V17 The Double Description method: Theoretical framework behind EFM and EP / Integration Algorithms

Double Description Method Revisited

Komei Fukuda¹ and Alain Prodon²

¹ Institute for Operations Research, ETHZ, CH-8092 Zürich, Switzerland
² Department of Mathematics, EPFL, CH-1015 Lausanne, Switzerland

Research article

Computation of elementary modes: a unifying framework and the new binary approach
Julien Gagneur†¹ and Steffen Klamt*‡²

Address: ¹Cellzome AG, Meyerhofstr. 1, 69117 Heidelberg, Germany and ²Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, D-39106 Magdeburg, Germany
Email: Julien Gagneur - julien.gagneur@cellzome.com; Steffen Klamt* - klamt@mpi-magdeburg.mpg.de
* Corresponding author †Equal contributors

Published: 04 November 2004
Received: 28 June 2004
Accepted: 04 November 2004

This article is available from: http://www.biomedcentral.com/1471-2105/5/175
Double Description Method (1953)

The Double Description method is the basis for simple & efficient algorithms for the task of enumerating extreme rays.

It serves as a framework for popular methods to compute elementary flux modes.

Analogy with Computer Graphics problem:
How can one efficiently describe the space in a dark room that is lighted by a torch shining through the open door?
Review: Duality of Matrices

Left: all points above the dividing line (the shaded area) fulfill the condition $x \geq 0$. Middle: the points in the grey area fulfill the conditions $x_1 \geq 0$ and $x_2 \geq 0$.

But how could we describe the points in the grey area on the right side in a correspondingly simple manner? Obviously, we could define a new coordinate system (r_1, r_2) as a new set of generating vectors. But we could also try to transform this area back into the grey area of the middle panel and use the old axes x_1 and x_2.

In 2D, this transformation can be obviously best performed by multiplying all vectors inside the grey area by a two-dimensional rotation matrix.
The Double Description Method

A pair \((A, R)\) of real matrices \(A\) and \(R\) is said to be a double description pair or simply a DD pair if the relationship

\[A x \geq 0 \quad \text{if and only if} \quad x = R \lambda \quad \text{for some} \quad \lambda \geq 0 \]

holds. The column size of \(A\) has to equal the row size of \(R\), say \(d\).

For such a pair, the set \(P(A)\) represented by \(A\) as

\[P(A) = \{ x \in \mathbb{R}^d : A x \geq 0 \} \]

is simultaneously represented by \(R\) as

\[\{ x \in \mathbb{R}^d : x = R \lambda \quad \text{for some} \quad \lambda \geq 0 \} \]

A subset \(P\) of \(\mathbb{R}^d\) is called polyhedral cone if \(P = P(A)\) for some matrix \(A\), and \(A\) is called a representation matrix of the polyhedral cone \(P(A)\).

Then, we say \(R\) is a generating matrix for \(P\). Clearly, each column vector of a generating matrix \(R\) lies in the cone \(P\) and every vector in \(P\) is a nonnegative combination of some columns of \(R\).
The Double Description Method

Theorem 1 (Minkowski’s Theorem for Polyhedral Cones)
For any $m \times n$ real matrix A, there exists some $d \times m$ real matrix R such that (A,R) is a DD pair, or in other words, the cone $P(A)$ is generated by R.

The theorem states that every polyhedral cone admits a generating matrix.

The nontriviality comes from the fact that the row size of R is finite.
If we allow an infinite size, there is a trivial generating matrix consisting of all vectors in the cone.

Also the converse is true:

Theorem 2 (Weyl’s Theorem for Polyhedral Cones)
For any $d \times n$ real matrix R, there exists some $m \times d$ real matrix A such that (A,R) is a DD pair, or in other words, the set generated by R is the cone $P(A)$.
The Double Description Method

Task: how does one construct a matrix R from a given matrix A, and the converse?

These two problems are computationally equivalent. Farkas‘ Lemma shows that (A,R) is a DD pair if and only if (R^T,A^T) is a DD pair.

A more appropriate formulation of the problem is to require the minimality of R: find a matrix R such that no proper submatrix is generating $P(A)$. A minimal set of generators is unique up to positive scaling when we assume the regularity condition that the cone is pointed, i.e. the origin is an extreme point of $P(A)$.

Geometrically, the columns of a minimal generating matrix are in 1-to-1 correspondence with the extreme rays of P.

Thus the problem is also known as the extreme ray enumeration problem.

No efficient (polynomial) algorithm is known for the general problem.
Double Description Method: primitive form

Suppose that the $m \times d$ matrix A is given and let $P(A) = \{x:Ax \geq 0\}$
(This is equivalent to the situation at the beginning of constructing EPs or EFM: we only know S.)

The DD method is an incremental algorithm to construct a $d \times m$ matrix R
such that (A, R) is a DD pair.

Let us assume for simplicity that the cone $P(A)$ is pointed.

