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V16 Minimal cut sets in biochemical reaction networks 
Concept of minimal cut sets (MCSs): smallest „failure modes“ in the network that 
render the correct functioning of a cellular reaction impossible. 

Klamt & Gilles, Bioinformatics 20, 226 (2004) 

Right: fictitious reaction network NetEx. 
 
The only reversible reaction is R4. 
 
We are particularly interested in the flux 
obR exporting synthesized metabolite X. 
 
 Characterize solution space by 
computing elementary flux modes. 
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Elementary flux modes of NetEx 

Klamt & Gilles, Bioinformatics 20, 226 (2004) 

One finds 4 elementary flux modes for NetEx. 
 
3 of them (shaded) allow the production of metabolite X. 
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Cut set 

Klamt & Gilles, Bioinformatics 20, 226 (2004) 

Now we want to prevent the production of metabolite X. 
 
 demand that there is no balanced flux distribution possible which involves obR. 
 
Definition. A set of reactions is termed a cut set (with respect to a defined objective 
reaction)  
if after the removal of these reactions from the network  
no feasible balanced flux distribution involves the objective reaction. 
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Cut set 

Klamt & Gilles, Bioinformatics 20, 226 (2004) 

A trivial cut set is the reaction itself: C0 = {obR}.  
 
Another extreme case is the removal of all reactions except obR ..  
This is very inefficient if this involves knocking out these genes or  
developing small molecule inhibitors! 
 
 
Desirable solutions: 
 
- From an engineering point of view, it might be desirable to cut reactions  
at the beginning of a pathway. 
  
- The production of biomass is usually not coupled to a single gene or enzyme,  
and can therefore not be directly inactivated. 
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Cut set 

Klamt & Gilles, Bioinformatics 20, 226 (2004) 

C1 = {R5,R8} is a cut set already 
sufficient for preventing the production of X. 
 
Removing R5 or R8 alone is not sufficient. 
 
Definition. A cut set C (related to a  
defined objective reaction) is a  
minimal cut set (MCS) if no proper  
subset of C is a cut set. 
 
 C1 is a minimal cut set 
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Remarks 

Klamt & Gilles, Bioinformatics 20, 226 (2004) 

(1) An MCS always guarantees dysfunction as long as the assumed network 
structure is currect. However, additional regulatory circuits or capacity restrictions 
may allow that even a proper subset of a MCS is a cut set. 
The MCS analysis should always be seen from a purely structural point of view. 
 
(2) After removing a complete MCS from the network, other pathways producing 
other metabolites may still be active. 
 
(3) MCS4 = {R5,R8} clearly stops production of X. 
 
What about MCS6 = {R3,R4,R6}? 
 
Cannot X be still be produced via R1, R2, and R5? 
However, this would lead to accumulation of B and is therefore physiologically 
impossible. 
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Similar concepts 

Klamt & Gilles, Bioinformatics 20, 226 (2004) 

Graph theory: 
we previously introduced a similar definition of minimal cut sets where they ensure a 
disconnectivity of a given graph. 
 
However, these graph-theoretical concepts do not fit into the definition of MCSs as 
defined here and would, in general, lead to other results! 
 
The reason is that metabolic networks use an explicit consideration of the 
hypergraphical nature of metabolic networks. 
 
Hypergraphs: generalized graphs, where an edge (reaction) can link k nodes 
(reactants) with l nodes (products), whereas in graphs only 1:1 relations are allowed. 
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Comparison with graph theory 

Klamt & Gilles, Bioinformatics 20, 226 (2004) 

Example: we are interested in inhibiting  
the production of E. 
Thus, R4 is our objective reaction. 
 
If R2 is removed from the network, 
E can no longer be produced 
because C is required for driving 
reaction R3. 
 
However, R2 would not be an MCS 
in terms of graph theory, neither in  
the substrate or in the bipartite graph 
representation because all metabolites 
are still connected after R2 is removed. 
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Algorithm for computing MCSs 

Klamt & Gilles, Bioinformatics 20, 226 (2004) 

The MCSs for a given network and objective reaction are members  
of the power set of the set of reaction indices and are uniquely determined. 
 
A systematic computation must ensure that the calculated MCSs are: 
 
(1) cut sets („destroying“ all possible balanced flux distributions involving the 
objective reaction), and 

 
(2) that the MCSs are really minimal, and 
 
(3) that all MCSs are found. 
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Algorithm for computing MCSs 

Klamt & Gilles, Bioinformatics 20, 226 (2004) 

(1) cut sets („destroying“ all possible balanced flux distributions involving the 
objective reaction),  
 any feasible steady-state flux distribution in a given network – expressed as 
vector r of the q net reaction rates – can be represented by a non-negative linear 
combination of the N elementary modes: 

 


N

i
iii EM

1
0, r

To ensure that the rate rk of the objective reaction is 0 in all r, each EM must 
contain 0 at the k-th place. 
 
