
12. Lecture WS 2015/16
Bioinformatics III

1

V12 Menger’s theorem
Borrowing terminology from operations research
consider certain primal-dual pairs of optimization
problems that are intimately related.

Usually, one of these problems involves
the maximization of some objective function,
while the other is a minimization problem.

Bioinformatics III

2

Separating set
A feasible solution to one of the problems provides a bound for the
optimal value of the other problem (referred to as weak duality),
and the optimal value of one problem is equal to the optimal value
of the other (strong duality).

 a u-v separating vertex set is a vertex-cut, and
 a u-v separating edge set is an edge-cut.

When the context is clear, the term u-v separating set will refer either to a
u-v separating vertex set or to a u-v separating edge set.

Definition: Let u and v be distinct vertices in a connected graph G.
A vertex subset (or edge subset) S is u-v separating (or separates u and v),
if the vertices u and v lie in different components of the deletion subgraph G – S.

12. Lecture WS 2015/16

Bioinformatics III

3

Example
For the graph G in the Figure below, the vertex-cut {x,w,z} is a u-v separating set of
vertices of minimum size, and the edge-cut {a,b,c,d,e} is a u-v separating set of
edges of minimum size.

Notice that a minimum-size u-v separating set of edges (vertices) need not be a
minimum-size edge-cut (vertex-cut).

E.g., the set {a,b,c,d,e} is not a minimum-size edge-cut in G, because the set of
edges incident on the 3-valent vertex y is an edge-cut of size 3.

12. Lecture WS 2015/16

Bioinformatics III

4

A Primal-Dual Pair of Optimization Problems
The connectivity of a graph may be interpreted in two ways.
One interpretation is the number of vertices or edges it takes to disconnect the
graph, and the other is the number of alternative paths joining any two given
vertices of the graph.

Corresponding to these two perspectives are the following two optimization
problems for two non-adjacent vertices u and v of a connected graph G.

Maximization Problem: Determine the maximum number of internally disjoint
u-v paths in graph G.

Minimization Problem: Determine the minimum number of vertices of graph G
needed to separate the vertices u and v.

12. Lecture WS 2015/16

Bioinformatics III

5

A Primal-Dual Pair of Optimization Problems
Proposition 5.3.1: (Weak Duality) Let u and v be any two non-adjacent vertices of

a connected graph G. Let Puv be a collection of internally disjoint u-v paths in G,
and let Suv be a u-v separating set of vertices in G.

Then | Puv| ≤ | Suv |.

Proof: Since Suv is a u-v separating set, each u-v path in Puv must include at least

one vertex of Suv . Since the paths in Puv are internally disjoint, no two paths of
them can include the same vertex.
Thus, the number of internally disjoint u-v paths in G is at most | Suv |. □

Corollary 5.3.2. Let u and v be any two non-adjacent vertices of a connected
graph G. Then the maximum number of internally disjoint u-v paths in G is less
than or equal to the minimum size of a u-v separating set of vertices in G.

Menger‘s theorem will show that the two quantities are in fact equal.

12. Lecture WS 2015/16

Bioinformatics III

6

A Primal-Dual Pair of Optimization Problems
The following corollary follows directly from Proposition 5.3.1.

Corollary 5.3.3: (Certificate of Optimality) Let u and v be any two non-adjacent
vertices of a connected graph G.
Suppose that Puv is a collection of internally disjoint u-v paths in G,

and that Suv is a u-v separating set of vertices in G, such that | Puv| = | Suv |.

Then Puv is a maximum-size collection of internally disjoint u-v paths, and
Suv is a minimum-size u-v separating set (i.e. S has the smallest size of all u-v
separating sets).

12. Lecture WS 2015/16

Bioinformatics III

7

Vertex- and Edge-Connectivity
Example: In the graph G below, the vertex sequences u,x,y,t,v, u,z,v, and

u,r,s,v represent a collection P of three internally disjoint u-v paths in G,
and the set S = {y,s,z} is a u-v separating set of size 3.