Let K be a subset of the row indices $\{1, 2, \ldots, m\}$ of A and let A_K denote the
submatrix of A consisting of rows indexed by K.
Suppose we already found a generating matrix R for A_K, or equivalently,
$\left(A_K, R\right)$ is a DD pair. If $A = A_K$, we are done.

Otherwise we select any row index i not in K and try to construct a DD pair
$\left(A_{K+i}, R'\right)$ using the information of the DD pair $\left(A_K, R\right)$.

Once this basic procedure is described, we have an algorithm to construct a
generating matrix R for $P(A)$.

17. Lecture WS 2015/16
Bioinformatics III
Geometric version of iteration step

The procedure can be understood geometrically by looking at the cut-section C of the cone $P(A_K)$ with some appropriate hyperplane h in \mathbb{R}^d which intersects with every extreme ray of $P(A_K)$ at a single point.

Let us assume that the cone is pointed and thus C is bounded.

Having a generating matrix R means that all extreme rays (i.e. extreme points of the cut-section) of the cone are represented by columns of R.

Such a cutsection is illustrated in the Fig.

Here, C is the cube $abcdefg$.
Geometric version of iteration step

The newly introduced inequality $A_i \cdot x \geq 0$ partitions the space \mathbb{R}^d into three parts:

$$H_i^+ = \{ x \in \mathbb{R}^d : A_i \cdot x > 0 \}$$
$$H_i^0 = \{ x \in \mathbb{R}^d : A_i \cdot x = 0 \}$$
$$H_i^- = \{ x \in \mathbb{R}^d : A_i \cdot x < 0 \}$$

The intersection of H_i^0 with P and the new extreme points i and j in the cut-section C are shown in bold in the Fig.

Let J be the set of column indices of R. The rays $r_j \ (j \in J)$ are then partitioned into three parts accordingly:

$$J^+ = \{ j \in J : r_j \in H_i^+ \}$$
$$J^0 = \{ j \in J : r_j \in H_i^0 \}$$
$$J^- = \{ j \in J : r_j \in H_i^- \}$$

We call the rays indexed by J^+, J^0, J^- the **positive, zero, negative** rays with respect to i, respectively.

To construct a matrix R' from R, we generate new $|J^+| \times |J^-|$ rays lying on the ith hyperplane H_i^0 by taking an appropriate positive combination of each positive ray r_j and each negative ray r_j, and by discarding all negative rays.
Geometric version of iteration step

The following lemma ensures that we have a DD pair (A_{K+i}, R'), and provides the key procedure for the most primitive version of the DD method.

Lemma 3 Let (A_K, R) be a DD pair and let i be a row index of A not in K. Then the pair (A_{K+i}, R') is a DD pair, where R' is the $d \times |J'|$ matrix with column vectors $r_j (j \in J')$ defined by

$$J' = J^+ \cup J^0 \cup (J^+ \times J^-),$$

and

$$r_{jj'} = (A_i \cdot r_j) \cdot r_j' - (A_i \cdot r_j') \cdot r_j$$

for each $(j, j') \in J^+ \times J^-$

Proof omitted.
Finding seed \textit{DD} pair

It is quite simple to find a \textit{DD} pair \((\mathbf{A}_K, \mathbf{R})\) when \(|K| = 1\), which can serve as the initial \textit{DD} pair.

Another simple (and perhaps the most efficient) way to obtain an initial \textit{DD} form of \(P\) is by selecting a maximal submatrix \(\mathbf{A}_K\) of \(\mathbf{A}\) consisting of linearly independent rows of \(\mathbf{A}\).

The vectors \(r_j\)'s are obtained by solving the system of equations

\[
\mathbf{A}_K \mathbf{R} = \mathbf{I}
\]

where \(\mathbf{I}\) is the identity matrix of size \(|K|\), \(\mathbf{R}\) is a matrix of unknown column vectors \(r_j, j \in J\).

As we have assumed \(\text{rank}(\mathbf{A}) = d\), i.e. \(\mathbf{R} = \mathbf{A}_K^{-1}\), the pair \((\mathbf{A}_K, \mathbf{R})\) is clearly a \textit{DD} pair, since \(\mathbf{A}_K \cdot \mathbf{x} \geq \mathbf{0} \iff \mathbf{x} = \mathbf{A}_K^{-1} \lambda, \lambda \geq \mathbf{0}\).
Primitive algorithm for DoubleDescriptionMethod

```plaintext
procedure DoubleDescriptionMethod(A);
begin
    Obtain any initial DD pair \((A_K, R)\);
    while \(K \neq \{1, 2, \ldots, m\}\) do
        begin
            Select any index \(i\) from \(\{1, 2, \ldots, m\} \setminus K\);
            Construct a DD pair \((A_{K+i}, R')\) from \((A_K, R)\);
            /* by using Lemma 3 */
            \(R := R'\);  \(K := K + i\);
        end;
    Output \(R\);
end.
```

This algorithm is very primitive, and the straightforward implementation will be quite useless, because the size of \(J\) increases extremely fast.

