V1 - Introduction

A cell is a crowded environment
=> many different proteins,
metabolites, compartments, ...

On a microscopic level
=> direct two-body interactions

At the macroscopic level
=> complex behavior

Can we understand the
behavior from the
interactions?

=> Connectivity

Medalia et al, Science 298 (2002) 1209
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The view of traditional molecular biology

Molecular Biology: "One protein — one function”
mutation => phenotype

Linear one-way dependencies: regulation at the DNA level, proteins follow

CDNA => RNA => protein => phenotype

Structural Biology: "Protein structure determines its function”
biochemical conditions => phenotype
No feedback, just re-action:

genetic ~ __ molecular __ biochemical __ =
information structure function P yP
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The Network View of Biology

Molecular Systems Biology: "It's both + molecular interactions”

genetic molecular biochemical
=> = => phenotype
|nformat|on structure fu nctlon
molecular
mteractlons

1 highly connected network of various interactions, dependencies

=> study networks
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Major Metabolic Pathways
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Lecture — Overview

Protein complexes: spatial structure
=> experiments, spatial fitting, docking

Protein association:
=> interface properties, spatial simulations

Protein-Protein-Interaction Networks: pairwise Connectivity:

=> data from experiments, quality check

PPIl: static network structure
=> network measures, clusters, modules, ...

Gene regulation: cause and response
=> Boolean networks

Metabolic networks: steady state of large networks
=> FBA, extreme pathways

Metabolic networks / signaling networks: dynamics
=> ODEs, modules, stochastic effects
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Appetizer: A whole-cell model for the life cycle of
the human pathogen Mycoplasma genitalium

A Whole-Cell Computational Model
Predicts Phenotype from Genotype

Jonathan R. Karr,' Jayodita C. Sanghvi,2* Derek N. Macklin,? Miriam V. Gutschow,? Jared M. Jaccobs,?
Benjamin Boelival, Jr.,2 Nacyra Assad-Garcia,® John I. Glass,® and Markus W. Covert2™

1Graduate Program in Biophysics

2Department of Bioengineering

Stanford University, Stanford, CA 34305, USA

2. Craig Venter Institute, Rockville, MD 20850, USA

4These authors contributed equally to this work

*Correspondence: meovent@stanford.edu

httped/dx.dol.org/ 00101 64.cell.201 2.05.044

Cell 150, 389-401 (2012)
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Divide and conquer approach (Caesar):
split whole-cell model into 28 independent

submodels
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28 submodels are built / parametrized / iterated independently
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Update time & _

cel variables

Send cell
variables

w

Cell variables

Condehnsation (3}
Seqragation (7}
Damadga (0}

Reapair (18}
Superooiling (S
Replication (10}
Raplication initiation (1)
Transcriptional req. (&)
Transecription [8)
Procassing (8)
Modification (14}
Aminoacylation (25}
Dacay (2}

Translation (103}
Procassing | (2)
Translecation (9}
Proceassing 11 [2)
Folding (8}
Modification (3}
Complexation [0}
Ribosome assambly (6)
Terrm. org. assembly [8)
Activation (0}

Deacay (4}

Ftsd polymerization (1)

Cytokinesis (1)
Host interaction (16}

Call process submodels

MO

WA

ME

d=U]0

P
repeat
[
Cell
divided”!

System state is
described by 16 cell
variables

Colored lines: cell
variables affected by
Individual submodels

Mathematical tools:
-Differential equations
-Stochastic simulations
-Flux balance analysis
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List %1. Primary sources of the M. genitalium reconstruction.

Data source

Content

Bernstein et af, 20022
BioCyc®

RREMNDA®™

CMRIEE

Deverling et af., 20038
DrugBank®’

Eisen et af, 1000%!
Endo et af., 2007
Feist et afl, 2007**
Glazs et af, 2006
Giiell et af, 2000%*
Gupta et afl., 200749
KEGG!H?

