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V1 - Introduction 

A cell is a crowded environment 
=> many different proteins,  
     metabolites, compartments, … 

On a microscopic level 
=> direct two-body interactions 

At the macroscopic level 
=> complex behavior 

Can we understand the 
behavior from the 
interactions? 

Medalia et al, Science 298 (2002) 1209 

=> Connectivity 
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The view of traditional molecular biology 

Molecular Biology:  "One protein  —  one function" 
mutation  =>  phenotype 

Linear one-way dependencies:  regulation at the DNA level, proteins follow 

DNA   =>   RNA   =>   protein   =>   phenotype 

Structural Biology:  "Protein structure determines its function" 
biochemical conditions  =>  phenotype 

No feedback, just re-action: 

genetic 
information 

molecular 
structure 

biochemical 
function 

phenotype => => => 
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The Network View of Biology 

Molecular Systems Biology:  "It's both + molecular interactions" 

genetic 
information 

molecular 
structure 

biochemical 
function 

phenotype => => => 

molecular 
interactions 

 highly connected network of various interactions, dependencies 

=> study networks 
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Major Metabolic Pathways 

static 
connectivity 

dynamic response 
to external 
conditions 

different states 
during the cell cycle 

<=> <=> 
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http://www.mvv-muenchen.de/de/netz-
bahnhoefe/netzplaene/index.html 

http://www.mvv-muenchen.de/de/netz-bahnhoefe/netzplaene/index.html
http://www.mvv-muenchen.de/de/netz-bahnhoefe/netzplaene/index.html
http://www.mvv-muenchen.de/de/netz-bahnhoefe/netzplaene/index.html
http://www.mvv-muenchen.de/de/netz-bahnhoefe/netzplaene/index.html
http://www.mvv-muenchen.de/de/netz-bahnhoefe/netzplaene/index.html
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Lecture – Overview 

Protein-Protein-Interaction Networks:  pairwise connectivity 
 => data from experiments, quality check 

PPI:  static network structure 
 => network measures, clusters, modules, … 

Gene regulation:  cause and response 
 => Boolean networks 

Metabolic networks:  steady state of large networks 
 => FBA,  extreme pathways 

Metabolic networks / signaling networks:  dynamics 
 => ODEs,  modules, stochastic effects 

Protein complexes:  spatial structure 
 => experiments,  spatial fitting, docking 

Protein association:  
 => interface properties, spatial simulations 

S
ystem

s B
iology 
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Appetizer: A whole-cell model for the life cycle of 
the human pathogen Mycoplasma genitalium 

  

Cell 150, 389-401 (2012) 

7 
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Divide and conquer approach (Caesar): 
split whole-cell model into 28 independent 

submodels   

28 submodels are built / parametrized / iterated independently 

8 
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Cell variables 
  

System state is 
described by 16 cell 
variables 
 
Colored lines: cell 
variables affected by 
individual submodels 
 
 
Mathematical tools: 
-Differential equations 
-Stochastic simulations 
-Flux balance analysis 
 

9 
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10 



Bioinformatics 3 – WS 15/16 V 1  –  

Growth of virtual cell culture 

The model calculations were consistent 
with the observed doubling time! 

Growth of three cultures 
(dilutions indicated by 
shade of blue) and a 
blank control measured 
by OD550 of the pH 
indicator phenol red. 
The doubling time, t, 
was calculated using the 
equation at the top left 
from the additional time 
required by more dilute 
cultures to reach the 
same OD550 (black 
lines). 

11 
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DNA-binding and dissociation dynamics 

DNA-binding and dissociation dynamics of the oriC DnaA complex (red) and of RNA (blue) and DNA (green) 
polymerases for one in silico cell. The oriC DnaA complex recruits DNA polymerase to the oriC to initiate 
replication, which in turn dissolves the oriC DnaA complex. RNA polymerase traces (blue line segments) 
indicate individual transcription events. The height, length, and slope of each trace represent the transcript 
length, transcription duration, and transcript elongation rate, respectively.  
 