This is because many vectors \(r_{jj'}\) generated by the algorithm (defined in Lemma 3) are unnecessary. We need to avoid generating redundant vectors!

To avoid generating redundant vectors, we will use the zero set or active set \(Z(x)\) which is the set of inequality indices satisfied by \(x\) in \(P(A)\) with equality.

Noting \(A_i\), the \(i\)th row of \(A\), \(Z(x) = \{i : A_i \cdot x = 0\}\)
Towards the standard implementation

Two distinct extreme rays r and r' of P are adjacent if the minimal face of P containing both contains no other extreme rays.

Proposition 7. Let r and r' be distinct rays of P.

Then the following statements are equivalent

(a) r and r' are adjacent extreme rays,
(b) r and r' are extreme rays and the rank of the matrix $A_{Z(r) \cap Z(r')}$ is $d - 2$,
(c) if r'' is a ray with $Z(r'') \supset Z(r) \cap Z(r')$ then either $r'' \simeq r$ or $r'' \simeq r'$.

Lemma 8. Let (A_K, R) be a DD pair such that rank$(A_K) = d$ and let i be a row index of A not in K. Then the pair (A_{K+i}, R') is a DD pair, where R' is the $d \times |J'|$ matrix with column vectors r_j ($j \in J'$) defined by

\[
J' = J^+ \cup J^0 \cup \text{Adj}
\]

\[
\text{Adj} = \{(j,j') \in J^+ \times J^+ : r_j \text{ and } r_{j'} \text{ are adjacent in } P(A_K)\}
\]

\[
r = (A_i r_j) r_{j'} - (A_i r_{j'}) r_j \text{ for each } (j,j') \in \text{Adj}.
\]

Furthermore, if R is a minimal generating matrix for $P(A_K)$ then R' is a minimal generating matrix for $P(A_{K+i})$.

Algorithm for standard form of double description method

This is now a straightforward variation of the DD method which produces a minimal generating set for P:

To implement $DDMethodStandard(A)$, we must check for each pair of extreme rays r and r' of $P(A_K)$ with $A_i r > 0$ and $A_i r' < 0$ whether they are adjacent in $P(A_K)$.
V17 – second part

Dynamic Modelling: Rate Equations + Stochastic Propagation
Mass Action Kinetics

Most simple dynamic system: inorganic chemistry

Consider reaction $A + B \leftrightarrow AB$

Interesting quantities: (changes of) densities of A, B, and AB

Density

$$\text{density} = \frac{\text{number of particles}}{\text{unit volume}}$$

$$[A] = \frac{N_A}{V}, \quad \frac{d}{dt}[A](t)$$

1 mol = 1 Mol / Liter = $6.022 \times 10^{23} \times (0.1 \text{ m})^{-3} = 0.6 \text{ nm}^{-3}$

This means that proteins cannot reach 1 mol concentrations. Why?

Association: probability that A finds and reacts with B

$=>$ changes proportional to densities of A and of B

Dissociation: probability for AB to break up

$=>$ changes proportional to density of AB

How to put this into formulas?
Mass Action II

Again: \[A + B \rightleftharpoons AB \]

Objective: mathematical description for the changes of \([A], [B], \text{and} [AB]\)

Consider \([A]\):

Gain due to dissociation \(AB \rightarrow A + B\)
Loss due to association \(A + B \rightarrow AB\)

\[\frac{d}{dt}[A] = G_A - L_A \]

AB falls apart
\(\Rightarrow G_A \text{ depends only on } [AB]\)

A has to find B
\(\Rightarrow L_A \text{ depends on } [A] \text{ and } [B]\)

\[G_A = k_r [AB] \]

\[L_A = k_f [A] [B] \]

phenomenological proportionality constant

\[\frac{d}{dt}[A] = k_r [AB] - k_f [A] [B] \]
Mass Action !!!

A + B <=> AB

For [A]: we just found: \[
\frac{d}{dt}[A] = k_r [AB] - k_f [A][B]
\]

For [B]: for symmetry reasons \[
\frac{d}{dt}[B] = \frac{d}{dt}[A]
\]

For [AB]: exchange gain and loss \[
\frac{d}{dt}[AB] = -\frac{d}{dt}[A] = k_f [A][B] - k_r [AB]
\]

with [A](t₀), [B](t₀), and [AB](t₀) => complete description of the system

time course = initial conditions + dynamics
A Second Example

Slightly more complex: \[A + 2B \rightleftharpoons AB_2 \]

Association: • one A and two B have to come together
 • forming one complex \(AB_2 \) requires two units of B

\[
L_A = k_f [A][B][B] = k_f [A][B]^2 \quad \quad \quad L_B = 2k_f [A][B]^2
\]

