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We will present an algorithm that originated by Ford and Fulkerson (1962). 
Idea: increase the flow in a network iteratively until it cannot be increased any 
further  augmenting flow path. 

V13 Solving the Maximum-Flow Problem 

Suppose that f is a flow in a capacitated s-t network N, and suppose that there 
exists a directed s-t path 
   P = s,e1,v1,e2,...,ek,t 
in N, such that f(ei) < cap(ei) for i=1, ..., k. 

Then considering arc capacities only, the flow on each arc ei can be increased by 
as much as cap(ei) – f(ei). 
 
But to maintain the conservation-of-flow property at each of the vertices vi, the 
increases on all of the arcs of path P must be equal.  
 
Thus, if P denotes this increase, then the largest possible value for P is 
min{cap(ei} –f(ei)}. 
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Example: Left side: the value of the current flow is 6. 
Consider the directed s-t path P = s,x,w,t. 
The flow on each arc of path P can be increased by P = 2. 
The resulting flow, which has value 8, is shown on the right side. 

Solving the Maximum-Flow Problem 

Using the directed path s,v,t, the flow can be 
increased to 9. The resulting flow is shown right. 
 
At this point, the flow cannot be increased any 
further along directed s-t paths, because each 
such path must either use the arc directed from s 
to x or from v to t. Both arcs have flow at capacity. 
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However, the flow can be increased further. 
 
E.g. increase the flow on the arc from  
source s to vertex v by one unit,  
decrease the flow on the arc from w to v  
by one unit, and increase the flow on the  
arc from w to t by one unit. 

Solving the Maximum-Flow Problem 
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Definition: An s-t quasi-path in a network N is an alternating sequence 
  s = v0,e1,v1,...,vk-1,ek,vk = t 
of vertices and arcs that forms an s-t path in the underlying undirected graph of N. 

f-Augmenting Paths 

Terminology For a given s-t quasi-path 
  Q = s = v0,e1,v1,...,vk-1,ek,vk = t 
arc ei is called a forward arc if it is directed from vertex vi-1  to vertex vi  and  
arc ei is called a backward arc if it is directed from vi to vi-1. 
 
Clearly, a directed s-t path is a quasi-path whose arcs are all forward. 

Example. On the s-t quasi-path shown below, arcs a and b are backward, and the 
three other arcs are forward. 

13. Lecture WS 2015/16 



 
Bioinformatics III 

 
5 

Notation For each arc e on a given f-augmenting path Q, let e be the quantity 
given by 
 
 
Terminology The quantity e is called the slack on arc e. Its value on a forward arc 
is the largest possible increase in the flow, and on a backward arc, the largest 
possible decrease in the flow, disregarding conservation of flow. 

Definition: Let f be a flow in an s-t  network N. An f-augmenting path Q is an s-t 
quasi path in N such that the flow on each forward arc can be increased, and the 
flow on each backward arc can be decreased. 

f-Augmenting Paths 
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Thus, for each arc e on an f-augmenting path Q, 
 
 f(e) < cap(e), if e is a forward arc 
 f(e) > 0  if e is a backward arc. 
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Remark Conservation of flow requires that the change in the flow on the arcs of an 
augmenting flow path be of equal magnitude. 
Thus, the maximum allowable change in the flow on an arc of quasipath Q is Q, 
where 

f-Augmenting Paths 

 e
Qe

Q 


min

Example For the example network shown below, the current flow f has value 9, 
and the quasi-path Q = s,v,w,t is an f-augmenting path with Q = 1. 
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Proposition 12.2.1 (Flow Augmentation) Let f be a flow in a network N, and let Q be 
an f-augmenting path with minimum slack Q on its arcs. 
Then the augmented flow f‘ given by 

flow augmentation 
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
                       otherwise             

Q of arc backward a is  if       ,
      Q of arc forward a is  if    ,

'
ef

eef
eef

ef Q

Q

is a feasible flow in network N and val(f‘) = val(f) + Q. 