 If C is a proper cut set the following cut set condition must hold: 
For each EM involving the objective reaction (with a non-zero value),  
there is at least one reaction in C also involved in this EM. 
 
This guarantees that all EMs, in which the objective reaction participates,  
will vanish when the reactions in the cut set are removed from the network. 
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Algorithm 

Klamt & Gilles, Bioinformatics 20, 226 (2004) 
 
According to Acuna (2009) this algorithm is often 
very inefficient. 

16. Lecture WS 2015/16 



Bioinformatics III  
12 

Applications of MCSs 

Klamt & Gilles, Bioinformatics 20, 226 (2004) 

Target identification and repression of cellular functions 
 
A screening of all MCSs allows for the identification of the best suitable 
manipulation. For practical reasons, the following conditions should be fulfilled: 
 
- usually, a small number of interventions is desirable (small size of MCS) 
 
- other pathways in the network should only be weakly affected 
 
- some of the cellular functions might be difficult to shut down genetically or by 
inhibition, e.g. if many isozymes exist for a reaction. 
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Applications of MCSs 

Klamt & Gilles, Bioinformatics 20, 226 (2004) 

Network verification and mutant phenotype predictions 
 
We expect that cutting away an MCS from the network is definitely intolerable for 
the cell with respect to certain cellular reactions/processes. 
 
Such predictions, derived purely from network structure, are a useful strategy for 
verification of hypothetical or reconstructed networks. 
 
If the outcome of prediction and experiments differ, this often indicates an incorrect 
or incomplete network structure. 
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Structural fragility and robustness 

Klamt & Gilles, Bioinformatics 20, 226 (2004) 

If we assume that each reaction in a metabolic network has the same probability to 
fail, small MCSs are most probable to be responsible for a failing objective 
function. 
 
Define a fragility coefficient Fi as the  
reciprocal of the average size of all  
MCSs in which reaction i participates. 

Besides the essential reaction R1, reaction 
R5 is most crucial for the objective reaction. 
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Example: MCSs in the central metabolism of E.coli 

Klamt & Gilles, Bioinformatics 20, 226 (2004) 

objective reaction 
„biomass synthesis“ 
Network: 110 reactions, 
89 metabolites,  
see Stelling et al. (2002) 
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Conclusion - MCS 

Klamt & Gilles, Bioinformatics 20, 226 (2004) 

An MCS is a irreducible combination of network elements whose simultaneous 
inactivation leads to a guaranteed dysfunction of certain cellular reactions or 
processes. 
 
Theorem: Determining a reaction cut of minimum cardinality is NP-hard. 
 
MCSs are inherent and uniquely determined structural features of metabolic 
networks similar to EMs. 
 
The computation of MCSs and EMs becomes challenging in large networks. 
 
Analyzing the MCSs gives deeper insights in the structural fragility of a given 
metabolic network and is useful for identifying target sets for an intended 
repression of network functions. 
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Current metabolomics 
Review: 
(1) recent work on metabolic networks required revising the picture of separate 
biochemical pathways into a densely-woven metabolic network 
 
(2) Connectivity of substrates in this network follows a power-law (Yeong&Barabasi). 
 
(3) Constraint-based modeling approaches (FBA) were successful in analyzing the 
capabilities of cellular metabolism including 
 - its capacity to predict deletion phenotypes 
 - the ability to calculate the relative flux values of metabolic reactions, and 
 - the capability to identify properties of alternate optimal growth states 
 in a wide range of simulated environmental conditions 
 
Open questions 
- what parts of metabolism are involved in adaptation to environmental conditions? 
- is there a central essential metabolic core? 
- what role does transcriptional regulation play? 
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Application of elementary modes 
Metabolic network structure of E.coli determines 

key aspects of functionality and regulation 
Compute EFMs for central 
metabolism of E.coli. 
 
Catabolic part: substrate uptake 
reactions, glycolysis, pentose 
phosphate pathway, TCA cycle, 
excretion of by-products (acetate, 
formate, lactate, ethanol) 
 
Anabolic part: conversions of 
precursors into building blocks like 
amino acids, to macromolecules, 
and to biomass. 
 
Stelling et al. Nature 420, 190 (2002) 
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Metabolic network topology and phenotype 
Idea: 
Can the total number of EFMs for given 
conditions be used as quantitative 
measure of metabolic flexibility? 
 
a, Relative number of EFMs N enabling 
deletion mutants of gene i ( i) inE. coli to 
grow (abbreviated by µ) for 90 different 
combinations of mutation and carbon 
source.  
 
