Concept of minimal cut sets (MCSs): smallest ,failure modes® in the network that
render the correct functioning of a cellular reaction impossible.

Right: fictitious reaction network NetEx. """"""""" ﬁéﬁ’““’l{;
. 5 i

The only reversible reaction is R4. R3 C
R, R¥ . X _0bR |

We are particularly interested in the flux i \ T 5
R6 . p R7, g R8

obR exporting synthesized metabolite X.

— Characterize solution space by
computing elementary flux modes.

Klamt & Gilles, Bioinformatics 20, 226 (2004)
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Elementary flux modes of NetEx

RJ R4 i RI R2 R3 R4 R5 R6 R7 RS obR
I B :
: R2 C : Elementary modes
l i EM1 1 1 1 -1 0 0 0 0 0
RI R bR EM?2 1 0 0 0 0 1 1 1 1
— A E\ - Xo—" EM3 2 1 1 0 1 0 0 0 1
| \: T i EM4 10 0 11 o 0 0 1
_iR6  _ p R7 . g R8 i
One finds 4 elementary flux modes for NetEx.
3 of them (shaded) allow the production of metabolite X.
Klamt & Gilles, Bioinformatics 20, 226 (2004)
Bioinformatics Il
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Now we want to prevent the production of metabolite X.

— demand that there is no balanced flux distribution possible which involves obR.

Definition. A set of reactions is termed a cut set (with respect to a defined objective
reaction)

if after the removal of these reactions from the network

no feasible balanced flux distribution involves the objective reaction.

Klamt & Gilles, Bioinformatics 20, 226 (2004)
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A trivial cut set is the reaction itself: CO = {obR}.
Another extreme case is the removal of all reactions except obR ..

This is very inefficient if this involves knocking out these genes or
developing small molecule inhibitors!

Desirable solutions:

- From an engineering point of view, it might be desirable to cut reactions
at the beginning of a pathway.

- The production of biomass is usually not coupled to a single gene or enzyme,
and can therefore not be directly inactivated.

Klamt & Gilles, Bioinformatics 20, 226 (2004)
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C1 ={R5,R8} is a cut set already

sufficient for preventing the production of X. ka
: B i
Removing R5 or R8 alone is not sufficient. R} c
:m A R3~ . Xﬂ?_,
Definition. A cut set C (related to a R6 N D\w o RS T |

defined objective reaction) is a
minimal cut set (MCS) if no proper
subset of C is a cut set.

Rl R2 R3 R4 RS RO R7 R8 obR

Elementary modes
EMI1 1
EM2

— C1 is a minimal cut set Eﬁj

el
o o= o =
= e R
Ll s R ]
= O =
(=R
oo = o
—_— =

Minimal cut sets (objective reaction: obR)

MCSO0 X
MCS1 X
MCS2 X X
MCS3 X X
MCS4 X X
MCS5 X
MCS6 X
MCS7 X
MCSS X

Klamt & Gilles, Bioinformatics 20, 226 (2004) MCS9 X
MCS10 X

Bioinformatics Ill
16. Lecture WS 2015/16 S

E O S O S S
x



(1) An MCS always guarantees dysfunction as long as the assumed network
structure is currect. However, additional regulatory circuits or capacity restrictions
may allow that even a proper subset of a MCS is a cut set.

The MCS analysis should always be seen from a purely structural point of view.

(2) After removing a complete MCS from the network, other pathways producing
other metabolites may still be active. T

———————————————————————————————————————————————————————

(3) MCS4 = {R5,R8} clearly stops production of X. Ro/ ol

What about MCS6 = {R3,R4,R6}? R6 o Nww

Cannot X be still be produced via R1, R2, and R5?
However, this would lead to accumulation of B and is therefore physiologically
impossible.

Klamt & Gilles, Bioinformatics 20, 226 (2004)
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Graph theory:
we previously introduced a similar definition of minimal cut sets where they ensure a
disconnectivity of a given graph.

