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V15 Warmup: Metabolic networks are scale-free  
Review of 2 contrasting network topologies. 
  
a, Representative structure of networks 
generated by the Erdös–Rényi model. 
  
b, For a random network the probability, 
P(k) - that a node has k links - peaks strongly 
at k =  <k>  and decays exponentially for 
large k. 
  
c, In the scale-free network most nodes 
have only a few links, but a few nodes, called 
hubs (dark), have many links.  
 
d, P(k) for a scale-free network has no well-
defined peak, and for large k it decays as a 
power-law, P(k)  k-, appearing as a straight 
line with slope -  on a log–log plot.  

Jeong et al. Nature 407, 651 (2000) 
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Connectivity distributions P(k) for substrates 
a, Archaeoglobus fulgidus (archae);  
b, E. coli (bacterium);  
c, Caenorhabditis elegans (eukaryote) 
d, The connectivity distribution 
averaged over 43 organisms.  
 
x-axis: metabolites participating in k 
reactions 
y-axis (P(k)): number/frequency of 
such metabolites 
 
log–log plot, counts separately the 
incoming (In) and outgoing links (Out) 
for each substrate.  
kin (kout) corresponds to the number of 
reactions in which a substrate 
participates as a product (educt).  Jeong et al. Nature 407, 651 (2000) 
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Properties of metabolic networks 
a, The histogram of the biochemical pathway 
lengths, l, in E. coli.  
b, The average path length (diameter) for each 
of the 43 organisms.  
N : number of metabolites in each organism 
 
c, d, Average number of incoming links (c) or 
outgoing links (d) per node for each organism.  
 
e, The effect of substrate removal on the 
metabolic network diameter of E. coli.  
 
In the top curve (red) the most connected 
substrates are removed first. In the bottom 
curve (green) nodes are removed randomly. 
M  = 60 corresponds to  8% of the total number 
of substrates in found in E. coli.  

Jeong et al. Nature 407, 651 (2000) 

15. Lecture WS 2015/16 

b–d, Archaea (magenta), bacteria (green) and 
eukaryotes (blue) are shown.  
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Stoichiometric matrix - Flux Balance Analysis 
Stoichiometric matrix S:  
m × n matrix with stochiometries 
of the n reactions as columns and 
participations of m metabolites as 
rows.  
 
The stochiometric matrix is an 
important part of the in silico 
model. 

15. Lecture WS 2015/16 

Papin et al. TIBS 28, 250 (2003)  

With the matrix, the methods of 
extreme pathway and elementary 
mode analyses can be used to 
generate a unique set of pathways 
P1, P2, and P3 that allow to 
express all steady-state fluxes as 
linear combinations of P1 – P3. 
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Flux balancing 
Any chemical reaction requires mass conservation. 
 
Therefore one may analyze metabolic systems  
by requiring mass conservation.  
 
Only required: knowledge about stoichiometry of metabolic pathways. 

For each metabolite Xi : 
 
dXi /dt =    Vsynthesized    – Vused  

 + Vtransported_in – Vtransported_out 

15. Lecture WS 2015/16 
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Flux balancing 
Under steady-state conditions, the mass balance constraints in a metabolic 
network can be represented mathematically by the matrix equation: 

 

S · v = 0 
 
where  
- the matrix S is the stoichiometric matrix and  
- the vector v represents all fluxes in the metabolic network, including the internal 

fluxes, transport fluxes and the growth flux. 

15. Lecture WS 2015/16 
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Flux balance analysis 
Since the number of metabolites is generally smaller than the number of reactions 
(m < n) the flux-balance equation is typically underdetermined.  
 
Therefore there are generally multiple feasible  
flux distributions that satisfy the mass balance constraints. 
The set of solutions are confined to the nullspace of matrix S. 