Shown are results for 90 deletions of 
different individual genes. 

 
 

Stelling et al. Nature 420, 190 (2002) 

Answer: Yes, the # of EFMs for mutant  
strain allows correct prediction of  
growth phenotype in more than 90%  
of the cases. 
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Robustness analysis 
The # of EFMs qualitatively indicates whether a mutant is viable or not,  
but does not describe quantitatively how well a mutant grows. 
 
 
Define maximal biomass yield Ymass as the optimum of: 
 
 
ei is the single reaction rate (growth and substrate uptake) in EFM i selected for 
utilization of substrate Sk. 

 
 
 
 
 
 

Stelling et al. Nature 420, 190 (2002) 
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Robustness Analysis 
Dependency of the mutants' maximal 
growth yield Ymax(Δi) (open circles)  
and the network diameter D(Δi) (open 
squares) on the share of elementary 
modes operational in the mutants.  
Stelling et al. Nature 420, 190 (2002) 

→ Central metabolism of E.coli behaves in a highly robust manner 
because mutants with significantly reduced metabolic flexibility show a 
growth yield similar to wild type. 
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Distribution of fluxes in E.coli 

Stoichiometric matrix for E.coli strain MG1655 containing 537 metabolites and 
739 reactions taken from Palsson et al. 
 
Apply flux balance analysis to characterize solution space  
(all possible flux states under a given condition). 

Nature 427, 839 (2004) 

Aim: understand principles that govern 
the use of individual reactions under 
different growth conditions. 

   
j

jiji vSA
dt
d 0

vj is the flux of reaction j and Sij is the stoichiometric coefficient of reaction j. 
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Optimal states 

Using linear programming and adapting constraints for each reaction flux vi of the 
form i

min ≤ vi ≤ i
max, the flux states were calculated that optimize cell growth on 

various substrates. 
 
Plot the flux distribution for active (non-zero flux) reactions of E.coli grown in a 
glutamate- or succinate-rich substrate. 

Denote the mass carried by reaction j producing (consuming) metabolite i by  
 
 
Observation: 
Fluxes vary widely: e.g. dimensionless flux of succinyl coenzyme A synthetase 
reaction is 0.185, whereas the flux of the aspartate oxidase reaction is 10.000 
times smaller, 2.2  10-5. 

jijij vSv ˆ
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Overall flux organization of E.coli metabolic network 
a, Flux distribution for optimized biomass production 
on succinate (black) and glutamate (red) substrates.  
 
The solid line corresponds to the power-law fit  
that a reaction has flux v 
P(v)  (v + v0)- , with  v0 = 0.0003 and  = 1.5.  
 
d, The distribution of experimentally determined fluxes 
from the central metabolism of E. coli shows  
power-law behaviour as well, with a best fit to  
P(v) v- with  = 1.  
 
Both computed and experimental flux distribution 
show wide spectrum of fluxes. 

Almaar et al., Nature 427, 839 (2004) 
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Response to different environmental conditions 

Almaar et al., Nature 427, 839 (2004) 

Is the flux distribution independent of 
environmental conditions? 
 
b, Flux distribution for optimized biomass on succinate 
substrate (black) with an additional 10% (red), 50% 
(green) and 80% (blue) randomly chosen subsets of 
the 96 input channels (substrates) turned on.  
 
The flux distribution was averaged over 5,000 
independent random choices of uptake metabolites.  
 
 Yes, the flux distribution is independent of the 
external conditions. 
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Use scaling behavior to determine local connectivity 
The observed flux distribution is compatible with two different potential local flux 
structures: 
(a) a homogenous local organization would imply that all reactions producing 
(consuming) a given metabolite have comparable fluxes 
(b) a more delocalized „high-flux backbone (HFB)“ is expected if the local flux 
organisation is heterogenous such that each metabolite has a dominant source 
(consuming) reaction. 
 

Almaar et al., Nature 427, 839 (2004) 
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Characterizing the local inhomogeneity of the flux net 
a, Measured kY(k) shown as a function of k for 
incoming and outgoing reactions, averaged over 
all metabolites, indicates that k×Y(k)  k0.73.  
Inset shows non-zero mass flows,  v^ij, producing 
(consuming) FAD on a glutamate-rich substrate. 
 
 an intermediate behavior is found between 
the two extreme cases. 
 
 the large-scale inhomogeneity observed in the 
overall flux distribution is also increasingly valid at 
the level of the individual metabolites. 
 