Kerner et afl., 2005°%
Krause et af., 2004%%
Lindahl et af, 2000%
Morowitz et af., 1062°™
MCBI Gene®! 777
Meidhardt et af, 10002
Peil, 2000!%
PubChem®®
SARIO-RK!™

Solakia ™"

Suthers et af, 2000%"
UniProt™

Weiner et al, 2000%!
Weiner er al., 2003

mRMNA half-lives

Genome annotation, metabolic reactions

Reaction kinetics

(Genome annotation
Chaperone substrates
Antibiotics

DA repair

Chaperone substrates
Metabolic reactions

(Gene essentiality
Transcription unit structure
M-terminal methionine cleavage
(Genome annotation, orthology
Chaperone substrates
Terminal arganelle assembly
DA damage

Cell chemical composition
(zenome annotation

Cell chemical composition
RMA modification
Metabolite structures
Reaction Kinetics

Media chemical composition
Metabolic reactions
(zenome annotation
Promoters

mRMNA expression
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Growth of virtual cell culture

O N [
~In{dilution factor)
0.2-
- At=21T4h
0 - 1=82h
' Ti gllutmn
O 049 5X dilution Mean
25X dilution 1=90h
0 f- /w/
0 5 10 15

The model calculations were consistent
with the observed doubling time!

Bioinformatics 3 — WS 15/16

Growth of three cultures
(dilutions indicated by
shade of blue) and a
blank control measured
by OD550 of the pH
iIndicator phenol red.
The doubling time, t,
was calculated using the
equation at the top left
from the additional time
required by more dilute
cultures to reach the
same OD550 (black
lines).
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DNA-binding and dissociation dynamics
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DNA-binding and dissociation dynamics of the oriC DnaA complex (red) and of RNA (blue) and DNA (green)
polymerases for one in silico cell. The oriC DnaA complex recruits DNA polymerase to the oriC to initiate
replication, which in turn dissolves the oriC DnaA complex. RNA polymerase traces (blue line segments)
indicate individual transcription events. The height, length, and slope of each trace represent the transcript

length, transcription duration, and transcript elongation rate, respectively.

Inset : several predicted collisions between DNA and RNA polymerases that lead to the displacement of RNA

polymerases and incomplete transcripts.
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Predictions for cell-cycle regulation

A a0 Distributions of the
Replication initiation duration of three cell-
) A e cycle phases, as well
T oy as that of the total cell-
2 cycle length, across
128 simulations.
o

-|:| I
Duration {h)

There was relatively more cell-to-cell variation in the durations of the
replication initiation (64.3%) and replication (38.5%) stages than in
cytokinesis (4.4%) or the overall cell cycle (9.4%).

This data raised two questions:
(1) what is the source of duration variability in the initiation and replication
phases; and
(
P

2) why is the overall cell-cycle duration less varied than either of these
hases?
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Single-gene knockouts : essential vs. nhon-essential
genes
IMacromolecule synthesis = Cell cycle Single-gene disruption
ol B pomn ome o opees awz=  Strains grouped into
T~ phenotypic classes
(columns) according to
— // - their capacity to grow,
U ,./,/‘ /‘"',/ S synthesize protein, RNA,
e 4 Ve and DNA, and divide
o/ [~ _// (indicated by septum

2504

sepm ) || \ \ length).

e
Each column depicts the temporal dynamics of one representative in silico
cell of each essential disruption strain class.

Growth {fg h'')

RNA {fg)

WT
/
7.
Protein {fg)
bas /

Dynamics significantly different from wild-type are highlighted in red.

The identity of the representative cell and the number of disruption strains
In each category are indicated in parenthesis.
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Literature

Lecture slides — available before the lecture
Suggested reading
=> check our web page

http://gepard.bioinformatik.uniHsaarland.de/teachingl...

Textbooks
T
Volkhard Helms WWILEY-VCH System S B i (o) I ogy .&. N ﬁ NTRODUCTION TO
= SYSTEMS BI10LOGY
Principles of B sy oy ety i Phiicip
Computational
Cell Biology
From Protein Complexes to Cellular Networks

=> check computer science library

Bioinformatics 3 — WS 15/16

SYSTEMS
BIOLOGY

Properties of Reconstructed Networks

Bernhard @. Palsson

V1 -
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http://gepard.bioinformatik.uni-saarland.de/teaching/
http://gepard.bioinformatik.uni-saarland.de/teaching/
http://gepard.bioinformatik.uni-saarland.de/teaching/

How to pass this course

Schein = you need to qualify for the the final exam and pass it

Final exam: written test of 180 min length about selected parts of the lecture
(will be defined 2 weeks before exam) and about the assignments

requirements for participation:
* 50% of the points from the assignments
* one assignment task presented @ blackboard

Final exam will take place at the end of the semester

In case you are sick (final exam) you should bring
a medical certificate to get a re-exam.

