

<=> condition tables 

Simplified mathematical description of the dependencies: 

"Blackboard explanations" often formulated as conditional transitions 

• "If LuxI is present, then AI will be produced…" 

• "If there is AI and there's no LuxR:AI bound to the genome, then LuxR 
will be expressed and complexes can form…" 

• "If LuxR:AI is bound to the genome, then LuxI is expressed…" 
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Boolean Networks II 

State of the system: described by vector of discrete values 

Si = {0, 1, 1, 0, 0, 1, …} 

Si = {x1(i),  x2(i),  x3(i), …} 

fixed number of species with finite number of states each 

Propagation: 

→ finite number of system states 
→ periodic trajectories 

with fi given by condition tables 

→ all states leading to an attractor = basin of attraction 

Si+1 = {x1(i+1),  x2(i+1),  x3(i+1),  …} 

x1(i+1) = f1(x1(i), x2(i), x3(i), …) 

→ periodic sequence of states = attractor 
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A Small Example 

State vector  S = {A, B, C} → 8 possible states 

Conditional evolution: 
A is on if C is on           A activates B            C is on if (B is on && A is off) 

Ai+1 Ci 

0 0 
1 1 

Bi+1 Ai 

0 0 
1 1 

Ci+1 Ai Bi 

0 0 0 
1 0 1 
0 1 0 
0 1 1 

assume here 
that inhibition 
through A  
is stronger than 
activation via B 

Start from {A, B, C} = {1, 0, 0} 

periodic orbit  
of length 3 

# Si A B C 
0 S0 1 0 0 
1 S1 0 1 0 
2 S2 0 0 1 
3 S3 = S0 1 0 0 
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Test the Other States 

Test the other states Ai+1 Ci 

0 0 
1 1 

Bi+1 Ai 

0 0 
1 1 

Ci+1 Ai Bi 

0 0 0 
1 0 1 
0 1 0 
0 1 1 

# A B C 
0 1 1 1 
1 1 1 0 
2 0 1 0 
3 0 0 1 
4 1 0 0 
5 0 1 0 

# A B C 
0 1 0 1 
1 1 1 0 # A B C 

0 0 1 1 
1 1 0 1 

Same attractor as before: 
100 → 010 → 001 → 100 

also reached from: 
110, 111, 101, 011 

→  Either all off or stable oscillations 

# A B C 
0 0 0 0 
1 0 0 0 
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Who regulates hematopoiesis? Design Boolean Network 

  

Moignard et al., 
Nature Biotech.  
33, 269 (2015) 

Determine suitable expression thresholds for each gene to categorize its 
expression levels into binary on / off states.  
 
Note that only a small number of the possible states has been observed. 
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State graph 

  
Moignard et al., 
Nature Biotech.  
33, 269 (2015) 

State graph (largest connected component) of 1448 states reaching all 5 stages. 
 
Edges connect all states that differ in the on/off levels of a single gene. 
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Automatic derivation of rules for Boolean Network 

  

Moignard et al., 
Nature Biotech.  
33, 269 (2015) 

We are given: 
 
- a set of variables V, corresponding to genes,  

 
-    an undirected graph G = (N,E)  
 where each node n ∈ N is labeled with a state s:V→{0,1}, and  
 each edge {s1,s2} ∈ E is labeled with the single variable  
 that changes between state s1 and s2.  
 
We are also given a designated set I  N of initial vertices  
and a designated set F   N of final vertices,  
along with a threshold ti for each variable vi ∈ V. 
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Automatic derivation of rules for Boolean Network 

  

Moignard et al., 
Nature Biotech.  
33, 269 (2015) 

Our synthesis method searches for an orientation of G, along with an update 
function ui:{0,1}n→{0,1} for each variable vi∈V, such that the following conditions 
hold: 
 
1. For each edge (s1,s2) labeled with variable vi in the orientated graph,  
the update function for vi takes state s1 to state s2: ui(s1) = s2(i). 
 
2. For every variable vi ∈ V, let Ni be the set of states without a vi-labeled edge.  
For every i the number of states s ∈ Ni such that ui(s) = s(i) is greater 
than or equal to ti. (This condition “maximizes the number of states in which no 
transitions induced by the update functions are missing”.) 
 
3. Every final vertex f ∈ F is reachable from some initial vertex i ∈ I by a 
directed path in the orientated graph. 
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Automatic derivation of rules for Boolean Network 

  

Moignard et al., 
Nature Biotech.  
33, 269 (2015) 

We restrict the update function ui to have the form: 
  f 1 ^¬ f2 
where fj  is a Boolean formula that has and-nodes of in-degree two 
and/or-nodes of arbitrary in-degree, and where f1 has a maximum depth of 
Ni and f2 has a maximum depth of Mi.  
 