The more reactions that consume (produce) a 
given metabolite, the more likely it is that a single 
reaction carries most of the flux, see FAD. 

Almaar et al., Nature 427, 839 (2004) 
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Clean up metabolic network 
Use simple algorithm that removes for each metabolite systematically all reactions  
but the one providing the largest incoming (outgoing) flux distribution. 
 
The algorithm uncovers the „high-flux-backbone“ of the metabolism,  
a distinct structure of linked reactions that form a giant component  
with a star-like topology. 

Almaar et al., Nature 427, 839 (2004) 
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Maximal flow networks 

glutamate rich    succinate rich substrates 
 

Directed links: Two metabolites (e.g. A and B) are connected with a directed link pointing 
from A to B only if the reaction with maximal flux consuming A is the reaction with maximal 
flux producing B.  
Shown are all metabolites that have at least one neighbour after completing this procedure. 
The background colours denote different known biochemical pathways. 

Almaar et al., Nature 427, 839 (2004) 
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FBA-optimized network on glutamate-rich substrate 
High-flux backbone for FBA-optimized metabolic 
network of E. coli on a glutamate-rich substrate.  
Metabolites (vertices) coloured blue have at least one 
neighbour in common in glutamate- and succinate-rich 
substrates, and those coloured red have none. 
Reactions (lines) are coloured blue if they are identical 
in glutamate- and succinate-rich substrates, green if a 
different reaction connects the same neighbour pair, and 
red if this is a new neighbour pair. Black dotted lines 
indicate where the disconnected pathways, for example, 
folate biosynthesis, would connect to the cluster through 
a link that is not part of the HFB. Thus, the red nodes 
and links highlight the predicted changes in the HFB 
when shifting E. coli from glutamate- to succinate-rich 
media. Dashed lines indicate links to the biomass 
growth reaction.  
 

Almaar et al., Nature 427, 839 (2004) 

(1) Pentose Phospate  (11) Respiration   
(2) Purine Biosynthesis  (12) Glutamate Biosynthesis  (20) Histidine Biosynthesis 
(3) Aromatic Amino Acids  (13) NAD Biosynthesis   (21) Pyrimidine Biosynthesis 
(4) Folate Biosynthesis  (14) Threonine, Lysine and Methionine Biosynthesis  
(5) Serine Biosynthesis  (15) Branched Chain Amino Acid Biosynthesis  
(6) Cysteine Biosynthesis  (16) Spermidine Biosynthesis  (22) Membrane Lipid Biosynthesis 
(7) Riboflavin Biosynthesis  (17) Salvage Pathways   (23) Arginine Biosynthesis 
(8) Vitamin B6 Biosynthesis (18) Murein Biosynthesis   (24) Pyruvate Metabolism  
(9) Coenzyme A Biosynthesis (19) Cell Envelope Biosynthesis  (25) Glycolysis  
(10) TCA Cycle  
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Interpretation 
Only a few pathways appear disconnected indicating that although these pathways 
are part of the HFB, their end product is only the second-most important source for 
another HFB metabolite. 
 
Groups of individual HFB reactions largely overlap with traditional biochemical 
partitioning of cellular metabolism. 

Almaar et al., Nature 427, 839 (2004) 
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How sensitive is the HFB to changes in the environment? 

Almaar et al., Nature 427, 839 (2004) 

b, Fluxes of individual 
reactions for glutamate-rich 
and succinate-rich conditions. 
Reactions with negligible flux 
changes follow the diagonal 
(solid line).  
Some reactions are turned off 
in only one of the conditions 
(shown close to the 
coordinate axes). Reactions 
belonging to the HFB are 
indicated by black squares, 
the rest are indicated by blue 
dots. Reactions in which the 
direction of the flux is 
reversed are coloured green.  

Only reactions in the high-flux territory undergo 
noticeable differences! 
 
Type I: reactions turned on in one conditions and 
off in the other (symbols). 
Type II: reactions remain active but show an 
orders-in-magnitude shift in flux under the two 
different growth conditions. 
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Flux distributions for individual reactions 
Shown is the flux distribution for four selected 
E. coli reactions in a 50% random environment.  
a Triosphosphate isomerase;  
b carbon dioxide transport;  
c NAD kinase;  
d guanosine kinase.  
 
Reactions on the   v curve (small fluxes) 
have unimodal/gaussian distributions (a and 
c). Shifts in growth-conditions only lead to small 
changes of their flux values. 
 
Reactions off this curve have multimodal 
distributions (b and d), showing several 
discrete flux values under diverse conditions. 
Under different growth conditions they show 
several discrete and distinct flux values.  