S          .    v   =   0 

15. Lecture WS 2015/16 
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Null space: space of feasible solutions 

15. Lecture WS 2015/16 
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Feasible solution set for a metabolic reaction network 

The steady-state operation of the 
metabolic network is restricted to the 
region within a pointed cone, defined 
as the feasible set.  
 
The feasible set contains all flux vectors 
that satisfy the physicochemical 
constrains.  
 
Thus, the feasible set defines the 
capabilities of the metabolic network.  
All feasible metabolic flux distributions 
lie within the feasible set. 

Edwards & Palsson PNAS 97, 5528 (2000)  
15. Lecture WS 2015/16 
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True biological flux 
To find the „true“ biological flux in cells ( e.g. Heinzle, Wittmann / UdS)  
one needs additional (experimental) information, 
or one may impose constraints 
 
 
on the magnitude of each individual metabolic flux. 
 
The intersection of the nullspace and the region  
defined by those linear inequalities defines a  
region in flux space = the feasible set of fluxes. 

iii v  

In the limiting case, where all constraints 
on the metabolic network are known, such 

as the enzyme kinetics and gene 
regulation, the feasible set may be reduced 
to a single point. This single point must lie 

within the feasible set.  
15. Lecture WS 2015/16 
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E.coli in silico 

Edwards & Palsson  

PNAS 97, 5528 (2000)  

Best studied cellular system: E. coli. 
 
In 2000, Edwards & Palsson constructed an in silico representation of  
E.coli metabolism.  
 
There were 2 good reasons for this: 
 
(1) genome of E.coli MG1655 was already completely sequenced, 

 
(2) Because of long history of E.coli research, biochemical literature, genomic 
information, metabolic databases EcoCyc, KEGG contained biochemical or 
genetic evidence for every metabolic reaction included in the in silico 
representation. In most cases, there existed both. 

15. Lecture WS 2015/16 
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Edwards & Palsson  

PNAS 97, 5528 (2000)  

Genes included in in silico model of E.coli 
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E.coli in silico – Flux balance analysis 

Edwards & Palsson, PNAS 97, 5528 (2000)  

Define  i = 0 for irreversible internal fluxes,  
 i = - for reversible internal fluxes (use biochemical literature) 
 
Transport fluxes for PO4

2-, NH3, CO2, SO4
2-, K+, Na+ were unrestrained. 

 
For other metabolites                          except for those that are able to leave the 
metabolic network (i.e. acetate, ethanol, lactate, succinate, formate, pyruvate etc.) 

max
ii vv 0

  vcii vcZ
When written in this way, the flux balance analysis (FBA) method finds the 
solution that maximizes the sum of all fluxes = gives maximal biomass. 

Find particular metabolic flux distribution in feasible set by linear programming. 
LP finds a solution that minimizes a particular metabolic objective –Z  
(subject to the imposed constraints) where e.g. 

15. Lecture WS 2015/16 
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Linear programming 

www.wikipedia.org 

Linear programming is a technique for the 
optimization of a linear objective function, 
subject to linear equality and linear inequality 
constraints.  
 
Its feasible region is a convex polytope, which 
is a set defined as the intersection of finitely 
many half spaces, each of which is defined by a 
linear inequality.  
 
Its objective function is a real-valued linear 
function defined on this polyhedron.  
 
A linear programming algorithm finds a point in 
the polyhedron where this function has the 
smallest (or largest) value if such a point exists. 

15. Lecture WS 2015/16 

A pictorial representation of a 
simple linear program with 2 
variables and 6 inequalities. The 
set of feasible solutions is 
depicted in yellow and forms a 
polygon, a 2-dimensional 
polytope.  
The linear cost function is 
represented by the red line and 
the arrow: The arrow indicates the 
direction in which we are 
optimizing. 
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Linear programming 

www.wikipedia.org 

Linear programs are problems that can be expressed in canonical form as 

15. Lecture WS 2015/16 

where x represents the vector of variables (to be determined), c and b are vectors of 
(known) coefficients, A is a (known) matrix of coefficients, and (.)T is the matrix 
transpose.  
 