Therefore, by Corollary 5.3.3, P is a maximum-size collection of internally disjoint
u-v paths, and S is a minimum-size u-v separating set.

The next theorem proved by K. Menger in 1927 establishes a strong duality
between the two optimization problems introduced earlier.

The proof given here is an example of a traditional style proof in graph theory.
The theorem can also be proven e.g. based on the theory of network flows.

12. Lecture WS 2015/16

Bioinformatics III

8

strict paths
Definition Let W be a set of vertices in a graph G and x another vertex not in W.
A strict x-W path is a path joining x to a vertex in W and containing no other vertex
of W. A strict W-x path is the reverse of a strict x-W path (i.e. its sequence of
vertices and edges is in reverse order).

Example: Corresponding to the u-v separating set W = {y,s,z} in the graph below,
the vertex sequences u,x,y, u,r,y, u,r,s, and u,z represent the four strict
u-W paths, and the three strict W-v paths are given by z,v, y,t,v, and s,v.

12. Lecture WS 2015/16

Bioinformatics III

9

Menger’s Theorem
Theorem 5.3.4 [Menger, 1927] Let u and v be distinct, non-adjacent vertices in a
connected graph G.
Then the maximum number of internally disjoint u-v paths in G equals the minimum
number of vertices needed to separate u and v.

u v

Proof: The proof uses induction on the number of edges.
The smallest graph that satisfies the premises of the theorem is the path graph
from u to v of length 2, and the theorem is trivially true for this graph.

Assume now that the theorem is true for all connected graphs having fewer than
m edges, e.g. for some m ≥ 3.
Suppose that G is a connected graph with m edges, and let k be the minimum
number of vertices needed to separate the vertices u and v.
By Corollary 5.3.2, it suffices to show that there exist k internally disjoint
u-v paths in G.
Since this is clearly true if k = 1 (since G is connected), assume k ≥ 2.

12. Lecture WS 2015/16

Bioinformatics III

10

Proof of Menger’s Theorem
Assertion 5.3.4a If G contains a u-v path of length 2, then G contains k internally
disjoint u-v paths.

Proof of 5.3.4a: Suppose that P = u,e1,x,e2,v is a path in G of length 2.
G – x has fewer edges than G → by the induction hypothesis, there are at least
k – 1 internally disjoint u – v paths in G – x.
Path P is internally disjoint from any of these, and, hence, there are k internally
disjoint u-v paths in G. □

If there is a u-v separating set that contains a vertex adjacent to both vertices
u and v, then Assertion 5.3.4a guarantees the existence of k internally disjoint
u-v paths in G.

The argument for distance (u,v) ≥ 3 is now broken into two cases, according to the
kinds of u-v separating sets that exist in G.

12. Lecture WS 2015/16

Bioinformatics III

11

Proof of Menger’s Theorem
In Case 1 (left picture), there exists a u-v separating set W, where neither u nor v is
adjacent to every vertex of W .

In Case 2 (right picture), no such separating set exists.
Thus, in every u-v separating set for Case 2, either every vertex is adjacent to u
or every vertex is adjacent to v.

12. Lecture WS 2015/16

Bioinformatics III

12

Proof of Menger’s Theorem
Case 1: There exists a u-v separating set W = {w1, w2, ... ,wk } of vertices in G of
minimum size k, such that neither u nor v is adjacent to every vertex in W.

Let Gu be the subgraph induced on the union of the edge-sets of all strict u-W paths
in G, and let Gv be the subgraph induced on the union of edge-sets of all strict W-v
paths (see Fig. below).

12. Lecture WS 2015/16

Bioinformatics III

13

Proof of Menger’s Theorem
Assertion 5.3.4b: Both of the subgraphs Gu and Gv have more than k edges.

Proof of 5.3.4b: For each wi  W, there is a u-v path Pwi in G on which wi is the only
vertex of W (otherwise, W – {wi} would still be a u-v separating set, contradicting
the minimality of W).
The u-wi subpath of Pwi is a strict u-W path that ends at wi.
Thus, the final edge of this strict u-W path is different for each wi.
Hence, Gu has at least k edges.