Dissociation: one \(AB_2 \) decays into one A and two B

\[
G_A = k_r[AB_2] \quad \quad \quad G_B = 2k_r[AB_2]
\]

Put everything together

\[
\frac{d}{dt}[A] = k_r[AB_2] - k_f[A][B]^2 \quad \quad \quad \frac{d}{dt}[B] = 2\frac{d}{dt}[A] \quad \quad \quad \frac{d}{dt}[AB_2] = -\frac{d}{dt}[A]
\]
Some Rules of Thumb

A + 2B \iff AB_2

"A is produced when AB_2 falls apart or is consumed when AB_2 is built from one A and two B"

Sign matters: Gains with "+", losses with "−"

Logical conditions: "…from A and B"

“and” corresponds to "×" “or” corresponds to "+

Stoichiometries: one factor for each educt (=> $[B]^2$)

prefactors survive

Mass conservation: terms with "−" have to show up with "+", too

\[
\frac{d}{dt}[A] = k_r [AB_2] - k_f [A][B]^2 \\
\frac{d}{dt}[B] = 2\frac{d}{dt}[A] \\
\frac{d}{dt}[AB_2] = -\frac{d}{dt}[A]
\]
A Worked Example

Lotka-Volterra population model

R1: \(A + X \rightarrow 2X \)
prey X lives on A

R2: \(X + Y \rightarrow 2Y \)
predator Y lives on prey X

R3: \(Y \rightarrow B \)
predator Y dies

Rates for the reactions

\[
\frac{dR_1}{dt} = k_1 AX \\
\frac{dR_2}{dt} = k_2 XY \\
\frac{dR_3}{dt} = k_3 Y
\]

Changes of the metabolites

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

=> change of X:

\[
\frac{dX}{dt} = +k_1 AX - k_2 XY + 0
\]
Setting up the Equations

With \(\vec{v} = \frac{d\vec{R}}{dt} = \begin{pmatrix} \frac{dR_1}{dt} \\ \frac{dR_2}{dt} \\ \frac{dR_3}{dt} \end{pmatrix} \) and \(S = \begin{pmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \)

we get:
\[
\frac{d\vec{X}}{dt} = \frac{d}{dt} \begin{pmatrix} A \\ X \\ Y \\ B \end{pmatrix} = S \frac{d}{dt} \vec{R}
\]

or
\[
\frac{dX_i}{dt} = \sum_j S_{ij} \frac{dR_j}{dt}
\]

amounts processed per reaction
speeds of the reactions

Plug in to get:

\[
\frac{dA}{dt} = -\frac{dR_1}{dt} = -k_1 AX
\]

\[
\frac{dB}{dt} = +\frac{dR_3}{dt} = k_3 Y
\]

\[
\frac{dX}{dt} = +\frac{dR_1}{dt} - \frac{dR_2}{dt} = k_1 AX - k_2 XY
\]

\[
\frac{dY}{dt} = +\frac{dR_2}{dt} - \frac{dR_3}{dt} = k_2 XY - k_3 Y
\]
Lotka–Volterra: assume $A = \text{const}$, B ignored

$=>$ cyclic population changes

\[
\frac{dX}{dt} = k_1 AX - k_2 XY
\]

\[
\frac{dY}{dt} = k_2 XY - k_3 Y
\]

$k_1 = k_2 = k_3 = 0.3$

Steady State: when do the populations not change?

\[
\frac{dX}{dt} = \frac{dY}{dt} = 0 \quad => \quad Y = \frac{k_1}{k_2} A \quad X = \frac{k_3}{k_2}
\]

With $k_1 = k_2 = k_3 = 0.3$ and $A = 1 \quad => \quad X = Y = 1$
From rates to differences

Reaction:
\[A + B \implies AB \]

Rate equation:
\[\frac{dA}{dt} = -k \cdot A \cdot B = f\left(A(t), B(t) \right) \]

Taylor expansion for displacement \(t \) around \(t_0 = 0 \):
\[
A(t) = A(0) + t \cdot \frac{dA}{dt}(0) + \frac{t^2}{2} \cdot \frac{d^2A}{dt^2}(0) + \ldots = \sum_{k=0}^{\infty} \frac{t^k}{k!} \cdot \frac{d^kA}{dt^k}(0)
\]

Truncate this expansion after second term (linear approximation):
\[
A(t) \approx A(0) + t \cdot \frac{dA}{dt}(0) + O(t^2)
\approx A(0) + t \cdot f\left(A(0), B(0) \right) + O(t^2)
\]
From rates to differences II

Linear approximation to (true) $A(t)$:

$$A(t) \approx A(0) + t \cdot \frac{dA}{dt}(0) + O(t^2)$$

$$\approx A(0) + t \cdot f(A(0), B(0)) + O(t^2)$$

initial condition increment error

For $t \rightarrow 0$

$$t \cdot \frac{dA}{dt}(0) \gg \frac{t^2}{2} \cdot \frac{d^2A}{dt^2}(0) \gg \ldots$$