Almaar et al., Nature 427, 839 (2004) 
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Summary  
Metabolic network use is highly uneven (power-law distribution) at the global level 
and at the level of the individual metabolites. 
 
Whereas most metabolic reactions have low fluxes, the overall activity of the 
metabolism is dominated by several reactions with very high fluxes. 
 
E. coli responds to changes in growth conditions by reorganizing the rates of 
selected fluxes predominantly within this high-flux backbone. 
Apart from minor changes, the use of the other pathways remains unaltered. 
These reorganizations result in large, discrete changes in the fluxes of the HFB 
reactions. 
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The same authors as before used FBA to examine utilization and relative flux rate 
of each metabolite in various simulated environmental conditions for E.coli, H. 
pylori and S. cerevisae: 
For each system they considered 30.000 randomly chosen combinations where 
each uptake reaction is a assigned a random value between 0 and 20 mmol/g/h. 
 
 adaptation to different conditions occurs by 2 mechanisms: 
(a) flux plasticity: changes in the fluxes of already active reactions. 
E.g. changing from glucose- to succinate-rich conditions alters the flux of 264 
E.coli reactions by more than 20% 
 
(b) less commonly, adaptation includes structural plasticity, turning on 
previously zero-flux reactions or switching off active pathways. 
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The two adaptation method mechanisms allow for the possibility of a group of 
reactions not subject to structural plasticity being active under all environmental 
conditions. 
 
Assume that active reactions were randomly distributed. 
 
If typically a q fraction of the metabolic reactions are active under a specific 
growth condition,  
we expect for n distinct conditions an overlap of at least qn reactions. 
This converges quickly to 0. 

Emergence of the Metabolic Core 
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In a-c, as the number of conditions increases, the curve converges to a constant 
enoted by the dashed line, identifying the metabolic core of an organism. 
  
Red line : number of reactions that are always active if activity is randomly 
distributed in the metabolic network. The fact that it converges to zero indicates 
that the real core represents a collective network effect, forcing a group of 
reactions to be active in all conditions.  

Emergence of the Metabolic Core 
(a–c) The average relative size of the 
number of reactions that are always 
active as a function of the number of 
sampled conditions (black line). 
 
(d and e) The number of metabolic 
reactions (d) and the number of 
metabolic core reactions (e) in the 
three studied organisms. 
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Shown are all reactions that are found to be active 
in each of the 30,000 investigated external 
conditions.  
Blue: Metabolites that contribute directly to 
biomass formation, 
Red (green): core reactions (links) catalyzed by 
essential (or nonessential) enzymes. 
Black-colored links: enzymes with unknown deletion 
phenotype.  
Blue dashed lines: multiple appearances of a 
metabolite,  
Links with arrows: unidirectional reactions.  
Note that 20 out of the 51 metabolites necessary for 
biomass synthesis are not present in the core, 
indicating that they are produced (or consumed) in a 
growth-condition-specific manner.  
Blue and brown shading: folate and peptidoglycan 
biosynthesis pathways  
 
White numbered arrows denote current antibiotic 
targets inhibited by: (1) sulfonamides, (2) 
trimethoprim, (3) cycloserine, and (4) fosfomycin.  
A few reactions appear disconnected since we have 
omitted the drawing of cofactors. 

Metabolic Core of E.coli: The constantly active reactions form 
a tightly connected cluster! 
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The metabolic cores contain 2 types of reactions: 
 
(a) reactions that are essential for biomass production under all environment 
conditions (81 of 90 in E.coli) 
 
(b) reactions that assure optimal metabolic performance. 

Metabolic Core Reactions 
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(A) The number of overlapping metabolic reactions in the 
metabolic core of H. pylori, E. coli, and S. cerevisiae.  
The metabolic cores of simple organisms (H. pylori and 
E.coli) overlap to a large extent. 
The largest organism (S.cerevisae) has a much larger 
reaction network that allows more flexbility  the relative 
size of the metabolic core is much lower. 
 
(B) The fraction of metabolic reactions catalyzed by 
essential enzymes in the cores (black) and outside the 
core in E. coli and S. cerevisiae. 
 Reactions of the metabolic core are mostly 
essential ones. 
 
(C) One could assume that the core represents a subset 
of high-flux reactions. This is apparently not the case. 
The distributions of average metabolic fluxes for the 
core and the noncore reactions in E. coli are very 
similar. 

Characterizing the Metabolic Cores 
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- Adaptation to environmental conditions occurs via structural plasticity and/or 
flux plasticity. 

 
Here: a surprisingly stable metabolic core of reactions was identified that are 
tightly connected to eachother. 
 
- the reactions belonging to this core represent potential targets for antimicrobial 
intervention. 

Summary 
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