Ni and Mi are given as parameters to the method. 
 
The search for edge orientations and associated Boolean update rules is 
encoded as a Boolean satisfiability (SAT) problem.  
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Generated rules 

  

Moignard et al., 
Nature Biotech.  
33, 269 (2015) 

Additional validity check of 
the postulated rules: 
 
check whether regulated 
genes contain TF-binding 
motifs in their promoters 
(right column). 
 
This is the case for 70% of 
the rules. 
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Core network controlling hematopoiesis 

  

Moignard et al., 
Nature Biotech.  
33, 269 (2015) 

Derived core network of 20 TFs.  
 
Red edges: activation 
Blue edges: repression 
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Predict effects of perturbations as validation 

  

Moignard et al., 
Nature Biotech.  
33, 269 (2015) 

In silico perturbations predict key regulators of blood development. 
Overexpression and knockout experiments were simulated for each TF and the 
ability of the network to reach wildtype or new stable states was assessed  
 
Red indicates expressed;  
blue indicates not expressed. 
 
S2-S6: blood-like 
S7: endothelial-like 
 

    Network stable states for  wt and Sox7 overexpression.  

 
Enforced expression of Sox7 (that is normally downregulated) stabilized the 
endothelial module and an inability to reach any of the blood-like states. 
 
Sox7 is predicted to regulate more targets than any other TF,  
suggesting that perturbing its expression could have 
important downstream consequences 
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Control experiments 

  
(b) Colony assays with or without doxycycline 
from genotyped E8.25 embryos from 
iSox7+rtTA+ mice crossed with wild types.  
 
(c) Quantification of primitive erythroid 
colonies after 4 days.  
 
Embryos carrying both transgenes (bottom) 
showed a 50% reduction of primitive erythroid 
colony formation and simultaneous 
appearance of undifferentiated 
hemangioblast-like colonies following 
doxycycline-induced Sox7 expression 
compared to controls. 
This suggests, in agreement with modeling 
data and gene expression patterns, that 
downregulation of Sox7 is important for 
the specification of primitive erythroid cells. 
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Moignard et al., 
Nature Biotech.  
33, 269 (2015) 

In iSox7-mouse, overexpression of Sox7 is 
stimulated by inducing the Sox7-promoter 
by addition of the chemical doxycycline 
(+Dox). 



Conclusions 

  

Moignard et al., 
Nature Biotech.  
33, 269 (2015) 

The results indicate, at least for cells destined to become blood and endothelium, 
that these cells arise at all stages of the analyzed time course rather than in a 
synchronized fashion at one precise time point, consistent with the gradual nature 
of gastrulation.  
 
Using an automated Boolean Network synthesis toolkit we identified a core 
network of 20 highly connected TFs, which could reach 8 stable states 
representing blood and endothelium.  
 
We validated model predictions to demonstrate e.g. that Sox7 blocks primitive 
erythroid development. 
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Cytosine methylation 

  

Observation: 3-6 % of all cytosines are methylated in human DNA. 
This methylation occurs (almost) exclusively when cytosine is followed by a 
guanine base -> CpG dinucleotide.  

Esteller, Nat. Rev. Gen.  8, 286 (2007) 
www.wikipedia.org 

Mammalian genomes contain much fewer (only 20-25 %)  
of the CpG dinucleotide than is expected by the G+C content  
(we expect 1/16 ≈ 6% for any random dinucleotide).  
 
This is typically explained in the following way: 
  
As most CpGs serve as targets of DNA methyltransferases,  
they are usually methylated.  
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Cytosine 5-methyl-cytosine 



Cytosine methylation 

  

Esteller, Nat. Rev. Gen.  8, 286 (2007) 
www.wikipedia.org 

5-Methylcytosine can easily deaminate to thymine.  
 
 
 
 
 
If this mutation is not repaired, the affected CpG is permanently converted to TpG  
(or CpA if the transition occurs on the reverse DNA strand).  
 
Hence, methylCpGs represent mutational hot spots in the genome.  
If such mutations occur in the germ line, they become heritable.  
 
A constant loss of CpGs over thousands of generations  
can explain the low frequency of this  
special dinucleotide in the genomes of human and mouse.  
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5-methyl-cytosine thymine 



effects in chromatin organization affect gene expression 

  

Schematic of the reversible changes in chromatin organization that influence 
gene expression:  
genes are expressed (switched on) when the chromatin is open (active), and they 
are inactivated (switched off) when the chromatin is condensed (silent). 
 