The expression to be maximized or minimized is called the objective function (cTx in 
this case).  
 
The inequalities Ax ≤ b and x ≥ 0 are the constraints which specify a convex polytope 
over which the objective function is to be optimized. 
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Integer linear programming 

www.wikipedia.org 

If all of the unknown variables are required to be integers, then the problem is called 
an integer programming (IP) or integer linear programming (ILP) problem.  
 
In contrast to linear programming, which can be solved efficiently in the worst case, 
integer programming problems are in many practical situations NP-hard.  
 
The branch and bound algorithm is one type of algorithm to solve ILP problems. 

15. Lecture WS 2015/16 
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Rerouting of metabolic fluxes 
(Black) Flux distribution for the wild-type. 
  
(Red) zwf- mutant. Biomass yield is 99% of 
wild-type result.  
 
(Blue) zwf- pnt- mutant. Biomass yield is 
92% of wildtype result.  
 
Note how E.coli in silico circumvents 
removal of one critical reaction (red arrow) 
by increasing the flux through the 
alternative G6P  P6P reaction. 

Edwards & Palsson PNAS 97, 5528 (2000)  
15. Lecture WS 2015/16 
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E.coli in silico 

Edwards & Palsson  

PNAS 97, 5528 (2000)  

Examine changes in the metabolic capabilities caused by hypothetical gene 
deletions. 
 
To simulate a gene deletion, the flux through the corresponding enzymatic 
reaction was restricted to zero. 
 
Compare optimal value of mutant (Zmutant) to the „wild-type“ objective Z  
 
 
to determine the systemic effect of the gene deletion. 

Z
Z mu ta n t

15. Lecture WS 2015/16 
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Gene deletions in central intermediary metabolism 

The results were generated in a simulated aerobic environment with glucose as the carbon 
source. The transport fluxes were constrained as follows:  glucose = 10 mmol/g-dry weight 
(DW) per h;  oxygen = 15 mmol/g-DW per h.  
 
The maximal yields were calculated by using FBA with the objective of maximizing growth.  
 
Yellow bars: gene deletions that reduced the maximal biomass yield of Zmutant to less than 
95% of the in silico wild type Zwt.  

Edwards & Palsson PNAS 97, 5528 (2000)  

Maximal biomass yields 
on glucose for all 
possible single gene 
deletions in the central 
metabolic pathways 
(gycolysis, pentose 
phosphate pathway 
(PPP), TCA, respiration).  

15. Lecture WS 2015/16 
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Interpretation of gene deletion results 
The essential gene products were involved in the 3-carbon stage of glycolysis,  
3 reactions of the TCA cycle, and several points within the pentose phosphate 
pathway (PPP). 
 
The remainder of the central metabolic genes could be removed while E.coli in 
silico maintained the potential to support cellular growth. 
 
This suggests that a large number of the central metabolic genes can be removed 
without eliminating the capability of the metabolic network to support growth under 
the conditions considered. 

Edwards & Palsson PNAS 97, 5528 (2000)  
15. Lecture WS 2015/16 
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E.coli in silico – validation 

Edwards & Palsson  

PNAS 97, 5528 (2000)  

+ and – means growth or no growth. 
 means that suppressor mutations have 
been observed that allow the mutant 
strain to grow. 
 
4 virtual growth media: 
glc: glucose,  gl: glycerol, succ: 
succinate, ac: acetate. 
 
In 68 of 79 cases, the prediction was 
consistent with exp. predictions. 
 
Red and yellow circles: predicted 
mutants that eliminate or reduce growth. 

15. Lecture WS 2015/16 



Bioinformatics III  
22 

Summary - FBA 
FBA analysis constructs the optimal network utilization simply using the 
stoichiometry of metabolic reactions and capacity constraints. 

Edwards & Palsson PNAS 97, 5528 (2000)  

For E.coli the in silico results are mostly consistent with experimental data. 

