Review of 2 contrasting network topologies.

Exponential a Scale-free c

a, Representative structure of networks
generated by the Erdos—Rényi model.
b, For a random network the probability,
P(k) - that a node has k links - peaks strongly
at k= <k> and decays exponentially for b o
large k. k

<
¢, In the scale-free network most nodes = Qco;}
have only a few links, but a few nodes, called B
hubs (dark), have many links. e

' .

d, P(k) for a scale-free network has no well- K log k

defined peak, and for large k it decays as a
power-law, P(k) = k¥, appearing as a straight

line with slope - on a log—log plot.
Jeong et al. Nature 407, 651 (2000)

Bioinformatics Il
15. Lecture WS 2015/16 1



a, Archaeoglobus fulgidus (archae);

b, E. coli (bacterium);

¢, Caenorhabditis elegans (eukaryote)
d, The connectivity distribution
averaged over 43 organisms.

x-axis: metabolites participating in k
reactions

y-axis (P(k)): number/frequency of
such metabolites

log—log plot, counts separately the
incoming (In) and outgoing links (Out)
for each substrate.

K., (k) corresponds to the number of
reactions in which a substrate
participates as a product (educt).

100_ IR | ||||||I'I'| |||||||: T T ||||||I'I'| |||||||:

&8 In—— 1 & In —— ]
10_1 — — — Out_B_ —
102 1k :
109 1k :
10 ]k :
10 1 ke =
10—6_ vl sl RTTI - ol Lol RTTI
‘]0_6_ LRLRRLLLL | ||||||n'| T TTTITH LRLRRRLLL | ||||||n'| T T TTITH

10 10? 108
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a, The histogram of the biochemical pathway A s b
lengths, /, in E. coli. - 1 _ 5k -
, 210 1 8 t -
b, The average path length (diameter) for each = I 1 % sk % WEHH% % H{ i
of the 43 organisms. a0t = l
N : number of metabolites in each organism 05575759 550250 600
o I d N
¢, d, Average number of incoming links (c) or L 'E o EE'E 1 J 'E o 'E:E i}
outgoing links (d) per node for each organism. L r @ote e Loy s Toat
N 3} o8 _;FEE - NS'ﬁ_Fa&EEE i
- ] L 1
e, The effect of substrate removal on the R VR T R T S5 350 550850
metabolic network diameter of E. col. e N - N
o o Random
In the top curve (red) the most connected %
substrates are removed first. In the bottom O gL
curve (green) nodes are removed randomly. 053920 30 20 £0 80
M =60 corresponds to 8% of the total number M
of substrates in found in E. coll. b—d, Archaea (magenta), bacteria (green) and

eukaryotes (blue) are shown.
Jeong et al. Nature 407, 651 (2000)
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Stoichiometric matrix - Flux Balance Analysis

Stoichiometric matrix S:

m X n matrix with stochiometries
of the nreactions as columns and
participations of m metabolites as
rows.

The stochiometric matrix is an
important part of the in silico
model.

With the matrix, the methods of
extreme pathway and elementary
mode analyses can be used to
generate a unique set of pathways
P1, P2, and P3 that allow to
express all steady-state fluxes as
linear combinations of P1 — P3.

15. Lecture WS 2015/16
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Any chemical reaction requires mass conservation. E oA PB*J ]
A

Therefore one may analyze metabolic systems ' |
by requiring mass conservation. pm"‘ AB t

Only required: knowledge about stoichiometry of metabolic pathways.

For each metabolite X; : Steady state: concentrations are constant

=> flux in = flux out
dXi /dt = Vsynthesized _ Vused
+V dAsB(t)

dt

transported_in — Vtransported_out = GAQB — LAQB =2

15. Lecture WS 2015/16 Bioinformatics Il



Under steady-state conditions, the mass balance constraints in a metabolic
network can be represented mathematically by the matrix equation:

S-v=0

where

- the matrix S is the stoichiometric matrix and

- the vector v represents all fluxes in the metabolic network, including the internal
fluxes, transport fluxes and the growth flux.

15. Lecture WS 2015/16 Bioinformatics Il



Since the number of metabolites is generally smaller than the number of reactions

(m < n) the flux-balance equation is typically underdetermined.

Therefore there are generally multiple feasible

flux distributions that satisfy the mass balance constraints.
The set of solutions are confined to the nullspace of matrix S.

15. Lecture WS 2015/16 Bioinformatics Il




Null space: space of feasible solutions

Consider
0 2 1 S A
3 -1 1 o
X3
Corresponds to 2¢ptz3 = 0 ___ 232 = -—x3
31 —xo+x3 = 0 2ry = —un3
-a
=> only one free parameter: x3 null space: 7 = -a
2a
Add inequalities for external fluxes
(here, e.g.:x3 = 0) flux 2

=> feasible solutions fora > 0 A _ null space

Generally: null space is a cone, <olutions
constraints select part of it
flux 1

15. Lecture WS 2015/16 Bioinformatics Il



Edwards & Palsson PNAS 97, 5528 (2000)

15. Lecture WS 2015/16

The steady-state operation of the
metabolic network is restricted to the
region within a pointed cone, defined
as the feasible set.