Use linear approximation for small time step Δt:

$$A(t + \Delta t) = A(t) + \Delta t \cdot \frac{dA}{dt}(t)$$

This is the so-called "forward Euler" algorithm
“Forward Euler” algorithm

General form:

\[
\vec{X}_i(t + \Delta t) = \vec{X}_i(t) + \Delta t \cdot \vec{f}(\vec{X}_j(t)) + O(\Delta t^2)
\]

Relative error:

\[
\varepsilon = \frac{\Delta t^2 / 2 \cdot X''}{\Delta t X'} \propto \Delta t \quad \text{1st order algorithm}
\]

Relative error decreases with 1st power of step size \(\Delta t\)

Black: ideal dynamic trajectory, red: dynamics integrated by forward Euler algorithm

Right side: integration time steps are half of left side -> smaller error
Example: chained reactions

Reaction: \[A \rightarrow B \rightarrow C \]

\[k_{AB} = 0.1, \quad k_{BC} = 0.07 \]

Time evolution:

Relative error vs. \(\Delta t \)
at \(t = 10 \):

\[\text{runtime } \alpha \ (\Delta t)^{-1} \]
Example Code: Forward Euler

A \Rightarrow B \Rightarrow C

Iterate:

$$A(t + \Delta t) = A(t) + \Delta t \cdot \frac{dA}{dt}(t)$$

Important:

first calculate all derivatives, then update densities!
What is the “correct” time step?

Approximation works for:

\[|\Delta A| = \left| \Delta t \frac{dA}{dt} \right| = \left| -k_{AB} \cdot A \cdot \Delta t \right| \ll A \]

=> \[\Delta t \ll \frac{1}{\max(k)} \]

Here: \[k_{AB} = 0.1, \quad k_{BC} = 0.07 \]

=> \[\Delta t \ll 0.1^{-1} = 10 \]

Note 1:
read “≪” as “a few percent”
From Test Tubes to Cells

Rate equations \(\iff\) description via densities

\[
density = \frac{\text{indistinguishable particles}}{\text{volume element}}
\]

\(\Rightarrow\) density is a continuum measure, independent of the volume element

"half of the volume \(\Rightarrow\) half of the particles"

When density gets very low
\(\Rightarrow\) each particle matters

Examples:
\(~10\) Lac repressors per cell, chemotaxis, transcription from a single gene, …
Density Fluctuations

N = 10

N = 100

N = 1000

N = 10000

17. Lecture WS 2015/16
Bioinformatics III
Spread: Poisson Distribution

Stochastic probability that \(k \) events occur follows the Poisson distribution (here: event = "a particle is present"):

\[
p_k = \frac{\lambda^k}{k!} e^{-\lambda}
\]

\(k = 0, 1, 2, \ldots \)
\(\lambda > 0 \) is a parameter

Average:

\[
\langle k \rangle = \sum k \ p_k = \lambda
\]

Variance:

\[
\sigma^2 = \sum p_k \ (k - \langle k \rangle)^2 = \lambda
\]

\[
\sigma = \sqrt{\lambda}
\]

Relative spread (error):

\[
\frac{\Delta k}{k} = \frac{\sigma}{\langle k \rangle} = \frac{1}{\sqrt{\lambda}}
\]

| Avg. number of particles per unit volume | 100 | 1000 | 1 Mol |
|---|------|
| relative uncertainty | 10% | 3% | 1e-12 |

\(\Rightarrow \) Fluctuations are negligible for "chemical" test tube situations
Reactions in the Particle View

Consider association:

\[A + B \rightarrow AB \]

Continuous rate equation:

\[\frac{d[AB]}{dt} = k[A][B] \]

Number of new AB in volume V during \(\Delta t \):

\[\Delta N_{AB} = \frac{d[AB]}{dt} V \Delta t = k_{AB} \frac{N_A N_B}{V} V \Delta t = k_{AB} \Delta t \frac{N_A N_B}{V} = P_{AB} N_A N_B \]

Density “picture” \textbf{reaction rate} \(k_{AB} \rightarrow \text{Particle “picture” reaction probability} \ P_{AB} \)
Consider:

\[A + B \rightarrow AB \]

Change in the number of \(AB \):

\[\Delta N_{AB} = P_{AB} N_A N_B \]

Association probability:

\[P_{AB} = \frac{k_{AB} \Delta t}{V} \]

Units: Continuous case

\[\frac{dAB}{dt} = k_{AB} A B \]

\[\left[\frac{dAB}{dt} \right] = \frac{\text{Mol}}{ls} \]

\[[A] = [B] = \frac{\text{Mol}}{l} \]

\[\leftrightarrow \quad [k_{AB}] = \frac{l}{\text{Mol s}} \]