FBA shows that the E.coli metabolic network contains relatively few critical gene 
products in central metabolism. 
However, the ability to adjust to different environments (growth conditions) may be 
diminished by gene deletions. 

FBA identifies „the best“ the cell can do, not how the cell actually behaves under a 
given set of conditions. Here, survival was equated with growth. 

FBA does not directly consider regulation or regulatory constraints on the 
metabolic network. This can be treated separately (see future lecture). 

15. Lecture WS 2015/16 
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Metabolic Pathway Analysis (MPA) 
Metabolic Pathway Analysis searches for meaningful structural and functional units 
in metabolic networks.  
 
Today‘s most powerful methods are based on convex analysis.  
 
2 such approaches are the elementary flux modes 1 and extreme pathways2. 
 
Both sets span the space of feasible steady-state flux distributions by  
non-decomposable routes, i.e. no subset of reactions involved in an EFM or EP  
can hold the network balanced using non-trivial fluxes. 
 
Extreme pathways are a subset of elementary modes. 
For many systems, both methods coincide. 
 
Klamt et al. Bioinformatics 19, 261 (2003); Trinh et al. Appl. Microbiol Biotechnol. 81, 813-826 (2009) 
1 Schuster & Hilgetag J Biol Syst 2, 165-182 (1994), Pfeiffer et al. Bioinformatics, 15, 251 (1999), Schuster et 
al. Nature Biotech. 18, 326 (2000) 
2 Schilling et al. J Theor Biol 203, 229-248 (2000)   

1 



Bioinformatics III  
24 

Applications of Metabolic Pathway Analysis (MPA) 
MPA can be used to study e.g. 
 
 - metabolic network structure 
 
 - functionality of networks (including identification of futile cycles) 
 
 - robustness, fragility,  flexibility/redundancy of networks 
 
 - to identiy all (sub-) optimal pathways with respect to product/biomass yield 
 

 - rational strain design 
 
 
 
 
 
 
 
 
Klamt et al. Bioinformatics 19, 261 (2003) ; Trinh et al. Appl. Microbiol Biotechnol. 81, 813-826 (2009) 

15. Lecture WS 2015/16 
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Definition of Elementary Flux Modes (EFMs) 
A pathway P(v) is an elementary flux mode if it fulfills conditions C1 – C3. 
 
(C1) Pseudo steady-state. S  e = 0. This ensures that none of the metabolites is 
consumed or produced in the overall stoichiometry. 
 
(C2) Feasibility: rate ei  0 if reaction is irreversible. This demands that only 
thermodynamically realizable fluxes are contained in e. 
 
(C3) Non-decomposability: there is no vector v (except the null vector and e) 
fulfilling C1 and C2 and so that P(v) is a proper subset of P(e).  
This is the core characteristics for EFMs and EPs and provides the decomposition 
of the network into smallest units that are able to hold the network in steady state. 
 
C3 is often called „genetic independence“ because it implies that the enzymes in 
one EFM or EP are not a subset of the enzymes from another EFM or EP. 
 
Klamt & Stelling Trends Biotech 21, 64 (2003) 

15. Lecture WS 2015/16 
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Definition of Extreme Pathways (Eps) 
The pathway P(e) is an extreme pathway if it fulfills conditions C1 – C3 AND 
conditions C4 – C5. 
 
(C4) Network reconfiguration: Each reaction must be classified either as 
exchange flux or as internal reaction.  
All reversible internal reactions must be split up into two separate, irreversible 
reactions (forward and backward reaction). 
 
(C5) Systemic independence: the set of EPs in a network is the minimal set of 
EFMs that can describe all feasible steady-state flux distributions. 
 
 
The algorithms for computing EPs and EFMs are quite similar. 
We will not cover the algorithmic differences here. 
 