The feasible set contains all flux vectors
that satisfy the physicochemical
constrains.

Thus, the feasible set defines the
capabilities of the metabolic network.
All feasible metabolic flux distributions
lie within the feasible set.

Bioinformatics Il



To find the ,true® biological flux in cells (— e.g. Heinzle, Wittmann / UdS)
one needs additional (experimental) information,
or one may impose constraints

a; <V, <p,
on the magnitude of each individual metabolic flux.
The intersection of the nullspace and the region

defined by those linear inequalities defines a
region in flux space = the feasible set of fluxes.

In the limiting case, where all constraints
on the metabolic network are known, such
as the enzyme kinetics and gene
regulation, the feasible set may be reduced
to a single point. This single point must lie
within the feasible set.

15. Lecture WS 2015/16 Bioinformatics Il
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Best studied cellular system: E. coli.

In 2000, Edwards & Palsson constructed an in silico representation of
E.coli metabolism.

There were 2 good reasons for this:

(1) genome of E.coliMG1655 was already completely sequenced,

(2) Because of long history of E.coli research, biochemical literature, genomic
information, metabolic databases EcoCyc, KEGG contained biochemical or
genetic evidence for every metabolic reaction included in the in silico
representation. In most cases, there existed both.

Edwards & Palsson
PNAS 97, 5528 (2000)

15. Lecture WS 2015/16 Bioinformatics Il
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Genes included in in silico model of E.coli

Table 1. The genes Induded In the £ cod metabolle genctype 213

Edwards & Palsson
PNAS 97, 5528 (2000)

15. Lecture WS 2015/16

Central metabolism (ENP, PPP,
TOA cycle, el=ctron ranspart)

Alernatiee carkon souroes

Amino acid metabolism

Purine & pyrimidine
metabolism

Vitamin & cofactor metabalism

Lipid metabolism

Cell wea Il metabalism

Trarsport procoesses

aced|, acel, scef, acef, ackdl, acndl, amB, acs adfE, agp appd, sppl atpd, arpd, spl, srpl), atpl, sipF,
atpl, atpH, atpl, opdd), opdB, o, oD, opodl, oyl cpal, cpoll did eno, fha, fop, fahE, fideds, fdnl,
fod, Folodz, o, focd, frad frol frdC frdfll fumd, fumB fumC, gaid gepd, gapl L gapl 2 gicll
alad glaC, glgP. gl oipd, gind, gieC, il gt gnel, gamd, g, fyak, hyal, el by, Ay,
hycl, ek, fpcF, freols, fodd oD fdhd, fpad, mal®, meth, nidh, mood, nuol, nuok, moof, nuoly oo,
nocd, mood, nuol], nool, rooltd, puoll pokd, pfed, pfel, pld, pllB (0 ol poi. pok, prtd, pntd poc,
ppsd, pla por, pyids, gt roe, rpid, R sohd, wthB, sohC sdfl), sfcd, sood secd see ) osacl) tall,
tetd, teth pid, rxl rart pail (30), masd (30)

adil, adhi, aga’, sqal, aldd, aldB aicl, sradi, aral aral), bolX, cpsth, deol fok, fucd, fud fck] fucd,
qalt, galk qalll galll garll gert g, glekl gkl greld gosd, lack, mard, medll, mitll} nogl, nagh
nand|, pfel, pai pam, ré=, rhed, chall chall sril), erel, s, o0'F

adi, i, ol ansd, ansB arpl, argd argl argd), argl, argh, arglh argh, argll arcds, aroll arol, aroll arct,
avol, arods, arol, arok], arol, ssd. ssndl, asnfl aspdl, espl st ol cavdy, carl®, opsl ol opst, ol
cps, opsd, cpsk, cpst ol dedd,, dadl, dapd, depl dapl), daplk dapF, dedd gabl), qabT, gadd, gedd,
g, gt gind, git, gitD), glved, goaly, hish, hisl, hisl, hisD, hisk, b, hisk, i) itetl, b, i, i)
i, itels T, il 2 i il i WAL BB D0 e, teol, leaC feal) Bwdl, fesC metd, merd, metd,
metE, et metk], matl phead, prod, ol pral, prsd, potd], soefl, sdadl send, serl sevl, spedl, spefl
spel, spell spal, spef, rodcl, ol efvA, thrld e, el mpd, rpd, mpl trpll opE pendl, ol prd
wait paitd afel B2, depC A3}, pat 4], prr (4), sad (E), methathiosdenosine nudeosidase (4B,
E-mathpkhiovibose kinese (5], S-mathydt Voribose--phosphate isomarase [15), adanosyd homooystainase
(AT, 1-gesteine desulhydrase AL, glotaminased 4, glutaminese 8 494