The only way Gu could have exactly k edges would be if each of these strict
u-W paths consisted of a single edge joining u and wi, i = 1, ..., k.
But this is ruled out by the condition for Case 1. Therefore, Gu has more than k
edges. A similar argument shows that Gv also has more than k edges. □

12. Lecture WS 2015/16

Bioinformatics III

14

Proof of Menger’s Theorem
Assertion 5.3.4c: The subgraphs Gu and Gv have no edges in common.

Proof of 5.3.4c: By way of contradiction, suppose that the subgraphs Gu and Gv
have an edge e in common. By the definitions of Gu and Gv, edge e is an edge of
both a strict u-W path and a strict W-v path.
A strict x-W path is a path joining x to a vertex in W and containing no other vertex of W.
A strict W-x path is the reverse of a strict x-W path (i.e. its sequence of vertices and edges is in reverse order).

Hence, at least one of the endpoints of e, say x, is not a vertex in the u-v separating
set W (see Fig. below). This implies the existence of a u-v path in G-W,
which contradicts the definition of W. □

12. Lecture WS 2015/16

Bioinformatics III

15

Proof of Menger’s Theorem
We now define two auxiliary graphs Gu

* and Gv
*:

Gu
* is obtained from G by replacing the subgraph Gv with a new vertex v* and

drawing an edge from each vertex in W to v*, and
Gv

* is obtained by replacing Gu with a new vertex u* and drawing an edge from u* to
each vertex in W (see Fig. below).

12. Lecture WS 2015/16

Bioinformatics III

16

Proof of Menger’s Theorem
Assertion 5.3.4d: Both of the auxiliary graphs Gu

* and Gv
* have fewer edges than G.

*
u

u

vu

vu

G

G

GG

GGG

E

kE

EE

EE







 

A similar argument shows that Gv
* also has fewer edges than G. □

5.3.4c

5.3.4b

since Gu  Gv is a subgraph of G

by the construction of Gu*

Proof of 5.3.4d: The following chain of inequalities shows that graph Gu
* has fewer

edges than G.

12. Lecture WS 2015/16

Bioinformatics III

17

Proof of Menger’s Theorem
By the construction of graphs Gu

* and Gv
, every u-v separating set in graph Gu

*
and every u*-v separating set in graph Gv

* is a u-v separating set in graph G.
Hence, the set W is a smallest u-v* separating set in Gu

* and a smallest u*-v
separating set in Gv

*.

Since Gu
* and Gv

* have fewer edges than G, the induction hypothesis implies the
existence of two collections, Pu

* and Pv
* of k internally disjoint u-v* paths in Gu

* and
k internally disjoint u*-v paths in Gv

*, respectively (see Fig.).
For each wi, one of the paths in Pu

* consists of a u-wi path Pi
‘ in G plus the new

edge from wi to v*, and one of the paths in Pv
* consists of the new edge from u* to

wi followed by a wi-v path Pi
‘‘ in G.

Let Pi be the concatenation of paths Pi
‘ and Pi

‘‘, for i = 1, ..., k. Then the set
{Pi} is a collection of k internally disjoint u-v paths in G. □ (Case 1)

12. Lecture WS 2015/16

Bioinformatics III

18

Proof of Menger’s Theorem
Case 2: Suppose that for each u-v separating set of size k, one of the vertices
u or v is adjacent to all the vertices in that separating set.
will not be proven in lecture

Let P = u,e1,x1,e2,x2, ..., v be a shortest u-v path in G.
By Assertion 5.3.4a, we can assume that P has length at least 3 and that
vertex x1 is not adjacent to vertex v.
By Proposition 5.1.3, the edge-deletion subgraph G – e2 is connected.
Let S be a smallest u-v separating set in subgraph G – e2 (see Fig.).