Re-exam: will take place in first week of the summer term 2016

Bioinformatics 3 — WS 15/16 V1- 16



Assignments

Tutors: Thorsten Will, Maryam Nazarieh
Duy Nguyen, Ha Vu Tranh

Tutorial: ?? Mon, 12:00-14:00, E2 1, room 007
10 assignments with 100 points each

Assignments are part of the course material (not everything is covered in lecture)

=> one solution for two students (or one)

=> hand-written or one printable PDF/PS file per email

=> content: data analysis + interpretation — think!

=>no 100% solutions required!!!

=> attach the source code of the programs for checking (no suppl. data)

=> present one task at the blackboard

Hand in at the following Fri electronically until 13:00 or
printed at the start of the lecture.

Bioinformatics 3 — WS 15/16 V1- 17



Some Graph Basics

Network <=> Graph

Formal definition:

A graph G is an ordered pair (V, E) of a set V of vertices and a set E of edges.

NX

undirected graph directed graph

If E=V® => fully connected graph

Bioinformatics 3 — WS 15/16 V1- 18



Graph Basics I
Subgraph: Weighted graph:

G'=(V, E) isasubsetof G=(V, E) Weights assigned to the edges

Practical question: how to Note: no weights for vertices
define useful subgraphs?

Bioinformatics 3 — WS 15/16 V1- 19



Walk the Graph

Path = sequence of connected vertices
start vertex => internal vertices => end vertex

Two paths are independent (internally vertex-disjoint),
iIf they have no internal vertices in common.

Vertices u and v are connected, if there exists a path from uto v.
otherwise: disconnected

Trail = path, in which all edges are distinct

Length of a path = number of vertices || sum of the edge weights

How many paths connect the green to
the red vertex?

How long are the shortest paths?

Find the four trails from the green to
the red vertex.

How many of them are independent?

Bioinformatics 3 — WS 15/16 V1 - 20



Local Connectivity: Degree/Degree Distribution

Degree k of a vertex = number of edges at this vertex
Directed graph => distinguish kin and Kout

Degree distribution P(k) = fraction of nodes with k connections

k{0 1 2 3 4 P(kn) | 117 517 0  1/7
Pk)| 0 37 17 17 27 Pkow)| 217 317 17 17

Bioinformatics 3 — WS 15/16 V1- 21



Graph Representation e.g. by adjacency matrix

Adjacency matrix is a N x N matrix

with entries My

M., = weight when edge between u and v exists,
0 otherwise

— symmetric for undirected graphs

+ fast O(1) lookup of edges
— large memory requirements
— adding or removing nodes is expensive

I
-

Note: very convenient in programming
languages that support sparse multi-
dimensional arrays

=> Perl

©O -~ O O O O |V

N O O &~ 0O =
o O O O =
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Measures and Metrics

“ Which are the most important or central vertices in a network? *

Examples of
A) Degree
centrality,

B) Closeness centrality,

C) Betweenness D) Eigenvector centrality,

centrality,

F) Alpha centrality of the
same graph.

E) Katz centrality,

www.wikipedia.org
book by Mark Newman / Oxford Univ Press
- Chapter 7: measures and metrics
- Chapter 11: matrix algorithms and graph partitioning

Networks

Bioinformatics 3 — WS 15/16 V1- 23


http://en.wikipedia.org/wiki/File:Centrality.svg

Degree centrality

Perhaps the simplest centrality measure in a network is the
degree centrality that is simply equal to the degree of each vertex.

E.g. in a social network, individuals that have many connections
to others might have
- more Iinfluence,

- more access to information,
- or more prestige than those individuals who have fewer connections.

A natural extension of the simple degree centrality is eigenvector centrality.