Inset : several predicted collisions between DNA and RNA polymerases that lead to the displacement of RNA 
polymerases and incomplete transcripts. 

12 
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Predictions for cell-cycle regulation 
Distributions of the 
duration of three cell-
cycle phases, as well 
as that of the total cell-
cycle length, across 
128 simulations. 

There was relatively more cell-to-cell variation in the durations of the 
replication initiation (64.3%) and replication (38.5%) stages than in 
cytokinesis (4.4%) or the overall cell cycle (9.4%). 
 
This data raised two questions:  
(1) what is the source of duration variability in the initiation and replication 
phases; and  
(2) why is the overall cell-cycle duration less varied than either of these 
phases? 

13 
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Single-gene knockouts : essential vs. non-essential 
genes 

Each column depicts the temporal dynamics of one representative in silico 
cell of each essential disruption strain class. 
  
Dynamics significantly different from wild-type are highlighted in red.  
 
The identity of the representative cell and the number of disruption strains 
in each category are indicated in parenthesis. 

Single-gene disruption 
strains grouped into 
phenotypic classes 
(columns) according to 
their capacity to grow, 
synthesize protein, RNA, 
and DNA, and divide 
(indicated by septum 
length).  

14 
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Literature 
Lecture slides — available before the lecture 

Textbooks 

Suggested reading 
=> check our web page 
http://gepard.bioinformatik.uni-saarland.de/teaching/… 

=> check computer science library 

http://gepard.bioinformatik.uni-saarland.de/teaching/
http://gepard.bioinformatik.uni-saarland.de/teaching/
http://gepard.bioinformatik.uni-saarland.de/teaching/
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How to pass this course 
Schein =    you need to qualify for the the final exam and pass it 

Final exam: written test of 180 min length about selected parts of the lecture 
(will be defined 2 weeks before exam) and about the assignments 
 
requirements for participation:   
 • 50% of the points from the assignments 
 • one assignment task presented @ blackboard  
 
Final exam will take place at the end of the semester 
 
In case you are sick (final exam) you should bring  
a medical certificate to get a re-exam. 

Re-exam: will take place in first week of the summer term 2016 



Bioinformatics 3 – WS 15/16 V 1  –  17 

Assignments 
Tutors:    Thorsten Will, Maryam Nazarieh    
  Duy Nguyen, Ha Vu Tranh  

10 assignments  with  100 points each 

=> one solution for two students (or one) 

=> content:  data analysis + interpretation  —  think! 
=> hand-written or one printable PDF/PS file per email 

=> attach the source code of the programs for checking (no suppl. data) 
=> no 100% solutions required!!! 

Hand in at the following Fri electronically until 13:00 or  
       printed at the start of the lecture. 

Assignments are part of the course material (not everything is covered in lecture) 

=> present one task at the blackboard 

Tutorial:  ??  Mon,  12:00–14:00,  E2 1, room 007 
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Some Graph Basics 
Network   <=>   Graph 

Formal definition: 

A graph G is an ordered pair (V, E) of a set V of vertices and a set E of edges. 

undirected graph directed graph 

If  E = V(2)  =>  fully connected graph 

G = (V, E) 
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Graph Basics II 
Subgraph:   

G' = (V', E')  is a subset of  G = (V, E) 

Weighted graph:   

Weights assigned to the edges 

Note:  no weights for vertices Practical question: how to 
define useful subgraphs? 
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Walk the Graph 
Path = sequence of connected vertices 
  start vertex => internal vertices => end vertex 

Vertices u and v are connected, if there exists a path from u to v. 
  otherwise: disconnected 

Two paths are independent (internally vertex-disjoint),  
  if they have no internal vertices in common. 

How many paths connect the green to 
the red vertex? 

How long are the shortest paths? 

Find the four trails from the green to 
the red vertex. 

How many of them are independent? 