12. Lecture WS 2015/16

Bioinformatics III

19

Proof of Menger’s Theorem
Then S is a u-v separating set in the vertex-deletion subgraph G – x 1.
Thus, S  {x1} is a u-v separating set in G, which implies that | S | ≥ k – 1, by the
minimality of k. On the other hand, the minimality of
| S | in G – e2 implies that | S | ≤ k, since every u-v separating set in G is also
a u-v separating set in G – e2.

If | S | = k, then, by the induction hypothesis, there are k internally disjoint u-v paths
in G – e2 and, hence, in G.
If | S | = k – 1, then xi  S, i = 1,2 (otherwise S – {xi } would be a u-v separating set
in G – e2, contradicting the minimality of k).
Thus, the sets S  {x1} and S  {x2} are both of size k and both u-v separating sets
of G. The condition for Case 2 and the fact that vertex x1 is not adjacent to v imply
that every vertex in S is adjacent to vertex u.
Hence, no vertex in S is adjacent to v (lest there be a u-v path of length 2).
But then the condition of Case applied to S  { x2 } implies that vertex x2 is adjacent
to vertex u, which contradicts the minimality of path P and completes the proof. □

12. Lecture WS 2015/16

Bioinformatics III

20

V12 – second half
This part follows closely chapter 12.1 in the book on the right
on „Flows and Cuts in Networks and
Chapter 12.2 on “Solving the Maximum-Flow Problem“

Flow in Networks can mean
- flow of oil or water in pipelines, electricity
- phone calls, emails, traffic networks ...

Equivalences between
max-flow min-cut theorem of Ford and Fulkerson
& the connectivity theorems of Menger
 led to the development of efficient algorithms for a
number of practical problems to solve scheduling and
assignment problems.

12. Lecture WS 2015/16

Bioinformatics III

21

Definition: A single source – single sink network is a connected digraph that
has a distinguished vertex called the source with nonzero outdegree and a
distinguished vertex called the sink with nonzero indegree.

Such a network with source s and sink t is often referred to as a s-t network.

Single Source – Single Sink Capacitated Networks

    vetailEevOut N 

Correspondingly, In(v) denotes the set of arcs that are directed to vertex v:

    veheadEevIn N 

Definition: A capacitated network is a connected digraph such that each arc e
is assigned a nonnegative weight cap(e), called the capacity of arc e.

Notation: Let v be a vertex in a digraph N. Then Out(v) denotes the set of all
arcs that are directed from vertex v. That is,

12. Lecture WS 2015/16

Bioinformatics III

22

Notation: For any two vertex subsets X and Y of a digraph N, let X,Y denote
the set of arcs in N that are directed from a vertex in X to a vertex in Y.

Single Source – Single Sink Capacitated Networks

    YeheadXetailEeYX N  and,

Example: The figure shows a 5-vertex capacitated s-t-network.
If X = {x,v} and Y = {w,t}, then the elements of arc set X,Y are the arc directed
from vertex x to vertex w and the arc directed from vertex v to sink t.

The only element in arc set Y,X is the arc directed from vertex w to vertex v.

A 5-vertex capacitated network with
source s and sink t.

12. Lecture WS 2015/16

Bioinformatics III

23

Definition: Let N be a capacitated s-t-network.
A feasible flow f in N is a function f:EN  R+ that assigns a nonnegative real number
1. (capacity constraints) f(e)  cap(e), for every arc e in network N.
2. (conservation constraints)

for every vertex v in network N, other than source s and sink t.

Feasible Flows

 
 

 
 





vOu tevIne

efef

Property 2 above is called the conservation-of-flow condition.
E.g. for an oil pipeline, the total flow of oil going into any juncture (vertex) in the
pipeline must equal the total flow leaving that juncture.

Notation: to distinguish visually between the flow and the capacity of an arc,
we adopt the convention in drawings that when both numbers appear,
the capacity will always be in bold and to the left of the flow.

12. Lecture WS 2015/16

Bioinformatics III

24

Example: The figure shows a feasible flow for the previous network.
Notice that the total amount of flow leaving source s equals 6, which is also the
net flow entering sink t.