Proof. Clearly, 0  f‘(e)  cap(e), by the definition of Q. 
 
The only vertices through which the net flow may have changed are those vertices 
on the augmenting path Q. Thus, to verify that f‘ satisfies conservation of flow, only 
the internal vertices of Q need to be checked. 
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For a given vertex v on augmenting path Q, the two arcs of Q that are incident on v 
are configured in one of four ways, as shown below. In each case, the net flow into 
or out of vertex v does not change, thereby preserving the conservation-of-flow 
property. 

f-Augmenting Paths 

It remains to be shown that the flow has increased by Q. 
The only arc incident on the source s whose flow has changed is the first arc e1 of 
augmenting path Q.  
If e1 is a forward arc, then f‘(e1) = f(e1) + Q, and  
if e1 is a backward arc, then f‘(e1) = f(e1) - Q. In either case,  

   
 

 
 

 fvalefeffval Q
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

''' □ 
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Proof: Necessity () Suppose that f is a maximum flow in network N. 
Then by Proposition 12.2.1, there is no f-augmenting path. 
 
Proposition 12.2.1 (Flow Augmentation) Let f be a flow in a network N, and let Q be an f-augmenting 
path with minimum slack Q on its arcs. Then the augmented flow f‘ given by 
 
 
 
is a feasible flow in network N and val(f‘) = val(f) + Q. 
 
 assuming an f-augmenting path existed, we could construct a flow f‘ with 
val(f‘) > val(f) contradicting the maximality of f. 

Max-Flow Min-Cut 
Theorem 12.2.3 [Characterization of Maximum Flow] 
Let f be a flow in a network N.  
Then f is a maximum flow in network N if and only if there does not exist an 
f-augmenting path in N. 
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Let Vs be the union of the vertex-sets of these quasi-paths. 
Since there is no f-augmenting path, it follows that sink t  Vs. 
Let Vt = VN – Vs. 
Then Vs,Vt is an s-t cut of network N. Moreover, by definition of the sets  
Vs and Vt , 
 
 
(if the flow along these edges e were not cap(e) or 0, these edges would belong to Vs!) 

 
Hence, f is a maximum flow, by Corollary 12.1.8. □ 

Max-Flow Min-Cut 
Sufficiency () Suppose that there does not exist an f-augmenting path in 
network N. 
Consider the collection of all quasi-paths in network N that begin with source s,  
and have the following property: each forward arc on the quasi-path has positive 
slack, and each backward arc on the quasi-path has positive flow.  

   








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Max-Flow Min-Cut 
Theorem 12.2.4 [Max-Flow Min-Cut] For a given network, the value of a 
maximum flow is equal to the capacity of a minimum cut. 

Proof: The s-t cut Vs,Vt that we just constructed in the proof of Theorem 12.2.3 
(direction ) has capacity equal to the maximum flow. □ 
 
The outline of an algorithm  
for maximizing the flow in 
a network emerges from 
Proposition 12.2.1 and 
Theorem 12.2.3. 
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Finding an f-Augmenting Path 

The idea is to grow a tree of quasi-paths, each starting at source s. 
 
If the flow on each arc of these quasi-paths can be increased or decreased, 
according to whether that arc is forward or backward, then an f-augmenting 
path is obtained as soon as the sink t is labelled. 

The discussion of f-augmenting paths culminating in the flow-augmenting 
Proposition 12.2.1 provides the basis of a vertex-labeling strategy due to Ford 
and Fulkerson that finds an f-augmenting path, when one exists. 
 
Their labelling scheme is essentially basic tree-growing. 
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Finding an f-Augmenting Path 
A frontier arc is an arc e directed from a labeled endpoint v to an unlabeled 
endpoint w. 
 
For constructing an f-augmenting path, the frontier path e is allowed to be 
backward (directed from vertex w to vertex v), and it can be added to the tree as 
long as it has slack e > 0. 
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Terminology: At any stage during tree-growing for constructing an f-augmenting 
path, let e be a frontier arc of tree T, with endpoints v and w. 
The arc e is said to be usable if, for the current flow f, either 
 
 e is directed from vertex v to vertex w and f(e) < cap(e), or 
 e is directed from vertex w to vertex v and f(e) > 0. 
 