Length of a path = number of vertices ||  sum of the edge weights 

Trail = path, in which all edges are distinct 
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Local Connectivity:  Degree/Degree Distribution 
Degree k of a vertex  =  number of edges at this vertex 
  Directed graph  =>  distinguish kin and kout  

Degree distribution P(k) = fraction of nodes with k connections 

k 0 1 2 3 4 

P(k) 0 3/7 1/7 1/7 2/7 

k 0 1 2 3 

P(kin) 1/7 5/7 0 1/7 

P(kout) 2/7 3/7 1/7 1/7 
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Graph Representation e.g. by adjacency matrix 
Adjacency matrix is a N x N matrix  
with entries Muv 
 Muv = weight when edge between u and v exists,  
              0 otherwise 

1 2 3 4 5 6 7 
1 – 0 1 0 0 0 0 
2 0 – 1 0 0 0 0 
3 1 1 – 1 1 0 0 
4 0 0 1 – 1 1 0 
5 0 0 1 1 – 1 1 
6 0 0 0 1 1 – 0 
7 0 0 0 0 1 0 – 

 symmetric for undirected graphs 

+ fast O(1) lookup of edges 
– large memory requirements 
– adding or removing nodes is expensive  

Note: very convenient in programming 
languages that support sparse multi-
dimensional arrays 
=> Perl 

22 
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Measures and Metrics 
“ Which are the most important or central vertices in a network? “ 

Examples of  
A) Degree 
centrality,  
 
C) Betweenness 
centrality,  
 
 
E) Katz centrality, 

  
B) Closeness centrality,  
 
 
D) Eigenvector centrality,  
 
 
 
F) Alpha centrality of the 
same graph. 
 
www.wikipedia.org 

23 

book by Mark Newman / Oxford Univ Press 
- Chapter 7: measures and metrics 
- Chapter 11: matrix algorithms and graph partitioning 

http://en.wikipedia.org/wiki/File:Centrality.svg
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Degree centrality 
Perhaps the simplest centrality measure in a network is the  
degree centrality that is simply equal to the degree of each vertex. 
 
E.g. in a social network, individuals that have many connections  
to others might have  
- more influence,  
- more access to information,  
- or more prestige than those individuals who have fewer connections. 
 
 
A natural extension of the simple degree centrality is eigenvector centrality. 

24 
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Towards Eigenvector Centrality 
Let us start by defining the centrality of vertex xi  as the sum of the centralities  
of all its neighbors: 
 𝑥"# =%𝐴"'𝑥'

'
 

 
where Aij is an element of the adjacency matrix. 
(This equation system must be solved recursively until convergence.) 
 
We can also write this expression in matrix notation as  
 
 x’ = A x    where x is the vector with elements xi .  
 
Repeating this process to make better estimates gives after t steps  
the following vector of centralities: 
 
  x(t) = At x(0) 

25 



Bioinformatics 3 – WS 15/16 V 1  –  

Eigenvector Centrality 
Now let us write x(0) as a linear combination of the eigenvectors vi of the  
(quadratic) adjacency matrix1  
 
  x 0 =  ∑ 𝑐"v""           with suitable constants ci   
 
Then       x 𝑡 = 𝐴/ ∑ 𝑐"v""  = ∑ 𝑐" 𝑘"/ v"" = 𝑘1𝒕 ∑ 𝑐" 34

35
/
v""  

 
where the ki  are the eigenvalues of A and k1  is the largest of them. 
 
 (remember A x =  x from linear algebra for each eigenvector x) 

 
Since ki  / k1  < 1 for all i  j , all terms in the sum decay exponentially as t  
becomes large. 
 
In the limit t → , we get x(t) = c1 k1

t v1 
 
1 Remember from linear algebra that a quadratic matrix with full rank can be diagonalized. 

26 



Bioinformatics 3 – WS 15/16 V 1  –  

Eigenvector Centrality 
This limiting vector of the eigenvector centralities is simply proportional  
to the leading eigenvector of the adjacency matrix. 
 