Feasible Flows

   
 

 
 




sInesOu te

efeffval

Definition: The maximum flow f* in a capacitated network N is a flow in N
having the maximum value, i.e. val(f)  val(f*), for every flow f in N.

Definition: The value of flow f in a capacitated network N, denoted with val(f),
is the net flow leaving the source s, that is

12. Lecture WS 2015/16

Bioinformatics III

25

By definition, any nonzero flow must use at least one of the arcs in Out(s).
In other words, if all of the arcs in Out(s) were deleted from network N,
then no flow could get from source s to sink t.

This is a special case of the following definition, which combines the concepts of
partition-cut and s-t separating set.

Cuts in s-t Networks

From V11
Definition: Let G be a graph, and let X1 and X2 form a partition of VG.
The set of all edges of G having one endpoint in X1 and the other endpoint
in X2 is called a partition-cut of G and is denoted X1,X2.

From V12
Definition: Let u and v be distinct vertices in a connected graph G.
A vertex subset (or edge subset) S is u-v separating (or separates u and v),
if the vertices u and v lie in different components of the deletion subgraph G – S.

12. Lecture WS 2015/16

Bioinformatics III

26

Definition: Let N be an s-t network, and let Vs and Vt form a partition of VG such
that source s  Vs and sink t  Vt.
Then the set of all arcs that are directed from a vertex in set Vs to a vertex in set
Vt is called an s-t cut of network N and is denoted Vs,Vt.

Cuts in s-t Networks

Remark: The arc set Out(s) for an s-t network N is the s-t cut {s},VN – {s}, and
In(t) is the s-t cut VN – {t},{t}.

12. Lecture WS 2015/16

Bioinformatics III

27

Example. The figure portrays the arc sets Out(s) and In(t) as s-t cuts, where
Out(s) =  {s}, {x,v,w,t}  and In(t) =  {s,x,v,w},{t} .

Cuts in s-t Networks

Example: a more general s-t cut  Vs,Vt  is shown below, where Vs = {s,x,v} and
Vt = {w,t}.

12. Lecture WS 2015/16

Bioinformatics III

28

Proposition 12.1.1 Let  Vs,Vt  be an s-t cut of a network N.
Then every directed s-t path in N contains at least one arc in  Vs,Vt .

Cuts in s-t Networks

Proof. Let P = s = v0,v1,v2, …,vl = t be the vertex sequence of a directed s-t
path in network N.
Since s  Vs and t  Vt, there must be a first vertex vj on this path that is in set Vt
(see figure below).
Then the arc from vertex vj-1 to vj is in  Vs,Vt . □

12. Lecture WS 2015/16

Bioinformatics III

29

Similar to viewing the set Out(s) of arcs directed from source s as the s-t cut
{s}, VN – {s} , the set In(s) may be regarded as the set of „backward“ arcs
relative to this cut, namely, the arc set  VN – {s}, {s}, .

From this perspective, the definition of val(f) may be rewritten as

Relationship between Flows and Cuts

   
   

 
   




ssVesVse NN

efeffval
,,

12. Lecture WS 2015/16

Bioinformatics III

30

Lemma 12.1.2. Let  Vs,Vt  be any s-t cut of an s-t network N. Then

Relationship between Flows and Cuts

    stss
Vv

tsss
Vv

VVVVvInVVVVvOut
ss

,, and ,, 



Proof: For any vertex v  Vs, each arc directed from v is either in  Vs,Vs or in
Vs,Vt. The figure illustrates for a vertex v the partition of Out(v) into a 4-element
subset of  Vs,Vs and a 3-element subset of  Vs,Vt.
Similarly, each arc directed to vertex v is either in  Vs,Vs or in  Vt,Vs . □

  ts
Vv

ss VVVVvOut
s

,,




12. Lecture WS 2015/16

Bioinformatics III

31

Proposition 12.1.3. Let f be a flow in an s-t network N, and let  Vs,Vt  be any s-t
cut of N. Then

Relationship between Flows and Cuts

     



stts VVeVVe

efeffval
,,

     



)()(sInesOu te

efeffval

    Thus . other than every for 0
)()(

sVvefef s
vInevOu te

 


Proof: By definition,

And by the conservation of flow

     
  

 
 

 
 

    
    











sss Vv vIneVv vOu teVv vOu te vIne

efefefeffval

By Lemma 12.1.2.
 