    Frontier arcs e1 and e2 are usable if 
    f(e1) < cap(e1) and f(e2) > 0 

 
 

Finding an f-Augmenting Path 

Remark From this vertex-labeling scheme, any of the existing f-augmenting paths 
could result. But the efficiency of Algorithm 12.2.1 is based on being able to find 
„good“ augmenting paths.  
If the arc capacities are irrational numbers, then an algorithm using the 
Ford&Fulkerson labeling scheme might not terminate (strictly speaking, it would 
not be an algorithm).  
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Finding an f-Augmenting Path 
Even when flows and capacities are restricted to be integers,  
problems concerning efficiency still exist. 
 
E.g., if each flow augmentation were to increase the flow by only one unit,  
then the number of augmentations required for maximization would equal  
the capacity of a minimum cut. 
 
Such an algorithm would depend on the size of the arc capacities  
instead of on the size of the network. 
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Finding an f-Augmenting Path 
Example: For the network shown below, the arc from vertex v to vertex w has 
flow capacity 1, while the other arcs have capacity M, which could be made 
arbitrarily large. 
 
If the choice of the augmenting flow path at each iteration were to alternate 
between the directed path  s,v,w,t  and the quasi path  s,w,v,t , then the flow 
would increase by only one unit at each iteration. 
 
Thus, it could take as many as 2M iterations to obtain the maximum flow. 
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Finding an f-Augmenting Path 
Edmonds and Karp avoid these 
problems with this algorithm. 
 
It uses breadth-first search 
to find an f-augmenting path 
with the smallest number  
of arcs. 
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FFEK algorithm: Ford, Fulkerson, Edmonds, and Karp 
Algorithm 12.2.3 combines Algorithms 12.2.1 and 12.2.2 
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Example: the figures illustrate algorithm 12.2.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<{s, x, y, z, v}, {w, a, b, c, t}>  is the s-t cut with capacity equal to the current flow, 
establishing optimality. 

FFEK algorithm: Ford, Fulkerson, Edmonds, and Karp 
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FFEK algorithm: Ford, Fulkerson, Edmonds, and Karp 
At the end of the final iteration, the two arcs from source s to vertex w and the arc 
directed from vertex v to sink t form the minimum cut  {s,x,y,z,v }, {w,a,b,c,t} . 
Neither of them is usable, i.e. the flow(e) = cap(e). 
 
This illustrates the s-t cut that was constructed in the proof of theorem 12.2.3. 
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From Graph connectivity to Metabolic networks 
We will now use the theory of network flows to give  
constructive proofs of Menger‘s theorem. 
 
These proofs lead directly to algorithms for determining  
the edge-connectivity and vertex-connectivity of a graph. 
 
The strategy to prove Menger‘s theorems is based on properties  
of certain networks whose arcs all have unit capacity. 
 
These 0-1 networks are constructed from the original graph.  
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Determining the connectivity of a graph 
Lemma 12.3.1. Let N be an s-t network such that  
 outdegree(s) > indegree(s), 
 indegree(t) > outdegree (t), and 
 outdegree(v) = indegree(v) for all other vertices v. 
Then, there exists a directed s-t path in network N. 

Proof. Let W be a longest directed trail (trail = walk without repeated edges; path = trail 
without repeated vertices) in network N that starts at source s, and let z be its terminal 
vertex. 
If vertex z were not the sink t, then there would be an arc not in trail W that is directed from 
z (since indegree(z) = outdegree(z) ). 
But this would contradict the maximality of trail W. 
Thus, W is a directed trail from source s to sink t. 
If W has a repeated vertex, then a part of W determines a directed cycle, which can be 
deleted from W to obtain a shorter directed s-t trail. 
This deletion step can be repeated until no repeated vertices remain, at which point, the 
resulting directed trail is an s-t path. □ 
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Determining the connectivity of a graph 
Proposition 12.3.2. Let N be an s-t network such that  
 outdegree(s) – indegree(s) = m = indegree(t) – outdegree (t), 
and  outdegree(v) = indegree(v) for all vertices v  s,t. 
Then, there exist m disjoint directed s-t path in network N. 