 
Klamt & Stelling Trends Biotech 21, 64 (2003) 

15. Lecture WS 2015/16 
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Comparison of EFMs and EPs 

Klamt & Stelling Trends Biotech 21, 64 (2003) 

A C P 

B 

D 

A(ext) B(ext) C(ext) 
R1 R2 R3 

R5 

R4 R8 

R9 

R6 

R7 

15. Lecture WS 2015/16 
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Reconfigured Network: split up R7 

Klamt & Stelling Trends Biotech 21, 64 (2003) 

A C P 

B 

D 

A(ext) B(ext) C(ext) 
R1 R2 R3 

R5 

R4 R8 

R9 

R6 

R7b R7f 

3 EFMs are not systemically independent: 
EFM1 = EP4 + EP5 
EFM2 = EP3 + EP5 
EFM4 = EP2 + EP3 

15. Lecture WS 2015/16 
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Property 1 of EFMs 

Klamt & Stelling Trends Biotech 21, 64 (2003) 

The only difference in the set of EFMs emerging upon reconfiguration consists in 
the two-cycles that result from splitting up reversible reactions.  
However, two-cycles are not considered as meaningful pathways. 

Valid for any network: Property 1 
Reconfiguring a network by splitting up reversible reactions leads to the same set of 
meaningful EFMs. 

15. Lecture WS 2015/16 
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EFMs vs. EPs 
What is the consequence when all exchange fluxes (and hence all 
reactions in the network) are made irreversible? 

Klamt & Stelling Trends Biotech 21, 64 (2003) 

Then EFMs and EPs always co-incide! 

15. Lecture WS 2015/16 
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Property 2 of EFMs 

Klamt & Stelling Trends Biotech 21, 64 (2003) 

Property 2 
If all exchange reactions in a network are irreversible then the sets of meaningful 
EFMs (both in the original and in the reconfigured network) and EPs coincide. 

15. Lecture WS 2015/16 
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Reconfigured Network 

Klamt & Stelling Trends Biotech 21, 64 (2003) 

A C P 

B 

D 

A(ext) B(ext) C(ext) 
R1 R2 R3 

R5 

R4 R8 

R9 

R6 

R7b R7f 

3 EFMs are not systemically independent: 
EFM1 = EP4 + EP5 
EFM2 = EP3 + EP5 
EFM4 = EP2 + EP3 

15. Lecture WS 2015/16 
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Operational modes 

Klamt & Stelling Trends Biotech 21, 64 (2003) 

Problem   EFM (network N1)  EP (network N2) 
 
Recognition of   4 genetically indepen- Set of EPs does not contain 
operational modes: dent routes   all genetically independent 
routes for converting  (EFM1-EFM4)  routes, only EP1. 
exclusively A to P.      
      No EP leads directly from 
      A to P via B. 

15. Lecture WS 2015/16  
16. Lecture WS 2013/14 
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Finding optimal routes 

Klamt & Stelling Trends Biotech 21, 64 (2003) 

15. Lecture WS 2015/16  
Bioinformatics III 

Klamt & Stelling Trends Biotech 21, 64 (2003) 

 
15. Lecture WS 2010/11 

Problem   EFM (network N1)  EP (network N2) 
 
Finding all the   EFM1 and EFM2 are  One would only find the 
optimal routes:  optimal because they suboptimal EP1, not the 
optimal pathways for yield one mole P per optimal routes EFM1 and  
synthesizing P during mole substrate A  EFM2. 
growth on A alone.  (i.e. R3/R1 = 1),    
   whereas EFM3 and 
   EFM4 are only sub- 
   optimal (R3/R1 = 0.5). 

 
16. Lecture WS 2013/14 
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Network flexibility (structural robustness, redundancy) 
EFM (network N1)  
 
4 pathways convert A to P 
(EFM1-EFM4), whereas 
for B only one route 
(EFM8) exists.  
 
When one of the internal 
reactions (R4-R9) fails, 2 
pathways will always 
„survive“ for production of 
P from A.  
By contrast, removing 
reaction R8 already stops 
the production of P from B 
alone. 