However, these graph-theoretical concepts do not fit into the definition of MCSs as
defined here and would, in general, lead to other results!

The reason is that metabolic networks use an explicit consideration of the
hypergraphical nature of metabolic networks.

Hypergraphs: generalized graphs, where an edge (reaction) can link k nodes
(reactants) with / nodes (products), whereas in graphs only 1:1 relations are allowed.

Klamt & Gilles, Bioinformatics 20, 226 (2004)

Bioinformatics Il
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Example: we are interested in inhibiting
the production of E.
Thus, R4 is our objective reaction.

If R2 is removed from the network,
E can no longer be produced
because C is required for driving
reaction R3.

However, R2 would not be an MCS

in terms of graph theory, neither in

the substrate or in the bipartite graph
representation because all metabolites
are still connected after R2 is removed.

Klamt & Gilles, Bioinformatics 20, 226 (2004)

Simple neiwork

(Hypergraph)
| D4
']

R4
[}
']

R3

ART™B g~ C

Removalof  E
Reaciion R2

R4
D
i
&3
ARITBRC
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The MCSs for a given network and objective reaction are members
of the power set of the set of reaction indices and are uniquely determined.

A systematic computation must ensure that the calculated MCSs are:

(1) cut sets (,destroying” all possible balanced flux distributions involving the
objective reaction), and

(2) that the MCSs are really minimal, and

(3) that all MCSs are found.

Klamt & Gilles, Bioinformatics 20, 226 (2004)
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(1) cut sets (,destroying” all possible balanced flux distributions involving the
objective reaction),

— any feasible steady-state flux distribution in a given network — expressed as
vector r of the g net reaction rates — can be represented by a non-negative linear
combination of the N elementary modes:

r=Ya,EM, @20

To ensure that the rate r, of the objective reaction is 0 in all r, each EM must
contain O at the k-th place.

— If C is a proper cut set the following cut set condition must hold:
For each EM involving the objective reaction (with a non-zero value),
there is at least one reaction in C also involved in this EM.

This guarantees that all EMs, in which the objective reaction participates,
will vanish when the reactions in the cut set are removed from the network.

Bio . Klamt & Gilles, Bioinformatics 20, 226 (2004)
ioinformatics
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ALGORITHM: (5) FOR 1=2 TO MAX CUTSETSIZE

(1) Calculate the EMs in the given network
(2) Define the objective reaction obR

(3) Choose all EMs where reaction obR is non-zero and
store it in the binary array em_odR (em_obR[i][j]==1
means that reaction j 1s mvolved in EM 7)

(4) Initialize arrays mcs and precutsets as follows (each
array contains sets of reaction indices): append {/} to
mes 1f reaction j 1s essential (em_obR[i][j]=1 for each
EM i), otherwise to precutsets

Klamt & Gilles, Bioinformatics 20, 226 (2004)

According to Acuna (2009) this algorithm is often

very inefficient.
Bioinformatice. ...

16. Lecture WS 2015/16

(5.1) new precutsets=[ |
(5.2) FOR j =1 TO g (g: number of reactions)

(5.2.1) Remove all sets from precutsers where
reaction j participates

(5.2.2) Find all sets of reactions in precuisets
that do not cover at least one EM in
em_obR where reaction j participates:
combine each of these sets with reaction
J and store the new preliminary cut sets
i temp_precutsets

(5.2.3) Drop all temp precutsets which are a
superset of any of the already determined
minimal cut sets stored n mes

(5.2.4) Find all retained temp_precutsets which
do now cover all EMs and append them to
mcs: append all others to new precutsets

ENDFOR

(5.3) If isempty(new precutsets)
(5.3.1) Break

ELSE
(5.3.2) precutsets=new precutsets

ENDIF
ENDFOR
(6) result: mics contains the MCSs

11



Target identification and repression of cellular functions

A screening of all MCSs allows for the identification of the best suitable
manipulation. For practical reasons, the following conditions should be fulfilled:

- usually, a small number of interventions is desirable (small size of MCS)
- other pathways in the network should only be weakly affected

- some of the cellular functions might be difficult to shut down genetically or by
inhibition, e.g. if many isozymes exist for a reaction.