Proof. If m = 1, then there exists an open eulerian directed trail T from  
source s to sink t by Theorem 6.1.3. 
 
Review: An eulerian trail in a graph is a trail that visits every edge of that graph exactly once. 
 
Theorem 6.1.3. A connected digraph D has an open eulerian trail from vertex x to vertex y if and only if 
indegree(x) + 1 = outdegree(x), indegree(y) = outdegree(y) + 1, and all vertices except x and y have equal 
indegree and outdegree. 
Euler proved that a necessary condition for the existence of Eulerian circuits is that all vertices in the graph 
have an even degree. 
 
Theorem 1.5.2. Every open x-y walk W is either an x-y path or can be reduced to an x-y path. 
 

Therefore, trail T is either an s-t directed path or can be reduced to an s-t path. 
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Determining the connectivity of a graph 
By way of induction, assume that the assertion is true for m = k, for some k  1, 
and consider a network N for which the condition holds for m = k +1. 
There does exist at least one directed s-t path P by Lemma 12.3.1. 
 
If the arcs of path P are deleted from network N, then the resulting network N - P 
satisfies the condition of the proposition for m = k. 
 
By the induction hypothesis, there exist k arc-disjoint directed s-t paths in network  
N - P. These k paths together with path P form a collection of k + 1 arc-disjoint 
directed s-t paths in network N. □ 
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Basic properties of 0-1 networks 
Definition A 0-1 network is a capacitated network whose arc capacities  
are either 0 or 1. 

   
 

 voutdegreevOutef
vOu te




*

and    
 

 vindegreevInef
vIne




*

Proposition 12.3.3. Let N be an s-t network such that cap(e) = 1 for every arc e. 
Then the value of a maximum flow in network N equals the maximum number of 
arc-disjoint directed s-t paths in N. 

Proof: Let f* be a maximum flow in network N, and let r be the maximum number of 
arc-disjoint directed s-t paths in N. 
Consider the network N* obtained by deleting from N all arcs e for which f*(e) = 0. 
Then f*(e) = 1 for all arcs e in network N*. 
It follows from the definition that for every vertex v in network N*, 
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Basic properties of 0-1 networks 
Thus by the definition of val(f*) and by the conservation-of-flow property, 
 
 outdegree(s) – indegree (s) = val(f*) = indegree(t) – outdegree(t) 
and outdegree(v) = indegree(v), for all vertices v  s,t. 

 





.          otherwise                      ,0

 arc uses path  some if         ,1 eP
ef i

Then f is a feasible flow in network N, with val(f) = r. 
It follows that val(f*)  r. □ 

By Proposition 12.3.2., there are val(f*) arc-disjoint s-t paths in network N*, and 
hence, also in N, which implies that val(f*)  r. 

To obtain the reverse inequality, let {P1,P2, ..., Pr} be the largest collection of arc-
disjoint directed s-t paths in N, and consider the function f: EN  R+ defined by  
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Separating Sets and Cuts 
Review from §5.3 
Let s and t be distinct vertices in a graph G. An s-t separating edge set in G is a 
set of edges whose removal destroys all s-t paths in G. 
 
Thus, an s-t separating edge set in G is an edge subset of EG that contains at least 
one edge of every s-t path in G. 

Definition: Let s and t be distinct vertices in a digraph D. 
An s-t separating arc set in D is a set of arcs whose removal destroys all directed 
s-t paths in D. 
 
Thus, an s-t separating arc set in D is an arc subset of ED that contains at least one 
arc of every directed s-t path in digraph D. 