EP (network N2) 
 
Only 1 EP exists for 
producing P by substrate A 
alone (EP1), and 1 EP for 
synthesizing P by (only) 
substrate B (EP5).  
 
This suggests that both 
substrates possess the 
same redundancy of 
pathways, but as shown by 
EFM analysis, growth on 
substrate A is much more 
flexible than on B. 

Problem  
 
Analysis of network 
flexibility: relative 
robustness of exclusive 
growth on A or B. 

15. Lecture WS 2015/16  
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Klamt & Stelling Trends Biotech 21, 64 
(2003) 
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Relative importance of single reactions 
EFM (network N1) 
  
R8 is essential for 
producing P by substrate B 
(EFM8), whereas for A 
there is no structurally 
„favored“ reaction (R4-R9 
all occur twice in EFM1-
EFM4). 
 
However, considering the 
optimal modes EFM1, 
EFM2, one recognizes the 
importance of R8 also for 
growth on A. 

EP (network N2) 
 
Consider again biosynthesis 
of P from substrate A (EP1 
only).  
 
Because R8 is not involved 
in EP1 one might think that 
this reaction is not 
important for synthesizing P 
from A.  
 
However, without this 
reaction, it is impossible to 
obtain optimal yields (1 P 
per A; EFM1 and EFM2). 

Problem  
 
Relative importance of 
single reactions: 
relative importance of 
reaction R8. 

15. Lecture WS 2015/16  
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Klamt & Stelling Trends Biotech 21, 64 (2003) 
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Enzyme subsets and excluding reaction pairs 
EFM (network N1)  
 
R6 and R9 are an 
enzyme subset.  
 
By contrast, R6 and 
R9 never occur 
together with R8 in an 
EFM.  
 
Thus (R6,R8) and 
(R8,R9) are excluding 
reaction pairs. 
(In an arbitrary 
composable steady-
state flux distribution 
they might occur 
together.) 

EP (network N2) 
 
The EPs pretend R4 and 
R8 to be an excluding 
reaction pair – but they are 
not (EFM2).  
 
The enzyme subsets would 
be correctly identified in 
this case. However, one 
can construct simple 
examples where the EPs 
would also pretend wrong 
enzyme subsets (not 
shown). 

Problem  
 
Enzyme subsets and 
excluding reaction pairs: 
suggest regulatory structures or 
rules. 

15. Lecture WS 2015/16  
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Klamt & Stelling Trends Biotech 21, 64 (2003) 
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Pathway length 

Klamt & Stelling Trends Biotech 21, 64 (2003) 

EFM (network N1)
  
The shortest 
pathway from A to 
P needs 2 internal 
reactions (EFM2), 
the longest 4 
(EFM4). 

EP (network N2) 
 
Both the shortest 
(EFM2) and the 
longest (EFM4) 
pathway from A to P 
are not contained in 
the set of EPs. 

Problem  
 
Pathway length: 
shortest/longest pathway for 
production of P from A. 

15. Lecture WS 2015/16  
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Klamt & Stelling Trends Biotech 21, 64 (2003) 
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Removing a reaction and mutation studies 
EFM (network N1)  
 
All EFMs not involving 
the specific reactions 
build up the complete 
set of EFMs in the new 
(smaller) sub-network.  
 
If R7 is deleted, EFMs 
2,3,6,8 „survive“. 
Hence the mutant is 
viable. 

EP (network N2) 
 
Analyzing a subnetwork 
implies that the EPs 
must be newly 
computed.  
 
E.g. when deleting R2, 
EFM2 would become 
an EP.  
 
For this reason, 
mutation studies cannot 
be performed easily. 

Problem  
 
Removing a reaction and mutation 
studies: effect of deleting R7. 

15. Lecture WS 2015/16  
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Klamt & Stelling Trends Biotech 21, 64 (2003) 
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Software: FluxAnalyzer, based on Matlab 

  

Steffen Klamt.  