Klamt & Gilles, Bioinformatics 20, 226 (2004)

Bioinformatics Il
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Network verification and mutant phenotype predictions

We expect that cutting away an MCS from the network is definitely intolerable for
the cell with respect to certain cellular reactions/processes.

Such predictions, derived purely from network structure, are a useful strategy for
verification of hypothetical or reconstructed networks.

If the outcome of prediction and experiments differ, this often indicates an incorrect
or incomplete network structure.

Klamt & Gilles, Bioinformatics 20, 226 (2004)

Bioinformatics Il
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If we assume that each reaction in a metabolic network has the same probability to
fail, small MCSs are most probable to be responsible for a failing objective
function.

Rl ER2 R3 R4 ER5 R6 R7 RE obR

Elementary modes

Define a fragility coefficient F; as the
EMI 1

reciprocal of the average size of all SV
. . . . . EM3 2
MCSs in which reaction j participates. EM4 1

Minimal cur sets (objective reaction: obR)
MCS0 P
MCS1 X
pommsmmsemsssooooo- #———————— e MCS2 P P
| R4 MCS3 b x

==
_—
oo = o
oo = o
oo = o
=)

1
0
1
0

Lo R e e R

B | MCS4 P b
; MCS5 X
R C = MCS6 .

: k\ ! MCS7 x
R R - X obR ! MOS8

; \ T i MCSS x

| i MCS10 %

X
[l S A A
(5]

o

Besides the essential reaction R1, reaction

R5 is most crucial for the objective reaction.
Klamt & Gilles, Bioinformatics 20, 226 (2004)
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Example: MCSs in the central metabolism of E.coli

Table 2. Overview on computed MCSs 1n the central metabolism of E.coli

Objective reaction for growth on four different substrates
,2biomass synthesis"”
Network: 110 reactions,

Acetate  Succinate Glveerol Glucose

89 metabol iteS, No. of EMs with growth 363 3421 9479 213592
. No. of MCSs (objective 245 12353 2970 4225
see Stelllng et al . (2002) reactiomn: gfgv,-'ﬂlj
Maximal number of 3363 69628 344196 902769
preliminary MCSs (during
computation)
Computation time 75 20 mun 342h 29670
{Intel Pentium, 1 MHZ:
4 GB RAM)
F; values (1n parentheses: size of the smallest MCS in which the reaction
occurs)
F 16P-bisphosphatase 1(1) 1(1) 1(1) 0.102 (6)
ATP-synthase 1({1) 0.325(3) 0141(3) 0.149(3
SuccCoA-svnthetase 0207(2y 014502y 0125(2y 0131{2)
PEP-carboxylase 0128 (2) 0.117(2) 0120(2) 0.143(2)
Malic enzvme 0.5(2) 0.5(2) 0114(2)y 0.123(2)
R15P-X5P (epimerase) 0198 (2) 0.135(2) 0.128(2) 0.148(2)
F 0.783 0718 0.699 0.643

The computation time does not mvolve the time needed for computing the elementary
modes. F;: fragility coefficient of reaction /. F: network (overall) fragility coefficient.

Klamt & Gilles, Bioinformatics 20, 226 (2004)
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An MCS is a irreducible combination of network elements whose simultaneous
inactivation leads to a guaranteed dysfunction of certain cellular reactions or
processes.

Theorem: Determining a reaction cut of minimum cardinality is NP-hard.

MCSs are inherent and uniquely determined structural features of metabolic
networks similar to EMs.

The computation of MCSs and EMs becomes challenging in large networks.

Analyzing the MCSs gives deeper insights in the structural fragility of a given
metabolic network and is useful for identifying target sets for an intended
repression of network functions.