ackd, adk, amn, apd, codl cmi codd, dod deod, deoll g9l dut g gt get gued, quall goal, hpr
mat T, ndd, ordd, ord B erdl pedE, ordE, purd, purd peC, pee 3 porE, peef, parl], purk], porl, e
porl por T pye B, o, pprl), perd, pd, pprls, pprd], el 1ok, eined, ek odk, o, vpp, wshd, xapd, pick,
CHP giycosyiase (18]

acpy, bind, bBiof] biol), biok, mad, ool ol e, et entl entl), etE, entf, epd fold, ol foll} folf
falk, foif, govi, govlt govT, qitk, hel, gor, gshd, gshil hamd, hemil, hernC, beml, harE, hem, hamd,
hemi, heml, hemM, hemX, hem, il Ko {pddl, mend, menl merl, menll, menE, menf, mens, metf,
mutT, naddl, nad®, nadC, et pipd, palel, pabf pebC pank penC, panll pdid, pdef poel, pdl
pdek, prel, porll ribd, bl ribll ribE, ribM s C ot thil, o il thit, ehel obbl, wbill, obil, whily
wbif, abiX, yaaC, pois, madD (49, nadF (49), nadG @9, pank (500, pocd (90, poal (3], thid (B1), thil 1),
i (510, ehil (510 ehaMd (510, ehad (51), wbit (52), wbi 52), aabinose-5-phosphote isomarase (22],
phosphopeniothemate-gesiaine Ngase (8, phosphopentothan ate s teine decarbonrlase (50,
phospho-pantatheine adenyiyltransforase (80), dephospholod inase (50), NWN gl yoohydrolase ()

accdi, accll, accll atoll coh, cosd, o, dgkdl, fabl, febf fadB, gpsd, spd ispl popl posh, pxdl pesd, popd
{53

detlh, AR, qalf, galll, qims, qimil ferd, kasd, kolsB, kdtd, dowd, lowd, foat, D, mraY, mshE musd, murk
murC, morl mark, mord, s, muel, rfaC, rfall, rfal, rifel, rfal rfal rfisl, ostd, gloM 050D, joad (85
il (5L, tetrao pdisac choride 47 kinase (85, 3-decsy- o manno-ocmlosonic-ocid §-phosphate
phosphatase (B5)

aral, araf, araly aral, argl arcf, ardl artd, st ant® artl benid), cadB, chadl, chall chal, cmodl, e,
cod8, o, opcd, opsd, sl ol opll oW oadl deed, doodl, dowll dppd, dippd, dopC, depld dppF, fadl,
focd, frodl, frod, fo gabd galfl geol, gatd qatl, glnd, ginf, ginll gipf, olpT, qit! of, gl gt girh,
gniT, get fisd hisld, haf, =, Gpd kdpd, kdpl, kdol, kgil lact, lamE, Mk, Taln, Toatd, Wud, Wl ol
Tl P madE, malf, mad, malk, mal, mand, mant, mand, melB, mgi, mglE mglT, miid, mn, negt,
nanT, phad, phal, nupl, nupls oppd, oppB, oppl, oppll oppf, pank, phef, pith, oith pul, potd, ot
potl, potl, potk, poff, poeG, poM, porl, prof, prolf, proWll, proX, pued, ped, po, per, ped, prol, pes)
pishl, prsP purd, putf rbsd, cbsE, rbsC, rbsD, rhal, sapd, sopd sapl) sbp, sdal, srih 1, srdd 2 sri@ ekl
mal, wed, mel rEkd rdln ekl s P wgpd, wgpl wgel, wopll wead, sepl ol oplE el el
frurF (B5), qnes (57), marD (43), powE (45), sor (55)

Biointormatics Il

12



Define o, = 0O for irreversible internal fluxes,
o, = -oo for reversible internal fluxes (use biochemical literature)

Transport fluxes for PO,%, NH;, CO,, SO,%, K*, Na* were unrestrained.

For other metabolites 0< V. < 1" except for those that are able to leave the
metabolic network (i.e. acetate, ethanol, lactate, succinate, formate, pyruvate etc.)

Find particular metabolic flux distribution in feasible set by linear programming.
LP finds a solution that minimizes a particular metabolic objective —Z
(subject to the imposed constraints) where e.g.

Z=> ¢-V,=(C-V)

When written in this way, the flux balance analysis (FBA) method finds the
solution that maximizes the sum of all fluxes = gives maximal biomass.

Edwards & Palsson, PNAS 97, 5528 (2000)

15. Lecture WS 2015/16 Bioinformatics Il
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Linear programming is a technique for the
optimization of a linear objective function,
subject to linear equality and linear inequality
constraints.

lts feasible region is a convex polytope, which
is a set defined as the intersection of finitely
many half spaces, each of which is defined by a
linear inequality.

lts objective function is a real-valued linear
function defined on this polyhedron.

A linear programming algorithm finds a point in
the polyhedron where this function has the
smallest (or largest) value if such a point exists.

15. Lecture WS 2015/16 Bioinformatics Il

www.wikipedia.org

A pictorial representation of a
simple linear program with 2
variables and 6 inequalities. The
set of feasible solutions is
depicted in yellow and forms a
polygon, a 2-dimensional
polytope.