Remark: For the degenerate case in which the original graph or digraph has no  
s-t paths, the empty set is regarded as an s-t separating set. 
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Separating Sets and Cuts 
Proposition 12.3.4 Let N be an s-t network such that cap(e) = 1 for every arc e. 
Then the capacity of a minimum s-t cut in network N equals the minimum number of 
arcs in an s-t separating arc set in N. 

Proof: Let K* = Vs ,Vt  be a minimum s-t cut in network N, and let q be the 
minimum number of arcs in an s-t separating arc set in N. 
Since K* is an s-t cut, it is also an s-t separating arc set. Thus cap(K*)  q. 

To obtain the reverse inequality, let S be an s-t separating arc set in network N 
containing q arcs, and let R be the set of all vertices in N that are reachable from 
source s by a directed path that contains no arc from set S. 

Then, by the definitions of arc set S and vertex set R, t  R, which means that 
 R, VN - R  is an s-t cut.  
 
Moreover,  R, VN - R   S. Therefore 
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Separating Sets and Cuts 

which completes the proof. □ 

 
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Proof: Let N be the s-t network obtained by assigning a unit capacity to each arc of 
digraph D. Then the result follows from Propositions 12.3.3. and 12.3.4., together 
with the max-flow min-cut theorem. □ 

Arc and Edge Versions of Menger’s Theorem Revisited 
Theorem 12.3.5 [Arc form of Menger‘s theorem] 
Let s and t be distinct vertices in a digraph D. Then the maximum number of arc-
disjoint directed s-t paths in D is equal to the minimum number of arcs in an s-t 
separating set of D. 

Theorem 12.2.4 [Max-Flow Min-Cut] For a given network, the value of a maximum flow is equal to the 
capacity of a minimum cut. 

Proposition 12.3.3. Let N be an s-t network such that cap(e) = 1 for every arc e. Then the value of a 
maximum flow in network N equals the maximum number of arc-disjoint directed s-t paths in N. 

Proposition 12.3.4 Let N be an s-t network such that cap(e) = 1 for every arc e. Then the capacity of a 
minimum s-t cut in network N equals the minimum number of arcs in an s-t separating arc set in N. 
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Idea – extreme pathways 

A torch is directed at an open door 
and shines into a dark room ... 
 
What area is lighted ? 

Instead of marking all lighted points 
individually,  
it would be sufficient to characterize 
the „extreme rays“ that go through the 
corners of the door. 
 
The lighted area is the area between 
the extreme rays = linear 
combinations of the extreme rays. 
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Stoichiometric matrix - Flux Balance Analysis 
Stoichiometric matrix S:  
m × n matrix with stochiometries 
of the n reactions as columns and 
participations of m metabolites as 
rows.  
 
The stochiometric matrix is an 
important part of the in silico 
model. 
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Papin et al. TIBS 28, 250 (2003)  

With the matrix, the methods of 
extreme pathway and elementary 
mode analyses can be used to 
generate a unique set of pathways 
P1, P2, and P3 that allow to 
express all steady-state fluxes as 
linear combinations of P1 – P3. 
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 Extreme Pathways 
introduced into metabolic analysis by the lab of Bernard Palsson  
(Dept. of Bioengineering, UC San Diego). The publications of this lab  
are available at http://gcrg.ucsd.edu/publications/index.html 

 
The extreme pathway 
technique is based 
on the stoichiometric 
matrix representation 
of metabolic networks. 
 
All external fluxes are 
defined as pointing outwards. 
 
 
 
 
Schilling, Letscher, Palsson, 
J. theor. Biol. 203, 229 (2000) 
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Idea – extreme pathways 

Edwards & Palsson PNAS 97, 5528 (2000)  

Either S . x ≥ 0  
(S acts as rotation matrix) 

Shaded area: 
x ≥ 0 
 

Shaded area: 
x1 ≥ 0 ∧ x2 ≥ 0  

S 

Shaded area: 
r1 ≥ 0 ∧ r2 ≥ 0  

Duality of two matrices 
S and R. 

or find optimal vectors  
 change coordinate system 
from x1, x2 to r1, r2.  
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