Equivalently, we could say that the centrality x satisfies 
 
 A x = k1 x  
 
This is the eigenvector centrality first proposed by Bonacich (1987). 
 
The centrality xi of vertex i is proportional to the sum of the centralities of 
its neighbors: 
            𝑥" = 𝑘161 ∑ 𝐴"'𝑥''  
 
This has the nice property that the centrality can be large either because a vertex 
has many neighbors or because it has important neighbors with high centralities  
(or both). 

27 
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Problems of the Eigenvector Centrality 
The eigenvector centrality works best for undirected networks. 
 
For directed networks, certain complications can arise. 
 
 
 In the figure on the right,  
 vertex A will have eigenvector  
 centrality zero. 
 
 Hence, vertex B will also have  
 centrality zero. 

28 
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Katz Centrality 
One solution to the issues of the Eigenvector Centrality is the following: 
 
We simply give each vertex a small amount of centrality “for free”, 
regardless of its position in the network or the centrality of its neighbors. 
 
→ we define   𝑥" = 𝛼 ∑ 𝐴"'𝑥' + 𝛽'            where  and  are positive constants. 
 
In matrix terms, this can be written as  x = Ax +  1 
 
where 1 is the vector (1,1,1,…) T . By rearranging for x we find  
    
   I x -  A x =  1  (where we used I x = x) 
   (I -  A) x =  1 
   (I -  A )-1  (I -  A) x = (I -  A )-1  1 
   x =  (I -  A )-1 1 
 
When setting  =1, we get the Katz centrality (1953) x = (I -  A )-1 1 

29 
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Computing the Katz Centrality 
The Katz centrality differs from the ordinary eigenvector centrality by having  
a free parameter , which governs the balance between the eigenvector term and 
the constant term. 
 
However, inverting a matrix on a computer has a complexity of O(n3) for a graph with 
n vertices. 
 
This becomes prohibitively expensive for networks with more than 1000 nodes or so. 
 
It is more efficient to make an initial guess of x and then repeat  
 
 x' = Ax +  1 
 
many times. This will converge to a value close to the correct centrality. 
 
A good test for convergence is to make two different initial guesses and run this until 
the resulting centrality vectors agree within some small threshold. 

30 
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Towards PageRank 
The Katz centrality also has one feature that can be undesirable. 
 
If a vertex with high Katz centrality has edges pointing to many other vertices, 
then all those vertices also get high centrality. 
 
E.g. if a Wikipedia page points to my webpage,  
my webpage will get a centrality comparable to Wikipedia! 
 
But Wikipedia of course also points to many other websites,  
so that its contribution to my webpage “should” be relatively small  
because my page is only one of millions of others. 
 
-> we will define a variation of the Katz centrality in which the  
centrality I derive from my network neighbors is proportional  
to their centrality divided by their out-degree. 

31 
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PageRank 
This centrality is defined by 
 
  𝑥" = 𝛼 ∑ 𝐴"'

:;
3;<=>

+ 𝛽'  

 
At first, this seems problematic if the network contains vertices with zero outdegree. 
 
However, this can easily be fixed by setting kj

out = 1 for all such vertices. 
 
 
In matrix terms, this equation becomes 
 
  x =  A D-1 x +  1  
 
where 1 is the vector (1,1,1,…)T and D the diagonal matrix with Dij = max(kj

out , 1) 

32 
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PageRank 
By rearranging we find that 
 
   x =  (I -  A D-1 )-1 1 
 
Because  plays the same unimportant role as before, we will set  = 1. 
 
Then we get   x =  (I -  A D-1 )-1 1 = D (D -  A )-1 1 
 
This centrality measure is commonly known as PageRank,  
using the term used by Google. 
 
PageRank is one of the ingredients used by Google  
to determine the ranking of the answers to your queries. 
 
 is a free parameter and should be chosen less than 1. (Google uses 0.85). 