The linear cost function is
represented by the red line and
the arrow: The arrow indicates the
direction in which we are
optimizing.
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Linear programs are problems that can be expressed in canonical form as
maximize ¢ x
subject to Ax<b
and x =0

where x represents the vector of variables (to be determined), ¢ and b are vectors of
(known) coefficients, A is a (known) matrix of coefficients, and (.)" is the matrix
transpose.

The expression to be maximized or minimized is called the objective function (c™x in
this case).

The inequalities Ax < b and x = 0 are the constraints which specify a convex polytope
over which the objective function is to be optimized.

15. Lecture WS 2015/16 Bioinformatics Il
15

www.wikipedia.org



If all of the unknown variables are required to be integers, then the problem is called
an integer programming (IP) or integer linear programming (ILP) problem.

In contrast to linear programming, which can be solved efficiently in the worst case,
integer programming problems are in many practical situations NP-hard.

The branch and bound algorithm is one type of algorithm to solve ILP problems.

www.wikipedia.org

15. Lecture WS 2015/16 Bioinformatics Il
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6.6

(Black) Flux distribution for the wild-type. o5 @ @n j

E oo w
hino
co

(Red) zwf- mutant. Biomass yield is 99% of
wild-type result.

(Blue) zwf- pnt- mutant. Biomass yield is
92% of wildtype result.

Note how E.coli in silico circumvents
removal of one critical reaction (red arrow)
by increasing the flux through the
alternative G6P — PGP reaction.

Edwards & Palsson PNAS 97, 5528 (2000)
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Examine changes in the metabolic capabilities caused by hypothetical gene
deletions.

To simulate a gene deletion, the flux through the corresponding enzymatic
reaction was restricted to zero.

Compare optimal value of mutant (Z,,..¢) to the ,wild-type” objective Z
4

mutant

Z

to determine the systemic effect of the gene deletion.

Edwards & Palsson
PNAS 97, 5528 (2000)

15. Lecture WS 2015/16 Bioinformatics Il
18



Gene deletions in central intermediary metabolism

. . . 1.4 -
Maximal biomass yields

1.2 A
on glucose for all

cyoABCD
sdABCD
sucCD
cydABCD
frdABCD

8 TS o @
possible single gene 1 %g EEEE?&EE&%%E § ride¥defesieiiils
deletions in the central ~ § °¢ ] . g EE
metabolic pathways 3 08 1 -

(gycolysis, pentose o
phosphate pathway 02{ & 0(
(PPP), TCA, respiration). ., /8 8§3%¥ 8

The results were generated in a simulated aerobic environment with glucose as the carbon
source. The transport fluxes were constrained as follows: glucose = 10 mmol/g-dry weight
(DW) per h; oxygen = 15 mmol/g-DW per h.

The maximal yields were calculated by using FBA with the objective of maximizing growth.
Yellow bars: gene deletions that reduced the maximal biomass yield of Z, . t0 less than

95% of the in silico wild type Z,,.

Edwards & Palsson PNAS 97, 5528 (2000)

15. Lecture WS 2015/16 Bioinformatics Il
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The essential gene products were involved in the 3-carbon stage of glycolysis,
3 reactions of the TCA cycle, and several points within the pentose phosphate
pathway (PPP).

The remainder of the central metabolic genes could be removed while E.coli in
silico maintained the potential to support cellular growth.

This suggests that a large number of the central metabolic genes can be removed
without eliminating the capability of the metabolic network to support growth under
the conditions considered.

Edwards & Palsson PNAS 97, 5528 (2000)

15. Lecture WS 2015/16 Bioinformatics Il
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Table 2. Comparisen of the pradicted mutant growth
characteristics from the gene deletlon study to published
exparimantal results with single mutants

Gere qle ql sLICC ar
+ and — means growth or no growth.
. cell
+ means that suppressor mutations have aceEF
acks
been observed that allow the mutant
strain to grow. oy
Cyo
eno!

4 virtual growth media: frd
glc: glucose, gl: glycerol, succ: alk
succinate, ac: acetate.

In 68 of 79 cases, the prediction was e
consistent with exp. predictions. e

Red and yellow circles: predicted pta
mutants that eliminate or reduce growth. pyk

Edwards & Palsson LA R
PNAS 97, 5528 (2000) e

15. Lecture WS 2015/16 Bioinformatics Il
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FBA analysis constructs the optimal network utilization simply using the
stoichiometry of metabolic reactions and capacity constraints.

For E.colithe in silico results are mostly consistent with experimental data.

FBA shows that the E.coli metabolic network contains relatively few critical gene
products in central metabolism.

However, the ability to adjust to different environments (growth conditions) may be
diminished by gene deletions.

FBA identifies ,the best" the cell can do, not how the cell actually behaves under a
given set of conditions. Here, survival was equated with growth.

FBA does not directly consider regulation or regulatory constraints on the
metabolic network. This can be treated separately (see future lecture).

Edwards & Palsson PNAS 97, 5528 (2000)

15. Lecture WS 2015/16 Bioinformatics Il
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Metabolic Pathway Analysis searches for meaningful structural and functional units
in metabolic networks.