Klamt & Gilles, Bioinformatics 20, 226 (2004)
Acuna et al. BioSystems 95, 51-60 (2009)

Bioinformatics Il
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Review:
(1) recent work on metabolic networks required revising the picture of separate
biochemical pathways into a densely-woven metabolic network

(2) Connectivity of substrates in this network follows a power-law (Yeong&Barabasi).

(3) Constraint-based modeling approaches (FBA) were successful in analyzing the
capabilities of cellular metabolism including
- its capacity to predict deletion phenotypes
- the ability to calculate the relative flux values of metabolic reactions, and
- the capability to identify properties of alternate optimal growth states
in a wide range of simulated environmental conditions

Open questions

- what parts of metabolism are involved in adaptation to environmental conditions?
- is there a central essential metabolic core?

- what role does transcriptional regulation play?

Bioinformatics Il
16. Lecture WS 2015/16 17



Application of elementary modes
Metabolic network structure of E.coli determines
key aspects of functionality and regulation

Table 1 Number and distribution of elementary flux modes.

Succinats Sum

4243 43,273
T6.3% 74.6%
2.4% 3.0%

4 2% 5.9%
17.1% 16.5%
805% 76.4%
0.0% 4.1%

Selection Glucose  Acetate Glyeerol
- M 27 0599 a8 11,332
Growth only M, 7= ATF) 73.1% 5B. 7% T8.6%
ATE only M7 p, ATF) 3.2% 5.0% 2.4%
Growth and ATP Mip ATF) 6.6% 2.0%, 5.1%
Mo growth/ATP M= p,=ATPY 17.1%  34.3% 139%
Asrobic growth M, O5) 73.1% 60.7%  B36%
Anasrobic growth Mg, 7= O 6.6% 0.0% 0.0%

"We denote the number of elemertary flux modes simultansously meeting a set of conditions,
Coo G, by MIC . LG, Thess condibions include, for exampls, the stuation whars calls can
grow, which is abbreviated by o Excess energy procuction inthe farmof ATPATP), the substrate
metabalizea (S, for the k-th substrate) ana axygen uptake (Og) are speciliec accargingly. The
apargtor® # ingicates that certain fluxes must not occur, The total numbear of modas incluoss

ane futile cycle without substrate uptake.

16. Lecture WS 2015/16
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Compute EFMs for central
metabolism of E.coli.

Catabolic part: substrate uptake
reactions, glycolysis, pentose
phosphate pathway, TCA cycle,
excretion of by-products (acetate,
formate, lactate, ethanol)

Anabolic part: conversions of
precursors into building blocks like
amino acids, to macromolecules,
and to biomass.

Stelling et al. Nature 420, 190 (2002)
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ldea:

Can the total number of EFMs for given 1 = ;

conditions be used as quantitative 08! :

measure of metabolic flexibility? S :

< 06| :

a, Relative number of EFMs N enabling i 0.4 E
deletion mutants of gene i (A ) inE. colito < 0.2} &
@

grow (abbreviated by ) for 90 different

0 R —
combinations of mutation and carbon 1 Inviable 40 Viable 90
Experiment, phenotype

source.
Shown are results for 90 deletions of Answer: Yes. the # of EEMs for mutant
different individual genes. strain allows correct prediction of

growth phenotype in more than 90%

of the cases.
Stelling et al. Nature 420, 190 (2002)

Bioinformatic:

16. Lecture WS 2015/16 Relative yield



The # of EFMs qualitatively indicates whether a mutant is viable or not,
but does not describe quantitatively how well a mutant grows.

Define maximal biomass yield Y™ as the optimum of:

7]
Y, s =
LX1S — esk
e; is the single reaction rate (growth and substrate uptake) in EFM j selected for

utilization of substrate S,.

Stelling et al. Nature 420, 190 (2002)
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Q v
=X b Dependency of the mutants' maximal
§ 1 growth yield Y™(Aj) (open circles)
x " 0.8} and the network diameter D(A/) (open
E>_ 06} squares) on the share of elementary
=04} modes operational in the mutants.
§ 0.2 | Stelling et al. Nature 420, 190 (2002)
S 0 .