Stochastic case

\[[N_{AB}] = [N_A] = [N_B] = 1 \]

\[\leftrightarrow \quad [P_{AB}] = 1 \]
Direct Implementation

\[A + B \Rightarrow AB \]

Note: both versions are didactic implementations
Example: Chained Reactions

\[A \Rightarrow B \Rightarrow C \]

Rates:

\[\frac{dA}{dt} = -k_1 A \]
\[\frac{dB}{dt} = k_1 A - k_2 B \]
\[\frac{dC}{dt} = k_2 B \]

Time course from continuous rate equations (benchmark):

\[k_1 = k_2 = 0.3 \ \text{(units?)} \]
Stochastic Implementation

A => B => C

A_0 = 1000 particles initially

k_1 = k_2 = 0.3

Values at t = 7 (1000 runs)

=> Stochastic version exhibits fluctuations
Less Particles \Rightarrow Larger Fluctuations

$A_0 = 100$ \hspace{0.5cm} shown are 4 different runs

17. Lecture WS 2015/16

Bioinformatics III
Even Less Particles

$A_0 = 30$

![Graphs showing the relationship between time and $A, B, C / A_0$.](image)
Spread vs. Particle Number

Poisson:
relative fluctuations $\sim 1/\sqrt{N}$

Repeat calculation 1000 times and record values at $t = 7$.

Fit distributions with Gaussian (Normal distribution)

$$g(x) = \exp \left[-\frac{(x - \langle x \rangle)^2}{w/\sqrt{A_0}} \right]$$

$\langle A \rangle = 0.13, \quad w_A = 0.45$

$\langle B \rangle = 0.26, \quad w_B = 0.55$

$\langle C \rangle = 0.61, \quad w_C = 0.45$
Stochastic Propagation

Naive implementation:

For every timestep:
 events = 0
 For every possible pair of A, B:
 get random number $r \in [0, 1)$
 if $r \leq P_{AB}$:
 events++
 AB += events
 A, B -= events

Features of this implementation
+ very simple
+ direct implementation of the underlying process
– costly runtime $O(N^2)$
– first order approximation
– one trajectory at a time

Determining complete probability distribution
=> Master equation

More efficient propagation
=> Gillespie algorithm

=> how to do better???
A Fast Algorithm

Exact Stochastic Simulation of Coupled Chemical Reactions

Daniel T. Gillespie

Research Department, Naval Weapons Center, China Lake, California 93555 (Received May 12, 1977)

Publication costs assisted by the Naval Weapons Center

There are two formalisms for mathematically describing the time behavior of a spatially homogeneous chemical system: The deterministic approach regards the time evolution as a continuous, wholly predictable process which is governed by a set of coupled, ordinary differential equations (the “reaction-rate equations”); the stochastic approach regards the time evolution as a kind of random-walk process which is governed by a single differential-difference equation (the “master equation”). Fairly simple kinetic theory arguments show that the stochastic formulation of chemical kinetics has a firmer physical basis than the deterministic formulation, but unfortunately the stochastic master equation is often mathematically intractable. There is, however, a way to make exact numerical calculations within the framework of the stochastic formulation without having to deal with the master equation directly. It is a relatively simple digital computer algorithm which uses a rigorously derived Monte Carlo procedure to numerically simulate the time evolution of the given chemical system. Like the master equation, this “stochastic simulation algorithm” correctly accounts for the inherent fluctuations and correlations that are necessarily ignored in the deterministic formulation. In addition, unlike most procedures for numerically solving the deterministic reaction-rate equations, this algorithm never approximates infinitesimal time increments dt by finite time steps Δt. The feasibility and utility of the simulation algorithm are demonstrated by applying it to several well-known model chemical systems, including the Lotka model, the Brusselator, and the Oregonator.

Consider decay reaction: \(A \Rightarrow \emptyset \) (this model describes e.g. the radioactive decay)

Probability for one reaction in \((t, t+\Delta t)\) with \(A(t) \) molecules = \(A(t) k \Delta t \)

Naive Algorithm:

\[
A = A_0 \\
\text{For every timestep:} \\
\quad \text{get random number } r \in [0, 1) \\
\quad \text{if } r \leq A^*k^*dt: \\
\quad \quad A = A-1
\]

It works, but: \(A^*k^*dt \ll 1 \) for reasons of (good) accuracy

\(\Rightarrow \) many many steps where nothings happens

\(\Rightarrow \) Use adaptive stepsize method?
Gillespie – Step 1

Idea: Figure out when the next reaction will take place!