White circles = unmethylated cytosines;  
red circles = methylated cytosines. Rodenhiser, Mann, CMAJ  174, 341 (2006) 
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Enzymes that control 
DNA methylation and histone modfications 

  

These dynamic chromatin states are controlled by reversible  
epigenetic patterns of DNA methylation and histone modifications. 
  
Enzymes involved in this process include  
- DNA methyltransferases (DNMTs),  
- histone deacetylases (HDACs),  
- histone acetylases,  
- histone methyltransferases and the  
- methyl-binding domain protein MECP2. 
 

 
For example, repetitive genomic sequences  
(e.g. human endogenous retroviral sequences  
= HERVs) are heavily methylated,  
which means transcriptionally silenced. 

Rodenhiser, Mann, CMAJ  174, 341 (2006) 
Feinberg AP & Tycko P (2004) Nature Reviews: 143-153 
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DNA methylation 
Typically, unmethylated clusters of CpG pairs are located in  
tissue-specific genes and in essential housekeeping genes. 
  
(House-keeping genes are involved in routine maintenance roles and are expressed in most tissues.)  

 
These clusters, or CpG islands, are targets for proteins  
that bind to unmethylated CpGs and initiate gene transcription.  
 
In contrast, methylated CpGs are generally associated with silent DNA,  
can block methylation-sensitive proteins and can be easily mutated.  
 
The loss of normal DNA methylation patterns is the  
best understood epigenetic cause of disease. 
 
In animal experiments, the removal of genes that encode DNMTs is lethal;  
in humans, overexpression of these enzymes has been linked  
to a variety of cancers. 

Rodenhiser, Mann, CMAJ  174, 341 (2006) 
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Differentiation linked to alterations of chromatin structure 
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ML Suva et al. Science 2013; 
339:1567-1570 

(B) Upon 
differentiation, 
inactive genomic 
regions may be 
sequestered by 
repressive chromatin 
enriched for 
characteristic histone 
modifications. 

(A) In pluripotent cells, 
chromatin is hyperdynamic 
and globally accessible.  



Epigenetic stability 

  

Cantone & Fisher, 
Nature Struct Mol 
Biol. 20, 292 (2013) 

In somatic tissues, CpG islands at housekeeping or developmental promoters  
are largely unmethylated, whereas non-regulatory CpGs distributed elsewhere  
in the genome are largely methylated. 
 
This DNA methylation landscape is relatively static across all somatic tissues. 
 
Most of methylated CpGs are pre-established and inherited through cell division. 
 
In at least two phases of the life cycle of mammals, epigenetic stability is globally 
perturbed:  
- when gametes fuse to form the zygote and  
- when gamete precursors (primordial germ cells; PGCs) develop and migrate in the 

embryo.  
 
This in vivo ‘reprogramming’ of the epigenetic landscape signals the reacquisition of 
totipotency in the zygote and the formation of the next generation through PGCs. 
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Waddington: Epigenetic landscape 
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Konrad Hochedlinger and Kathrin Plath, 
Development 136, 509-523 (2009) 

Conrad H. Waddington 1956: "Principles of Embryology“; www.nature.com 



Epigenetic changes during in vivo reprogramming 

  

Cantone & Fisher, 
Nature Struct Mol 
Biol. 20, 292 (2013) 

Global DNA and histone modifi-
cations that lead to transcriptional 
activation of the embryonic genome 
between the late zygote (paternal 
genome only) and the 2-cell stage.  
 
Protamines are small, arginine-rich, nuclear 
proteins that replace histones late in the 
haploid phase of spermatogenesis and are 
believed essential for sperm head conden-
sation and DNA stabilization.  
In humans, 10-15% of the sperm's genome is 
packaged by histones thought to bind genes 
that are essential for early embryonic 
development (www.wikipedia.org). 

SS 2015 – lecture 8  
31 

Modeling Cell Fate 

Gamete genomes undergo different epigenetic programs after fertilization. 
 
The paternal genome is mostly subject to epigenetic remodeling at the zygote 
stage. The maternal genome gradually loses repressive modifications during the 
subsequent cleavage divisions.  



Epigenetic changes during germline development 

  

Cantone & Fisher, 
Nature Struct Mol 
Biol. 20, 292 (2013) 

Global epigenetic changes during germline development from PGC specification 
(E6.5) to the mitotic/meiotic arrest at E13.5.  
 
Two major reprogramming phases can be distinguished during PGC migration 
toward the genital ridges (E7.5–E10.5) and upon their arrival into the gonads 
(E10.5–E12.5).  
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