Today‘s most powerful methods are based on convex analysis.
2 such approaches are the elementary flux modes ' and extreme pathways?.

Both sets span the space of feasible steady-state flux distributions by
non-decomposable routes, i.e. no subset of reactions involved in an EFM or EP
can hold the network balanced using non-trivial fluxes.

Extreme pathways are a subset of elementary modes.
For many systems, both methods coincide.

Klamt et al. Bioinformatics 19, 261 (2003); Trinh et al. Appl. Microbiol Biotechnol. 81, 813-826 (2009)

1 Schuster & Hilgetag J Biol Syst 2, 165-182 (1994), Pfeiffer et al. Bioinformatics, 15, 251 (1999), Schuster et
al. Nature Biotech. 18, 326 (2000)

2 Schilling et al. J Theor Biol 203, 229-248 (2000)

Bioinformatics Il
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MPA can be used to study e.g.

- metabolic network structure

- functionality of networks (including identification of futile cycles)

- robustness, fragility, flexibility/redundancy of networks

- to identiy all (sub-) optimal pathways with respect to product/biomass yield

- rational strain design

Klamt et al. Bioinformatics 19, 261 (2003) ; Trinhgd&lARRIMicrobiol Biotechnol. 81, 813-826 (2009)
15. Lecture WS 2015/16 24



A pathway P(v) is an elementary flux mode if it fulfills conditions C1 — C3.

(C1) Pseudo steady-state. S - e = 0. This ensures that none of the metabolites is
consumed or produced in the overall stoichiometry.

(C2) Feasibility: rate e, > O if reaction is irreversible. This demands that only
thermodynamically realizable fluxes are contained in e.

(C3) Non-decomposability: there is no vector v (except the null vector and e)
fulfilling C1 and C2 and so that P(v) is a proper subset of P(e).

This is the core characteristics for EFMs and EPs and provides the decomposition
of the network into smallest units that are able to hold the network in steady state.

C3 is often called ,genetic independence” because it implies that the enzymes in
one EFM or EP are not a subset of the enzymes from another EFM or EP.

Klamt & Stelling Trends Biotech 21, 64 (2003)

Bioinformatics Il
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The pathway P(e) is an extreme pathway if it fulfills conditions C1 — C3 AND
conditions C4 — C5.

(C4) Network reconfiguration: Each reaction must be classified either as
exchange flux or as internal reaction.

All reversible internal reactions must be split up into two separate, irreversible
reactions (forward and backward reaction).

(C5) Systemic independence: the set of EPs in a network is the minimal set of
EFMs that can describe all feasible steady-state flux distributions.

The algorithms for computing EPs and EFMs are quite similar.
We will not cover the algorithmic differences here.

Klamt & Stelling Trends Biotech 21, 64 (2003)

Bioinformatics Il
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Comparison of EFMs and EPs

Alext) Blext) Plext) Afext) Blext) Pilext) Alext) Blext) Plext)
Ri R2 2 R __|Rz _ _|Ra,

Ris B
\ Alext) Biext) Plexty Alext) Blext) Piext)
7 :
\ 4 R5 RI___[RZ__IR3 QR __R2__AR3 _QR1__IRZ__IR3

Alext) Blext) Plext) Alext) Blext) Plext)
Ri___|R2__|R?

Klamt & Stelling Trends Biotech 21, 64 (2003)

Bioinformatics Il
15. Lecture WS 2015/16 27



Reconfigured Network: split up R7

A(ext) B(ext) C(ext)

2 1R3

3 EFMs are not systemically independent:

EFM1 = EP4 + EP5
EFM2 = EP3 + EP5
EFM4 = EP2 + EP3

Klamt & Stelling Trends Biotech 21, 64 (2003)

{B)
Alext)

Biext) P(ext)

Aflext) Biext) P{ext)

T
ﬁ
[a]
o Iy}
Ql '
11 ‘t//j
o
W
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The only difference in the set of EFMs emerging upon reconfiguration consists in
the two-cycles that result from splitting up reversible reactions.
However, two-cycles are not considered as meaningful pathways.

Valid for any network: Property 1

Reconfiguring a network by splitting up reversible reactions leads to the same set of
meaningful EFMs.

Klamt & Stelling Trends Biotech 21, 64 (2003)

Bioinformatics Il
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What is the consequence when all exchange fluxes (and hence all
reactions in the network) are made irreversible?