(In between the discrete events nothing happens anyway … :-)

Suppose there are $A(t)$ molecules in the system at time t

$f(A(t), s) = \text{probability that with } A(t) \text{ molecules the next reaction takes place in interval } (t+s, t+s+ds) \text{ with } ds \rightarrow 0$

$g(A(t), s) = \text{probability that with } A(t) \text{ molecules no reaction occurs in } (t, t+s)$

Then:

$$f(A(t), s)\, ds = g(A(t), s)\, A(t+s)\, k\, ds$$

No reaction during $(t, t+s)$:

$$f(A(t), s)\, ds = g(A(t), s)\, A(t)\, k\, ds$$

probability for reaction in $(t+s, t+s+ds)$
Probability for (No Reaction)

Now we need $g(A(t), s)$

Extend $g(A(t), s)$ a bit:

$$g(A(t), s + ds) = g(A(t), s) [1 - A(t + s) k ds]$$

Replace again $A(t+s)$ by $A(t)$ and rearrange:

$$\lim_{ds \to 0} \frac{g(A(t), s + ds) - g(A(t), s)}{ds} = \frac{dg(A(t), s)}{ds} = -A(t) k g((A(t), s))$$

With $g(A, 0) = 1$ ("no reaction during no time")

=> Distribution of waiting times between discrete reaction events:

$$g(A(t), s) = \exp[-A(t) k s]$$

Life time = average waiting time:

$$s_0 = \frac{1}{kA(t)}$$
Exponentially Distributed Random Numbers

Exponential probability distribution:

\[g(A(t), s) = \exp[-A(t)ks] \]

Solve \(r = \exp[-A(t)ks] \) for \(s \):

\[s = \frac{1}{kA(t)} \ln \left(\frac{1}{r} \right) = \frac{1}{\alpha_0} \ln \left(\frac{1}{r} \right) \]

Simple Gillespie algorithm for the decay reaction \(A \Rightarrow \emptyset \):

\[A = A_0 \]

While \(A > 0 \):

get random number \(r \in [0, 1) \)

\[t = t + s(r) \]

\[A = A - 1 \]
Gillespie vs. Naive Algorithm

Naive:

"What is the probability that an event will occur during the next Δt?"

=> small fixed timesteps

=> 1st order approximation

Gillespie:

"How long will it take until the next event?"

=> variable timesteps

=> exact

![Graphs showing the comparison between Gillespie and Naive methods](image-url)
For an arbitrary number of reactions (events):

(i) determine probabilities for the individual reactions: \(\alpha_i \) \(i = 1, \ldots, N \)

total probability \(\alpha_0 = \sum \alpha_i \)

(ii) get time \(s \) until next event in any of the reactions:

\[
s = \frac{1}{\alpha_0} \ln \left[\frac{1}{r_1} \right]
\]

(iii) Choose the next reaction \(j \) from:

\[
\sum_{i=1}^{j-1} \alpha_i \leq \alpha_0 r_2 < \sum_{i=1}^{j} \alpha_i
\]

(iv) update time and particle numbers
An Example with Two Species

Reactions: \[A + A \xrightarrow{k_1} \emptyset \quad A + B \xrightarrow{k_2} \emptyset \quad \emptyset \xrightarrow{k_3} A \quad \emptyset \xrightarrow{k_4} B \]

Continuous rate equations: \[\frac{dA}{dt} = k_3 - 2A^2k_1 - ABk_2 \]

Stationary state:

with \[k_1 = 10^{-3} \text{ s}^{-1} \quad k_2 = 10^{-2} \text{ s}^{-1} \quad k_3 = 1.2 \text{ s}^{-1} \quad k_4 = 1 \text{ s}^{-1} \]

\[\Rightarrow A_{ss} = 10, B_{ss} = 10 \]
(a4) Generate two random numbers r_1, r_2 uniformly distributed in $(0,1)$.
(b4) Compute the propensity functions of each reaction by $\alpha_1 = A(t)(A(t) - 1)k_1$,
$\alpha_2 = A(t)B(t)k_2$, $\alpha_3 = k_3$ and $\alpha_4 = k_4$. Compute $\alpha_0 = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$.
(c4) Compute the time when the next chemical reaction takes place as $t + \tau$ where
$$
\tau = \frac{1}{\alpha_0} \ln \left[\frac{1}{r_1} \right].
$$
(2.29)

(d4) Compute the number of molecules at time $t + \tau$ by
$$
A(t + \tau) = \begin{cases}
A(t) - 2 & \text{if } 0 \leq r_2 < \alpha_1/\alpha_0; \\
A(t) - 1 & \text{if } \alpha_1/\alpha_0 \leq r_2 < (\alpha_1 + \alpha_2)/\alpha_0; \\
A(t) + 1 & \text{if } (\alpha_1 + \alpha_2)/\alpha_0 \leq r_2 < (\alpha_1 + \alpha_2 + \alpha_3)/\alpha_0; \\
A(t) & \text{if } (\alpha_1 + \alpha_2 + \alpha_3)/\alpha_0 \leq r_2 < 1;
\end{cases}
$$
(2.30)

$$
B(t + \tau) = \begin{cases}
B(t) & \text{if } 0 \leq r_2 < \alpha_1/\alpha_0; \\
B(t) - 1 & \text{if } \alpha_1/\alpha_0 \leq r_2 < (\alpha_1 + \alpha_2)/\alpha_0; \\
B(t) & \text{if } (\alpha_1 + \alpha_2)/\alpha_0 \leq r_2 < (\alpha_1 + \alpha_2 + \alpha_3)/\alpha_0; \\
B(t) + 1 & \text{if } (\alpha_1 + \alpha_2 + \alpha_3)/\alpha_0 \leq r_2 < 1;
\end{cases}
$$
(2.31)