0 0.5 1

N(u,Ai) / N{y)

— Central metabolism of E.coli behaves in a highly robust manner
because mutants with significantly reduced metabolic flexibility show a
growth yield similar to wild type.

ormatics Ill
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Glohal organization of Aim: understand principles that govern

metabolic fluxes in the the use of individual reactions under
bacterium Escherichia coli different growth conditions.

E. Almaas ', B. Kovacs'~, T. Vicsek®, Z. N. Oltvai” & A.-L, Barabasi'
'Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556,
754

“Biological Physics Department and Research Group of HAS, Edtvas University,
H-1117 Budapest, Hungary

*Department of Pathology, Northwestern University, Chicago, Illinois 60611, USA

Nature 427, 839 (2004)
Stoichiometric matrix for E.coli strain MG1655 containing 537 metabolites and
739 reactions taken from Palsson et al.
Apply flux balance analysis to characterize solution space ad
pply flux ysi '€ solution sp —[A]=>8,v,=0
df /)

(all possible flux states under a given condition). - -

v;is the flux of reaction jand S is the stoichiometric coefficient of reaction j.

Bioinformatics Il
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Denote the mass carried by reaction j producing (consuming) metabolite i by

Vij = ‘5// V;

Observation:

Fluxes vary widely: e.g. dimensionless flux of succinyl coenzyme A synthetase
reaction is 0.185, whereas the flux of the aspartate oxidase reaction is 10.000
times smaller, 2.2 x 10,

Using linear programming and adapting constraints for each reaction flux v; of the
form gmin < v, < gmax the flux states were calculated that optimize cell growth on
various substrates.

Plot the flux distribution for active (non-zero flux) reactions of E.coli grown in a
glutamate- or succinate-rich substrate.

Bioinformatics Il
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a, Flux distribution for optimized biomass production
on succinate (black) and glutamate (red) substrates.

The solid line corresponds to the power-law fit
that a reaction has flux v
P(v) oc (v + v,)*, with v, =0.0003 and o = 1.5.

Q
—A
o

©

d, The distribution of experimentally determined fluxes

from the central metabolism of E. coli shows
power-law behaviour as well, with a best fit to
P(v)oc v with a = 1.

Both computed and experimental flux distribution

show wide spectrum of fluxes.

Bioinformatics Il
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Almaar et al., Nature 427, 839 (2004)
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Response to different environmental conditions

Is the flux distribution independent of g:j -3
environmental conditions? S 100
;')10‘3 ‘e Succ
b, Flux distribution for optimized biomass on succinate o . | e
substrate (black) with an additional 10% (red), 50% 510_5- S
(green) and 80% (blue) randomly chosen subsets of 106 s ermplirpal—sspond
the 96 input channels (substrates) turned on. i 10_4Op1i(r)1;?zed1f(l)l;j<, v e

The flux distribution was averaged over 5,000
independent random choices of uptake metabolites.

— Yes, the flux distribution is independent of the
external conditions.

Almaar et al., Nature 427, 839 (2004)
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The observed flux distribution is compatible with two different potential local flux
structures:

(a) a homogenous local organization would imply that all reactions producing
(consuming) a given metabolite have comparable fluxes

(b) a more delocalized ,high-flux backbone (HFB)" is expected if the local flux
organisation is heterogenous such that each metabolite has a dominant source
(consuming) reaction.

(a)\\‘/) (b)\¥&

Almaar et al., Nature 427, 839 (2004)
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a, Measured kY(k) shown as a function of k for
incoming and outgoing reactions, averaged over
all metabolites, indicates that k x Y(k) oc kO-73,
Inset shows non-zero mass flows, v7;, producing
(consuming) FAD on a glutamate-rich substrate.

— an intermediate behavior is found between
the two extreme cases.