Bioinformatics 3 — WS 15/16 V1- 24



Towards Eigenvector Centrality

Let us start by defining the centrality of vertex x; as the sum of the centralities
of all its neighbors:
Xi’ = z AUX]
J

where A; is an element of the adjacency matrix.
(This equation system must be solved recursively until convergence.)

We can also write this expression in matrix notation as
x’=A X where x is the vector with elements Xx; .

Repeating this process to make better estimates gives after t steps
the following vector of centralities:

x(t) = At x(0)

Bioinformatics 3 — WS 15/16 V1 - 25



Eigenvector Centrality

Now let us write x(0) as a linear combination of the eigenvectors v; of the
(quadratic) adjacency matrix®

x(0) = );civ; with suitable constants c;
t t kit
Then  x(t) =A*Y;cvi=X;ci ki vi =ky X [k—J Vi
where the k; are the eigenvalues of A and k; is the largest of them.
(remember A x = A X from linear algebra for each eigenvector x)

Since k; / k; <1 foralli=/, all terms in the sum decay exponentially as t
becomes large.

In the limit t — oo, we get x(t) = ¢, k! v,
' Remember from linear algebra that a quadratic matrix with full rank can be diagonalized.

Bioinformatics 3 — WS 15/16
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Eigenvector Centrality

This limiting vector of the eigenvector centralities is simply proportional
to the leading eigenvector of the adjacency matrix.

Equivalently, we could say that the centrality x satisfies
AX=Kk X
This is the eigenvector centrality first proposed by Bonacich (1987).
The centrality x; of vertex /is proportional to the sum of the centralities of
its neighbors:
x; =ky "X Aijx;
This has the nice property that the centrality can be large either because a vertex

has many neighbors or because it has important neighbors with high centralities
(or both).
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Problems of the Eigenvector Centrality

The eigenvector centrality works best for undirected networks.

For directed networks, certain complications can arise.

£

. . "- .-._.-
In the flgur.e on the .rlght, . -/" 1, ,,
vertex A will have eigenvector

centrality zero. }, ‘{

Hence, vertex B will also have

centrality zero.
Figure 7.1: A portion of a directed net-

winrk. Vertex A in this network has
only catgoing edpges and hence will
have sigenvector cenmtrality zero.  Vier-
bex B has outgoing edpges and one in-
goirg eddpe, but the ingoing ofe oog-
nates at A, and hence verlex B wall alse
have centrality zero
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Katz Centrality

One solution to the issues of the Eigenvector Centrality is the following:

We simply give each vertex a small amount of centrality “for free”,
regardless of its position in the network or the centrality of its neighbors.

— we define x; = a ) ; A;jx; + B where o and 3 are positive constants.
In matrix terms, this can be written as X=o0Ax +[ 1
where 1 is the vector (1,1,1,...) T . By rearranging for x we find
IX-aAx=031 (where we used | x = x)
(I-a A)x=031
l-aA)YT(l-a A)x=(Il-aA)1p 1
x=B(l-aA)1

When setting B =1, we get the Katz centrality (1953) x=(I-a A)11

Bioinformatics 3 — WS 15/16 V1 - 29



Computing the Katz Centrality

The Katz centrality differs from the ordinary eigenvector centrality by having
a free parameter o, which governs the balance between the eigenvector term and
the constant term.

However, inverting a matrix on a computer has a complexity of O(n?) for a graph with
n vertices.

This becomes prohibitively expensive for networks with more than 1000 nodes or so.
It is more efficient to make an initial guess of x and then repeat

'=oaAx + [ 1
many times. This will converge to a value close to the correct centrality.

A good test for convergence is to make two different initial guesses and run this until
the resulting centrality vectors agree within some small threshold.

Bioinformatics 3 — WS 15/16 V1 - 30



Towards PageRank

The Katz centrality also has one feature that can be undesirable.

If a vertex with high Katz centrality has edges pointing to many other vertices,
then all those vertices also get high centrality.

E.g. if a Wikipedia page points to my webpage,
my webpage will get a centrality comparable to Wikipedia!

But Wikipedia of course also points to many other websites,
so that its contribution to my webpage “should” be relatively small
because my page is only one of millions of others.