Then continue with step (a4) for time $t + \tau$.
Fig. 2.3. Five realizations of SSA (a4)–(d4). Number of molecules of chemical species A (left panel) and B (right panel) are plotted as functions of time as solid lines. Different colours correspond to different realizations. The solution of (2.33)–(2.34) is given by the dashed line. We use $A(0) = 0$, $B(0) = 0$, $k_1 = 10^{-3}$ sec$^{-1}$, $k_2 = 10^{-2}$ sec$^{-1}$, $k_3 = 1.2$ sec$^{-1}$ and $k_4 = 1$ sec$^{-1}$.
Distribution of Stationary States

\[A + A \xrightarrow{k_1} \emptyset \quad A + B \xrightarrow{k_2} \emptyset \quad \emptyset \xrightarrow{k_3} A \quad \emptyset \xrightarrow{k_4} B \]

\[k_1 = 10^{-3} \text{ s}^{-1} \quad k_2 = 10^{-2} \text{ s}^{-1} \quad k_3 = 1.2 \text{ s}^{-1} \quad k_4 = 1 \text{ s}^{-1} \]

Continuous model:
\[A_{ss} = 10, \quad B_{ss} = 10 \]

From long–time Gillespie runs:
\[\langle A \rangle = 9.6, \quad \langle B \rangle = 12.2 \]

Fig. 2.4. (a) Stationary distribution \(\phi(n,m) \) obtained by long time simulation of (a4)–(d4) for \(k_1 = 10^{-3} \text{ sec}^{-1}, k_2 = 10^{-2} \text{ sec}^{-1}, k_3 = 1.2 \text{ sec}^{-1} \) and \(k_4 = 1 \text{ sec}^{-1} \). (b) Stationary distribution of \(A \) obtained by (2.35).
Stochastic vs. Continuous

For many simple systems:
 stochastic solution looks like noisy deterministic solution

Yet in some cases, stochastic description gives qualitatively different results
 • swapping between two stationary states
 • noise-induced oscillations
 • Lotka-Volterra with small populations
 • sensitivity in signalling
Two Stationary States

Reactions: \[2A \xleftrightarrow{k_1/k_2} 3A, \quad \emptyset \xleftrightarrow{k_3/k_4} A \]

F. Schlögl, Z. Physik 253 (1972) 147–162

Rate equation: \[\frac{dA}{dt} = k_1 A^2 - k_2 A^3 + k_3 - k_4 A \]

With: \(k_1 = 0.18 \, \text{min}^{-1} \), \(k_2 = 2.5 \times 10^{-4} \, \text{min}^{-1} \), \(k_3 = 2200 \, \text{min}^{-1} \), \(k_4 = 37.5 \, \text{min}^{-1} \)

Stationary states: \(A_{s1} = 100, \; A_{s2} = 400 \) (stable) \quad \(A_u = 220 \) (unstable)

=> Depending on initial conditions (\(A(0) \neq 220 \)),
 the deterministic system goes into \(A_{s1} \) or \(A_{s2} \) (and stays there).
Two States – Stochastic

Fig. 5.1. Simulation of (5.1). One realization of SSA (a5)–(d5) for the system of chemical reactions (5.1) (blue line) and the solution of the deterministic ODE (5.2) (red line). (a) The number of molecules of A as a function of time over the first two minutes of simulation. (b) Time evolution over 100 minutes.

=> Fluctuations can drive the system from one stable state into another
Self-Induced Stochastic Resonance

System

\[
2A + B \xrightarrow{k_1} 3A
\]

\[
\emptyset \xleftarrow{k_2} A \quad \emptyset \xrightarrow{k_4} B
\]

\[
\emptyset \xrightarrow{k_3} A
\]

Compare the time evolution from initial state \((A, B) = (10, 10)\) in deterministic and stochastic simulations.

=> deterministic simulation converges to and stays at fixed point \((A, B) = (10, 1.1e4)\)

=> periodic oscillations in the stochastic model
Summary

• Mass action kinetics
 => solving (integrating) differential equations for time-dependent behavior
 => Forward-Euler: extrapolation, time steps

• Stochastic Description
 => why stochastic?
 => Gillespie algorithm
 => different dynamic behavior