— the large-scale inhomogeneity observed in the
overall flux distribution is also increasingly valid at
the level of the individual metabolites.

The more reactions that consume (produce) a
given metabolite, the more likely it is that a single
reaction carries most of the flux, see FAD.

Bioinformatics Il
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Almaar et al., Nature 427, 839 (2004)
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Use simple algorithm that removes for each metabolite systematically all reactions
but the one providing the largest incoming (outgoing) flux distribution.

The algorithm uncovers the ,high-flux-backbone" of the metabolism,
a distinct structure of linked reactions that form a giant component
with a star-like topology.

Almaar et al., Nature 427, 839 (2004)
28
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Maximal flow networks

glutamate rich succinate rich substrates

Directed links: Two metabolites (e.g. A and B) are connected with a directed link pointing
from A to B only if the reaction with maximal flux consuming A is the reaction with maximal
flux producing B.

Shown are all metabolites that have at least one neighbour after completing this procedure.
The background colours denote different known biochemical pathways.

Almaar et al., Nature 427, 839 (2004)
29
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FBA-optimized network on glutamate-rich substrate

High-flux backbone for FBA-optimized metabolic
network of E. coli on a glutamate-rich substrate.
Metabolites (vertices) coloured blue have at least one
neighbour in common in glutamate- and succinate-rich
substrates, and those coloured red have none.
Reactions (lines) are coloured blue if they are identical
in glutamate- and succinate-rich substrates, green if a
different reaction connects the same neighbour pair, and
red if this is a new neighbour pair. Black dotted lines
indicate where the disconnected pathways, for example,
folate biosynthesis, would connect to the cluster through
a link that is not part of the HFB. Thus, the red nodes
and links highlight the predicted changes in the HFB
when shifting E. coli from glutamate- to succinate-rich
media. Dashed lines indicate links to the biomass
growth reaction.

1) Pentose Phospate

2) Purine Biosynthesis
3) Aromatic Amino Acids
4) Folate Biosynthesis

(11) Respiration

(13) NAD Biosynthesis

7) Riboflavin Biosynthesis (17) Salvage Pathways
8) Vitamin B6 Biosynthesis (18) Murein Biosynthesis

o~ o~ o~ o~ o~ o~ o~ o~ o~ o~

)
)
)
)
6) Cysteine Biosynthesis (1
)
)
)
0

10) TCA Cycle
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(12) Glutamate Biosynthesis

)
)

5) Serine Biosynthesis (15) Branched Chain Amino Acid Biosynthesis
6) Spermidine Biosynthesis

9) Coenzyme A Biosynthesis (19) Cell Envelope Biosynthesis
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(20) Histidine Biosynthesis
(21) Pyrimidine Biosynthesis

(14) Threonine, Lysine and Methionine Biosynthesis

(22) Membrane Lipid Biosynthesis
(23) Arginine Biosynthesis
(24) Pyruvate Metabolism
(25) Glycolysis
Almaar et al., Nature 427, 839 (2004)
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Only a few pathways appear disconnected indicating that although these pathways
are part of the HFB, their end product is only the second-most important source for
another HFB metabolite.

Groups of individual HFB reactions largely overlap with traditional biochemical
partitioning of cellular metabolism.

Bio . Almaar et al., Nature 427, 839 (2004)
ioinformatics
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b, Fluxes of individual
reactions for glutamate-rich
and succinate-rich conditions.
Reactions with negligible flux
changes follow the diagonal
(solid line).

Some reactions are turned off
in only one of the conditions
(shown close to the
coordinate axes). Reactions
belonging to the HFB are
indicated by black squares,
the rest are indicated by blue
dots. Reactions in which the
direction of the flux is
reversed are coloured
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Only reactions in the high-flux territory undergo
noticeable differences!

Type |: reactions turned on in gne conditions and
off in the other (symbols).

Type ll: reactions remain active but show an
orders-in-magnitude shift in flux under the two
different growth conditions.