-> we will define a variation of the Katz centrality in which the

centrality | derive from my network neighbors is proportional
to their centrality divided by their out-degree.
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PageRank

This centrality is defined by

= Z A out + B
At first, this seems problematic if the network contains vertices with zero outdegree.

However, this can easily be fixed by setting k°“' = 1 for all such vertices.

In matrix terms, this equation becomes
x=aAD'x+p31

where 1 is the vector (1,1,1,...)" and D the diagonal matrix with D; = max(k°', 1)
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PageRank

By rearranging we find that

X=B(-a AD1)'1
Because B plays the same unimportant role as before, we will set = 1.
Then we get X=(l-aAD")"1=D(D-aA)'1

This centrality measure is commonly known as PageRank,
using the term used by Google.

PageRank is one of the ingredients used by Google
to determine the ranking of the answers to your queries.

o is a free parameter and should be chosen less than 1. (Google uses 0.85).
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Hubs and Authorities

So far we have considered measures that assign high centrality to a vertex
if those vertices that point to it have high centrality too.

However, in some networks it is appropriate also to accord
a vertex high centrality if it points to others with high centrality.

E.g. a review article pointing at many important papers in one research field
may be a useful source of information.

Authorities are nodes that contain useful information on a topic of interest.
Hubs are nodes that tell us where the best authorities can be found.

An authority may also be a hub, and vice versa.

Bioinformatics 3 — WS 15/16 V1- 34



Hubs and Authorities

Kleinberg developed this into a centrality algorithm called
Hyperlink-induced topic search (HITS).

The HITS algorithm gives each vertex /in a network
an authority centrality x; and a hub centrality y; .

A vertex with high authority centrality is pointed to by many hubs,
l.e. by many other vertices with high hub centrality.

A vertex with high hub centrality points to many vertices
with high authority centrality.

Thus, an important scientific paper (in the authority sense) would be
one that is cited in many important reviews (in the hub sense).

An important review is one that cites many important papers.
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Authority and Hub Centralities

Kleinberg defined the authority centrality of a vertex to be proportional to the
sum of the hub centralities of the vertices that point to it

x; = a ), A;jy; where a is a constant.

Similarly the hub centrality of a vertex is proportional to the sum of the
authority centralities of the vertices it points to:

y; = P X Ajix; with another constant 3

Note that the indices of the matrix element A; are swapped around in this
second equation.

These equations can be writtenas x=a Ay and y =3 Atx

Or, combining the two, A A'x =\ x , AtAy=)Ly
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Closeness centrality

An entirely different measure of centrality is provided
by the closeness centrality.

Suppose d; is the length of a geodesic path (i.e. the shortest path)
from a vertex i to another vertex j.
Here, length means the number of edges along the path.

Then, the mean geodesic distance from Jj, averaged over
all vertices j in the network is

1
li = —Xjdij

n

The mean distance [ is not a centrality measure in the same sense
as the other centrality measures.

It gives low values for more central vertices and
high values for less central ones.
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Closeness centrality

The inverse of [ is called the closeness centrality C;

It has become popular in recent years to rank film actors
according to their closeness centrality in the network
of who has appeared in films with who else.

Using data from www.imdb.com the largest component of the network
includes more than 98 % of about half a million actors.
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Closeness centrality

The highest closeness centrality of any actor is
0.4143 for Christopher Lee.

The second highest centrality has
Donald Pleasence (0.4138).

The lowest value has the Iranian actress Leia Zanganeh (0.1154).
— the closeness centrality values are crammed in a very small interval [0,0.4143]

Other centrality measures including degree centrality and eigenvector centrality
typically don‘t suffer from this problem. They have a wider dynamic range.

Pictures from wikipedia
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http://en.wikipedia.org/wiki/File:Donald_Pleasence_Allan_Warren_edit.jpg
http://en.wikipedia.org/wiki/File:Scaramanga.png

Summary
What you learned today:

=> networks are everywhere

= how to get the "Schein" for BI3
— How to determine the most central nodes in a network

Next lecture:

=> basic network types and definitions:

random, scale-free, degree distribution, Poisson distribution, ageing, ...
=> clusters, percolation

=> algorithm on a graph: Dijkstra's shortest path algorithm
=> |ooking at graphs: graph layout
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