Table 1. Configurations of the example network (upper part N1 and N3; lower part N2 and N4}, with corresponding elementary flux
modes (EFM) and extreme pathways (EP) (see also Fig. 1)

N1 (R2 and R7 reversible) N3 (as N1 but R2 irreversible) N1 N3 Reactions
Afext)  Blext)  Plext) EFMs EFMs Rl R2 R3 R4 R5 R6 R7 R8 R9
N ‘L,‘_‘_ . EFM1 X 1 01 0 1 0 11 0
i i -1 EFM2 x 1 01 1 0 0 0 1 0
I | EFM3 x 2 01 0 1 1 0 0 1
| .,-I \\ | EFM4 X 2 01 1 0 1 1 0 1
LTS EFMS5 X 1 11 0 0 1 1 0 1
L | EFM6 1 10 1 0 0 0 0 ©
| \_ b | EFM7 1 10 0 1 0 1.0 0
L EFMS8 x 0 11 0 0 0 0 1 0
N2 (R2 reversible, R7 split up) N4 (as N2 but R2 irreversible) N2 N4 Reactions
Afext)  Blext)  Plext) EFMs EPs/ EFMs EPs\ R1 R2 R3 R4 R5 R6 R7f R8 R9 R7b
N Ik_,_ . EFM1 x EPT | 1 o1 0 1 0 01 0 1
B Induiail ekt ol EFM2 x EP2 | 1 01 1 0 0 01 0 0
! : EFM3 EP] x EP3 |2 01 0 1 1 00 1 0
| | ]'N'\ | EFM4 X EP4 |2 01 1 0 1 10 1 0
LA b EFM5 EP? x EP5 | 1 11 0 0 1 10 1 0
L 7 | EFM& EP3 1 10 1 0 1 0 0 0 O
: N | EFM7 EP4 1 10 0 1 0 00 0 1
o j EFM8 EP5\ x EPE/ 0 11 0 0 0 01 0 0
EFMS EP6 \ x EP7 © 00 0 0 0 10 0 1

Klamt & Stelling Trends Biotech 21, 64 (2003)
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Then EFMs and EPs always co-incide!
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Property 2
If all exchange reactions in a network are irreversible then the sets of meaningful
EFMs (both in the original and in the reconfigured network) and EPs coincide.

Klamt & Stelling Trends Biotech 21, 64 (2003)
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Reconfigured Network

A(ext) B(ext) C(ext)
R1 2 TR3

3 EFMs are not systemically independent:

EFM1 = EP4 + EP5
EFM2 = EP3 + EP5
EFM4 = EP2 + EP3

Klamt & Stelling Trends Biotech 21, 64 (2003)
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Problem

Recognition of
operational modes:
routes for converting
exclusively Ato P.

16. Lecture WS 2013/14
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N1 and (b) the EFMs and extreme pathways in network N2 (see also Table 1).

EP (network N2)
Set of EPs does not contain
all genetically independent

routes, only EP1.

No EP leads directly from
Ato P via B.
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Problem EFM (network N1) EP (network N2)

Finding all the EFM1 and EFM2 are One would only find the
optimal routes: optimal because they suboptimal EP1, not the
optimal pathways for yield one mole P per optimal routes EFM1 and
synthesizing P during mole substrate A EFM2.

growth on A alone. (i.,e. R3/R1 = 1),

whereas EFM3 and o
EFM4 are only Sub_ A(ext) Biext) Plext) A{ext) Biext) P(ext) Afext) Biext) P(ext)
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| and (b) the EFMs and extreme pathways in network N2 (see also Table 1).



Proble

m

Analysis of network

flexibi

lity: relative

robustness of exclusive
growth on A or B.

(b)

Afext) Biext) Plext)

Afext) Blext) P{ext)
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2 R4 B__Rf
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HES e
T N T
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N1 and (b) the EFMs and extr

eme pathways in network N2 (see also Table 1).

EFM (network N1)

4 pathways convert Ato P
(EFM1-EFM4), whereas
for B only one route
(EFM8) exists.

When one of the internal
reactions (R4-R9) fails, 2
pathways will always
,survive® for production of
P from A.

By contrast, removing
reaction R8 already stops
the production of P from B
alone.

EP (network N2)

Only 1 EP exists for
producing P by substrate A
alone (EP1), and 1 EP for
synthesizing P by (only)
substrate B (EP5).

This suggests that both
substrates possess the
same redundancy of
pathways, but as shown by
EFM analysis, growth on
substrate A is much more
flexible than on B.

Klamt & Stelling Trends Biotech 21, 64

(2003)
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Problem

Relative importance of
single reactions:
relative importance of
reaction R8.

(b)

Alext) Biext) P(ext)
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-~ -1

k N1 and (b) the EFMs and extreme pathways in network N2 (see also Table 1).

EFM (network N1)

R8 is essential for
producing P by substrate B
(EFM8), whereas for A
there is no structurally
Jfavored” reaction (R4-R9
all occur twice in EFM1-
EFM4).

However, considering the
optimal modes EFM1,
EFMZ2, one recognizes the
importance of R8 also for
growth on A.

EP (network N2)

Consider again biosynthesis
of P from substrate A (EP1
only).

Because R8 is not involved
in EP1 one might think that
this reaction is not
important for synthesizing P
from A.

However, without this
reaction, it is impossible to
obtain optimal yields (1 P
per A; EFM1 and EFM2).