Klamt et al.  
Bioinformatics 19, 261 (2003) 

FluxAnalyzer has both EPs 
and EFMs implemented. 
 
Allows convenient studies of 
metabolicsystems. 

15. Lecture WS 2015/16 
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Strain optimization based on EFM-analysis 

Carotenoids (e.g. DPL and DPA) are light-harvesting pigments, UV-protecting 
compounds, regulators of membrane fluidity, and antioxidants. 
 
They are used as nutrient supplements, pharmaceuticals, and food colorants. 
 
Aim: increase carotenoid synthesis in E.coli 
 
 
Unrean et al. Metabol Eng 12, 112-122 (2010) 

15. Lecture WS 2015/16 
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Metabolic network of recombinant E.coli 

58 metabolic reactions, 
22 reversible 
36 irreversible 
 
57 metabolites 
 
29532 EFMs 
 
In 5923 EFMs, the  
production of biomass  
and DPA are coupled. 
 
Unrean et al. Metabol Eng 12, 112-122 (2010) 

15. Lecture WS 2015/16 



Bioinformatics III  
43 

Effect of single gene deletions 

Results of virtual gene knockout calculations (counting number of EFMs and 
computing their yield from reaction stochiometries). 
 
Select target genes where knockouts still maintain a maximum possible yield of 
carotenoid production, a reasonable yield of biomass while the largest number of 
EFMs is eliminated.  
 
Unrean et al. Metabol Eng 12, 112-122 (2010) 

15. Lecture WS 2015/16 
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Effect of single gene deletions 

Optimal: 8 gene knockouts lead to predicted over-production of DPL and DPA. 
 
Only 5 EFMs remain. 
 
Unrean et al. Metabol Eng 12, 112-122 (2010) 

15. Lecture WS 2015/16 
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Remaining EFMs 

Unrean et al. Metabol Eng 12, 112-122 (2010) 
15. Lecture WS 2015/16 
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Experimental verification: increased carotenoid yield 

Unrean et al. Metabol Eng 12, 112-122 (2010) 

15. Lecture WS 2015/16 

Mutant grows slower, but 
CRT production is 
increased 4 times. 
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Complexity of finding and enumerating EFMs 
Theorem: Given a stochiometric matrix S, an elementary mode can be found in 
polynomial time. 
 
Theorem: In case all reactions in a metabolic network are reversible, the elementary 
modes can be enumerated in polynomial time. 
 
The enumeration task becomes dramatically more difficult if the reactions are irreversible.  
In this case, the modes of the network form a cone, and the elementary modes are the rays of the cone. 

 
Theorem: Given a flux cone and two coordinates i and j, deciding if there exists and 
extreme ray of the cone that has both ri and rj in its support is NP-complete. 
 
Theorem: Given a matrix S and a number k, deciding the existence of an 
elementary mode with at most k reactions in its support is NP-complete. 
 
The question whether all elementary modes of a general network can be 
enumerated in polynomial time is an open question. 

Acuna et al. BioSystems 99, 210-214 (2010); BioSystems 95, 51-60 (2009) 
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Summary EFMs 
EFMs are a robust method that offers great opportunities for studying functional and 
structural properties in metabolic networks. 
 
The decomposition of a particular flux distribution (e.g. determined by experiment) 
as a linear combination of EFMs is not unique. 
 
Klamt & Stelling suggest that the term „elementary flux modes“ should be used 
whenever the sets of EFMs and EPs are identical. 
In cases where they don‘t, EPs are a subset of EFMs. 
 
It remains to be understood more thoroughly how much valuable information about 
the pathway structure is lost by using EPs. 
 
Ongoing Challenges: 
- study really large metabolic systems by subdividing them into sub-systems 
- combine metabolic model with model of cellular regulation. 
Klamt & Stelling Trends Biotech 21, 64 (2003) 
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