Almaar et al., Nature 427, 839 (2004)
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0.15———————

Shown is the flux distribution for four selected =
E. colireactions in a 50% random environment. !
a Triosphosphate isomerase;

b carbon dioxide transport;

¢ NAD kinase;

5.5e6

6.8

— 0.15

- 0.05

d guanosine kinase. g
8 0.15
[T : b
Reactions on the ¢ o« v curve (small fluxes) b
- - - - - 0'10 Tl
have unimodal/gaussian distributions (a and
c). Shifts in growth-conditions only lead to small [
changes of their flux values. [ &
N
-0.40 -0.28

Reactions off this curve have multimodal
distributions (b and d), showing several
discrete flux values under diverse conditions.
Under different growth conditions they show
several discrete and distinct flux values.

-0.15

LB oL 1

-0.03 0.10 0

Flux values

0.002

0.004

0.006

Almaar et al., Nature 427, 839 (2004)
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Metabolic network use is highly uneven (power-law distribution) at the global level
and at the level of the individual metabolites.

Whereas most metabolic reactions have low fluxes, the overall activity of the
metabolism is dominated by several reactions with very high fluxes.

E. coliresponds to changes in growth conditions by reorganizing the rates of
selected fluxes predominantly within this high-flux backbone.

Apart from minor changes, the use of the other pathways remains unaltered.
These reorganizations result in large, discrete changes in the fluxes of the HFB

reactions.
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The same authors as before used FBA to examine utilization and relative flux rate
of each metabolite in various simulated environmental conditions for E.coli, H.
pyloriand S. cerevisae:

For each system they considered 30.000 randomly chosen combinations where
each uptake reaction is a assigned a random value between 0 and 20 mmol/g/h.

— adaptation to different conditions occurs by 2 mechanisms:

(a) flux plasticity: changes in the fluxes of already active reactions.

E.g. changing from glucose- to succinate-rich conditions alters the flux of 264
E.coli reactions by more than 20%

(b) less commonly, adaptation includes structural plasticity, turning on
previously zero-flux reactions or switching off active pathways.
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The two adaptation method mechanisms allow for the possibility of a group of
reactions not subject to structural plasticity being active under all environmental
conditions.

Assume that active reactions were randomly distributed.

If typically a g fraction of the metabolic reactions are active under a specific
growth condition,

we expect for n distinct conditions an overlap of at least g” reactions.

This converges quickly to 0.
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Metabolic reactions
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(a—c) The average relative size of the
number of reactions that are always
active as a function of the number of
sampled conditions (black line).

(d and e) The number of metabolic
reactions (d) and the number of
metabolic core reactions (e) in the
three studied organisms.

In a-c, as the number of conditions increases, the curve converges to a constant
enoted by the dashed line, identifying the metabolic core of an organism.

Red line : number of reactions that are always active if activity is randomly
distributed in the metabolic network. The fact that it converges to zero indicates
that the real core represents a collective network effect, forcing a group of
reactions to be active in all conditions.
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Metabolic Core of E.coli: The constantly active reactions form
a tightly connected cluster!
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The metabolic cores contain 2 types of reactions:

(a) reactions that are essential for biomass production under all environment
conditions (81 of 90 in E.coli)

(b) reactions that assure optimal metabolic performance.

Bioinformatics Il
16. Lecture WS 2015/16

39



Characterizing the Metabolic Cores

(A) The number of overlapping metabolic reactions in the
metabolic core of H. pylori, E. coli, and S. cerevisiae.
The metabolic cores of simple organisms (H. pylori and
E.coli) overlap to a large extent.

The largest organism (S.cerevisae) has a much larger
reaction network that allows more flexbility — the relative
size of the metabolic core is much lower.
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- Adaptation to environmental conditions occurs via structural plasticity and/or
flux plasticity.

Here: a surprisingly stable metabolic core of reactions was identified that are
tightly connected to eachother.

- the reactions belonging to this core represent potential targets for antimicrobial
intervention.
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