 
   

 
 

    

 

 

 





stsss

tssss

VVeVVeVv vIne

VVeVVeVv vOu te

efefef

efefef

,,

,,
and

(1)

(2)

Now enter the right hand sides of (2) into (1) and obtain the desired equality. □

12. Lecture WS 2015/16

Bioinformatics III

32

The flow f and cut {s,x,v},{w,t} shown in the figure illustrate Proposition 12.1.3.

Example

The next corollary confirms something that was apparent from intuition:
the net flow out of the source s equals the net flow into the sink t.

Corollary 12.1.4 Let f be a flow in an s-t network. Then

     



)()(tOu tetIne

efeffval

Proof: Apply proposition 12.1.3 to the s-t cut In(t) =  VN – {t}, {t} . □

   
   

 
   

176
,,,,,,,,

 
 vxstwetwvxse

efeffval

12. Lecture WS 2015/16

Bioinformatics III

33

Definition. The capacity of a cut Vs,Vt denoted capVs,Vt, is the sum of the
capacities of the arcs in cut Vs,Vt. That is

Example

 



ts VVe

ts ecapVVcap
,

,

Definition. The minimum cut of a network N is a cut with the minimum capacity.

Example. The capacity of the cut shown in the previous figure is 13,
And the cut {s,x,v,w},{t} with capacity 10, is the only minimum cut.

12. Lecture WS 2015/16

Bioinformatics III

34

The problems of finding the maximum flow in a capacitated network N and
finding a minimum cut in N are closely related.

These two optimization problems form a max-min pair.

The following proposition provides an upper bound for the maximum-flow
problem.

Maximum-Flow and Minimum-Cut Problems

12. Lecture WS 2015/16

Bioinformatics III

35

Proposition 12.1.5 Let f be any flow in an s-t network, and let Vs,Vt be any s-t cut.
Then

Maximum-Flow and Minimum-Cut Problems

  ts VVcapfval ,

Proof:

     

   

 

e)nonnegativ is)(each (since ,

)V, of definition(by ,

s)constraintcapacity (by

12.1.3)n propositio(by

t
,

,,

,,

efVVcap

VcapefVVcap

efecap

efeffval

ts

s
VVe

ts

VVeVVe

VVeVVe

st

stts

stts





















 □

12. Lecture WS 2015/16

Bioinformatics III

36

Proof: Let f‘ be any feasible flow in network N.
Proposition 12.1.5 and the premise give

On the other hand, let Vs,Vt be any s-t cut. Proposition 12.1.5:

Therefore, K is a minimum cut. □

Corollary 12.1.6 (Weak Duality) Let f* be a maximum flow in an s-t network N,
and let K* be a minimum s-t cut in N. Then

Maximum-Flow and Minimum-Cut Problems

   ** Kcapfval 

Proof: This follows immediately from proposition 12.1.5.

Corollary 12.1.7 (Certificate of Optimality) Let f be a flow in an s-t network N and
K an s-t cut, and suppose that val(f) = cap(K).
Then flow f is a maximum flow in network N, and cut K is a minimum cut.

     fvalKcapfval '

    ts VVcapfvalKcap ,

12. Lecture WS 2015/16

Bioinformatics III

37

Example The flow for the example network shown in the figure has value 10,
which is also the capacity of the s-t cut {s,x,v,w},{t}.
By corollary 12.1.7, both the flow and the cut are optimal for their respective
problem.

Example

   

, if 0
, if









st

ts

VVe
VVeecap

ef

A maximum flow and minimum cut.

Corollary 12.1.8 Let Vs,Vt be an s-t cut in a network N, and suppose that f is a
flow such that

Then f is a maximum flow in N, and Vs,Vt is a minimum cut.

12. Lecture WS 2015/16