33 
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Hubs and Authorities 
So far we have considered measures that assign high centrality to a vertex  
if those vertices that point to it have high centrality too. 
 
However, in some networks it is appropriate also to accord  
a vertex high centrality if it points to others with high centrality. 
 
E.g. a review article pointing at many important papers in one research field 
may be a useful source of information. 
 
Authorities are nodes that contain useful information on a topic of interest. 
 
Hubs are nodes that tell us where the best authorities can be found. 
 
An authority may also be a hub, and vice versa. 

34 
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Hubs and Authorities 
Kleinberg developed this into a centrality algorithm called 
Hyperlink-induced topic search (HITS). 
 
The HITS algorithm gives each vertex i in a network  
an authority centrality xi and a hub centrality yi . 
 
A vertex with high authority centrality is pointed to by many hubs,  
i.e. by many other vertices with high hub centrality. 
 
A vertex with high hub centrality points to many vertices  
with high authority centrality. 
 
Thus, an important scientific paper (in the authority sense) would be  
one that is cited in many important reviews (in the hub sense). 
 
An important review is one that cites many important papers. 

35 
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Authority and Hub Centralities 
Kleinberg defined the authority centrality of a vertex to be proportional to the 
sum of the hub centralities of the vertices that point to it 
 
 𝑥" = 𝛼 ∑ 𝐴"'𝑦''  where  is a constant. 
 
Similarly the hub centrality of a vertex is proportional to the sum of the 
authority centralities of the vertices it points to: 
 
 𝑦" = 𝛽 ∑ 𝐴'"𝑥''   with another constant  
 
Note that the indices of the matrix element Aji are swapped around in this 
second equation. 
 
These equations can be written as x =  A y  and  y =  At x 
 
Or, combining the two, A At x =  x ,   At A y =  y  
 
 

36 
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Closeness centrality 
An entirely different measure of centrality is provided  
by the closeness centrality. 
 
Suppose dij is the length of a geodesic path (i.e. the shortest path)  
from a vertex i to another vertex j.  
Here, length means the number of edges along the path.  
 
Then, the mean geodesic distance from i, averaged over  
all vertices j in the network is 
 
  𝑙" = 1

A ∑ 𝑑"''  
 
The mean distance li is not a centrality measure in the same sense  
as the other centrality measures.   
 
It gives low values for more central vertices and  
high values for less central ones. 

37 
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Closeness centrality 
The inverse of li is called the closeness centrality Ci  
 
  𝐶" = 1

D4
= A

∑ E4;;
 

 
It has become popular in recent years to rank film actors  
according to their closeness centrality in the network  
of who has appeared in films with who else. 
 
Using data from www.imdb.com the largest component of the network 
includes more than 98 % of about half a million actors. 

38 
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Closeness centrality 
The highest closeness centrality of any actor is  
0.4143 for Christopher Lee. 
 
The second highest centrality has  
Donald Pleasence (0.4138). 
 
 
 
The lowest value has the Iranian actress Leia Zanganeh (0.1154). 
 
→ the closeness centrality values are crammed in a very small interval [0,0.4143] 
 
Other centrality measures including degree centrality and eigenvector centrality 
typically don‘t suffer from this problem. They have a wider dynamic range. 
 

 

 

Pictures from wikipedia 

39 

http://en.wikipedia.org/wiki/File:Donald_Pleasence_Allan_Warren_edit.jpg
http://en.wikipedia.org/wiki/File:Scaramanga.png
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Summary 
What you learned today: 
=> networks are everywhere 
 how to get the "Schein" for BI3 
 How to determine the most central nodes in a network 

=> basic network types and definitions: 
     random, scale-free, degree distribution, Poisson distribution, ageing, … 

=> algorithm on a graph:  Dijkstra's shortest path algorithm 
=> looking at graphs:  graph layout 

Next lecture: 

=> clusters,  percolation 