Klamt & Stelling Trends Biotech 21, 64 (2003)
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Problem EFM (network N1) EP (network N2)

Enzyme subsets and R6 and R9 are an The EPs pretend R4 and
excluding reaction pairs: enzyme subset. R8 to be an excluding
suggest regulatory structures or reaction pair — but they are
rules. By contrast, R6 and not (EFM2).
o) R9 never occur
Alext) Biext) Plext) Afext) Blext) Plext) Alext) Blext) Plext) together W|th R8 in an The enzyme Subsets WOUId
3 R1 Rz R3 R1 R2 R3 . . .
Ty im:L‘ EFM. be correctly identified in
: R4 ’ B 8 : : /TVB- R& : ]
DAL TS 4 this case. However, one
P YR A “Rg ! .
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. EFM2) || _ EFM3SEP _
Alext]) Blext) Plext) Alext) Biext) Piext) Alext) Blext) Piext) (R8,R9) are eXCIUdlng examples Where the EPS
FT“F"“% T‘,Lpr rf Tf -1 reaction pairs. would also pretend wrong
12| Rl B __Ra I | | Rig-B__RE 11 | BB __Ra | )
i ﬁpNF | ﬁm\F AL hl\ i (In an arbitrary enzyme subsets (not
e i \_[_ | composable steady-  shown).
o EFM4, |______EFWSSEPZ; | EFMGSEP3, it
Alext) Bilext) Plext) Alext) Biext) Plext) Alext) Biext) Plext) State ﬂUX d|Str|bUt|On
rfTﬁ?]ﬂa ) vap R P1'LP s they might occur
: B__R& : : R _yeB L] : : R4 --.Rd :
Rba o ey /g | together.)
| A Grte | —»TF | —»TF |
- DT N, NG | Klamt & Stelling Trends Biotech 21, 64 (2003)
\______FErwmr=EP4, __ ___ _EFMB8zEP5, ,__ __ _ _ EFMI=EPG,
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Problem EFM (network N1)  EP (network N2)

Pathway length: The shortest Both the shortest
shortest/longest pathway for pathway from Ato (EFM2) and the
production of P from A. P needs 2 internal  longest (EFM4)
o reactions (EFM2), pathway from Ato P
Alext) Blext) Plext) Alext) Blext) P(ext) Alext) B(ext) P(ext) the IOngeSt 4 are not contained in
: (EFM4). the set of EPs.
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Problem

Removing a reaction and mutation
studies: effect of deleting R7.

(b)
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and (b) the EFMs and extreme pathways in netwark N2 (see also Table 1).

EFM (network N1)

All EFMs not involving
the specific reactions
build up the complete
set of EFMs in the new
(smaller) sub-network.

If R7 is deleted, EFMs
2,3,6,8 ,survive“.
Hence the mutant is
viable.

EP (network N2)

Analyzing a subnetwork
implies that the EPs
must be newly
computed.

E.g. when deleting R2,
EFM2 would become
an EP.

For this reason,
mutation studies cannot
be performed easily.

Klamt & Stelling Trends Biotech 21, 64 (2003)
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Software: FquAnaIyzer based on Matlab
: P o1 Sl stk

Fle Edit Yiew |nset Tools Window Help Fluxanalyzer ‘ Reactions (Edges) [B]
— /’ B R3 T Edit/ Info I

Rl RT Metabalites (Hodes) [4]

_ Edit/ Info
C Delete
9200 1] —
Newr

Biomass Constituents [2]

Edit ¢ Info
1

: *-. 0.0600 10,1800

| 0.0800 10,0400 . .

¥ ¥ S ¥
Bicomass Component | Biomass Component 2

fi,dﬂﬂl] FI-I.EUUD
P 01000 |

Steffen Klamt. '

Fig. 1. The network project of “SMALLNET’ constructed by the FluxAnalyzer. Left: interactive flux map displaying a flux scenario (unknown
rates are denoted by ‘###7). Right: network composer.

MATLAB

FluxAnalyzer

FluxAnalyzer has both EPs
and EFMs implemented.

Toolbox

functions for analysis of
structure and fluxes
in T o

Allows convenient studies of
metabolicsystems.

embedded in a menu

[ 1] RN ||
i Algebraic Routinet;J §§E,§2Fﬁ§‘ §§£ii,3%? §I§¥ i‘i.i‘,g!ﬁ"i"gg"‘iri’g“g ->§g
User Interfaces and Functions G!Egggﬁ;;;’;?‘éfig z.uggg ggﬁ;i‘ '{%
) i%’ 5
o 3

Klamt et al.
Fig. 2. Structural setup of the FluxAnalyzer. Fig. 3. Concise graphical representation of the stoichiometric matrix BIOI nformatlcs 1 9’ 26 1 (2003)

(here: catabolic part of the network studied in Klamt er al., 2002)
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Metabolic Engineering 12 (2010) 112-122

Contents lists available at ScienceDirect METAROLIC

Metabolic Engineering

journal homepage: www.elsevier.com/locate/ymben

Rational design and construction of an efficient E. coli for production of
diapolycopendioic acid

Pornkamol Unrean, Cong T. Trinh, Friedrich Srienc™*

Department of Chemical Engineering and Materials Science, and BioTechnology Institute, University of Minnesota, 240 Gortner Laboratory, 1479 Gortner Ave,
St. Paul, MN 55108, USA

Carotenoids (e.g. DPL and DPA) are light-harvesting pigments, UV-protecting
compounds, regulators of membrane fluidity, and antioxidants.

They are used as nutrient supplements, pharmaceuticals, and food colorants.

Aim: increase carotenoid synthesis in E.coli

Unrean et al. Metabol Eng 12, 112-122 (2010)
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Metabolic network of recombinant E.coli

58 metabolic reactions.

22 reversible
36 irreversible

57 metabolites

29532 EFMs

In 5923 EFMSs, the
production of biomass
and DPA are coupled.
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Unrean et al. Metabol Eng 12, 112-122 (2010)
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Effect of single gene deletions
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Results of virtual gene knockout calculations (counting number of EFMs and

computing their yield from reaction stochiometries).

Select target genes where knockouts still maintain a maximum possible yield of
carotenoid production, a reasonable yield of biomass while the largest number of
EFMs is eliminated.

Unrean et al. Metabol Eng 12, 112-122 (2010)
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Strain Total modes Aerobic modes Anaerobic modes Predicted CRT yield®

Wild-type 29,532 24,155 3377 0.0-426

AldhA 15,662 13,405 2257 0.0-426

AldhAAfrdA 8573 7810 763 0.0-426

AldhAAfrdAApoxB 7541 6861 680 0.0-426

AldhAAfrdAApoxBApta 6171 5600 571 0.0-426

AldhAAfrdAApoxBAptaAadhE 4099 4099 0 0.0-426

AldhAAfrdAApoxBAptaAadhEApykF 2573 2573 0 0.0-426

AldhAAfrdAApoxBAptaAadhEApyk FAzwf 375 375 0 0.0-426

AldhAAfrdAApoxBAptaAadhEApykFAzwfAmaeB 5 5 0 0.4-426

* Yield is in mg-diapolycopendioic add/g-glucose.

Deleted Reaction Corresponding gene Enzyme Pathway
R9 pykF Pyruvate kinase Glycolysis
R11 wf Glucose-6-phosphate-1-dehydrogenase Pentose phosphate
R22 frdA Fumarate reductase Fermentation
R28 maeB Malate dehydrogenase Anapleurotic
R31 poxB Pyruvate oxidase Fermentation
R32 ldhA Lactate dehydrogenase Fermentation
R34 adhE Alcohol dehydrogenase Fermentation
R35 pta Phosphate acetyltransferase Fermentation

Optimal: 8 gene knockouts lead to predicted over-production of DPL and DPA.

Only 5 EFMs remain.

Unrean et al. Metabol Eng 12, 112-122 (2010)
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Remaining EFMs
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Experimental verification: increased carotenoid yield

L]
O

0.3 10
‘S 3
E
- 02} .
i g
; «g 05
g 3
o1}
£ B
: ;
0.0 & 50
MG1655 0 1 2 3 4 5
Consumed glucose (g/l)
MG1655/ CRT028]
pACMNOX pACMNOX
Growth rate (/h) 0.17 + 0.02 0.13 + 0.01
Mutant grows slower, but Carotenoid production (mg/l) 0194002  0.83+020
) ; Carotenoid yield (mg carotenoid/g glucose) 0.04 + 0.00 0.17 + 0.04
CRT production is Specific production (mg carotenoid/g cell  0.01+0.00  0.10+ 0.02

. . d ight-h
increased 4 times. Ty weight-h)

Unrean et al. Metabol Eng 12, 112-122 (2010)
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Theorem: Given a stochiometric matrix S, an elementary mode can be found in
polynomial time.

Theorem: In case all reactions in a metabolic network are reversible, the elementary
modes can be enumerated in polynomial time.

The enumeration task becomes dramatically more difficult if the reactions are irreversible.
In this case, the modes of the network form a cone, and the elementary modes are the rays of the cone.

Theorem: Given a flux cone and two coordinates /and j, deciding if there exists and
extreme ray of the cone that has both r;and r; in its support is NP-complete.

Theorem: Given a matrix S and a number k, deciding the existence of an
elementary mode with at most k reactions in its support is NP-complete.

The question whether all elementary modes of a general network can be
enumerated in polynomial time is an open question.

Acuna et al. BioSystems 99, 210-214 (2010); BloS¥stems 95, 51-60 (2009)
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EFMs are a robust method that offers great opportunities for studying functional and
structural properties in metabolic networks.

The decomposition of a particular flux distribution (e.g. determined by experiment)
as a linear combination of EFMs is not unique.

Klamt & Stelling suggest that the term ,elementary flux modes® should be used
whenever the sets of EFMs and EPs are identical.
In cases where they don‘t, EPs are a subset of EFMs.

It remains to be understood more thoroughly how much valuable information about
the pathway structure is lost by using EPs.

Ongoing Challenges:
- study really large metabolic systems by subdividing them into sub-systems
- combine metabolic model with model of cellular regulation.

Klamt & Stelling Trends Biotech 21, 64 (2003)
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