
17. Lecture WS 2015/16 
 

Bioinformatics III 
 

1 

V17 The Double Description method: 
Theoretical framework behind EFM and EP / 

Integration Algorithms 

in „Combinatorics and Computer Science Vol. 1120“ edited by Deza, Euler, Manoussakis, Springer, 1996:91 



 
2 

Double Description Method (1953) 
The Double Description method is the basis for simple & efficient algorithms for the 
task of enumerating extreme rays. 
  
It serves as a framework for popular methods to compute elementary flux modes.  
 
 

Analogy with Computer Graphics problem: 
How can one efficiently describe the space 
in a dark room that is lighted by a torch  
shining through the open door? 

17. Lecture WS 2015/16 
 

Bioinformatics III 



 
3 

Review: Duality of Matrices 

Left: all points above the dividing line (the shaded area) fulfill the condition x  0.  
Middle: the points in the grey area fulfill the conditions x1  0 and x2  0.  
 
But how could we describe the points in the grey area on the right side in a 
correspondingly simple manner?  
Obviously, we could define a new coordinate system (r1, r2) as a new set of 
generating vectors.  
But we could also try to transform this area back into the grey area of the middle 
panel and use the old axes x1 and x2.  
 
In 2D, this transformation can be obviously best performed by multiplying all vectors 
inside the grey area by a two-dimensional rotation matrix. 

This is the 
duality 

17. Lecture WS 2015/16 
 

Bioinformatics III 



 
4 

The Double Description Method 
A pair (A,R) of real matrices A and R is said to be a double description pair or 
simply a DD pair if the relationship 
 A x  0  if and only if  x = R  for some   0 
holds. The column size of A has to equal the row size of R, say d. 
 
For such a pair,  
the set P(A) represented by A as  
 
is simultaneously represented by R as 
 
 
A subset P of d is called polyhedral cone if P = P(A) for some matrix A,  
and A is called a representation matrix of the polyhedral cone P(A). 
 
Then, we say R is a generating matrix for P. Clearly, each column vector of a 
generating matrix R lies in the cone P and every vector in P is a nonnegative 
combination of some columns of R. 

   0:  A xxA dP

 0  somefor   :  λRλxx d

17. Lecture WS 2015/16 
 

Bioinformatics III 



 
5 

The Double Description Method 
Theorem 1 (Minkowski‘s Theorem for Polyhedral Cones) 
For any m  n real matrix A, there exists some d  m real matrix R such that (A,R) 
is a DD pair, or in other words, the cone P(A) is generated by R. 
 
The theorem states that every polyhedral cone admits a generating matrix. 
 
The nontriviality comes from the fact that the row size of R is finite. 
If we allow an infinite size, there is a trivial generating matrix consisting of all 
vectors in the cone. 
 
Also the converse is true: 
 
Theorem 2 (Weyl‘s Theorem for Polyhedral Cones) 
For any d  n real matrix R, there exists some m  d real matrix A such that (A,R) 
is a DD pair, or in other words, the set generated by R is the cone P(A). 

17. Lecture WS 2015/16 
 

Bioinformatics III 



 
6 

The Double Description Method 
Task: how does one construct a matrix R from a given matrix A, and the converse? 
 
These two problems are computationally equivalent. 
Farkas‘ Lemma shows that (A,R) is a DD pair if and only if (RT,AT) is a DD pair. 
 
A more appropriate formulation of the problem is to require the minimality of R: 
find a matrix R such that no proper submatrix is generating P(A). 
A minimal set of generators is unique up to positive scaling when we assume the 
regularity condition that the cone is pointed, i.e. the origin is an extreme point of 
P(A). 
 
Geometrically, the columns of a minimal generating matrix are in 1-to-1 
correspondence with the extreme rays of P. 
 
Thus the problem is also known as the extreme ray enumeration problem. 
 
No efficient (polynomial) algorithm is known for the general problem. 

17. Lecture WS 2015/16 
 

Bioinformatics III 



 
7 

Double Description Method: primitive form 
Suppose that the m  d matrix A is given and let 
(This is equivalent to the situation at the beginning of constructing EPs or EFMs: we only know S.) 
 

The DD method is an incremental algorithm to construct a d  m matrix R  
such that (A,R) is a DD  pair. 
 
Let us assume for simplicity that the cone P(A) is pointed. 
 
Let K be a subset of the row indices {1,2,...,m} of A and let AK denote the 
submatrix of A consisting of rows indexed by K. 
Suppose we already found a generating matrix R for AK, or equivalently, 
(AK,R) is a DD pair.  If A = AK ,we are done. 
 
Otherwise we select any row index i not in K and try to construct a DD pair 
(AK+i, R‘) using the information of the DD pair (AK,R).  
 
Once this basic procedure is described, we have an algorithm to construct a 
generating matrix R for P(A). 

   0 A xxA :P

17. Lecture WS 2015/16 
 

Bioinformatics III 



 
8 

Geometric version of iteration step 
The procedure can be understood geometrically by looking at the  
cut-section C of the cone P(AK) with some appropriate hyperplane h in d  
which intersects with every extreme ray of P(AK) at a single point. 
 
Let us assume that the cone is pointed and  
thus C is bounded.  
Having a generating matrix R means that all  
extreme rays (i.e. extreme points of the  
cut-section) of the cone are represented  
by columns of R. 
Such a cutsection is illustrated in the Fig. 
 
Here, C is the cube abcdefgh. 

17. Lecture WS 2015/16 
 

Bioinformatics III 



 
9 

Geometric version of iteration step 
The newly introduced inequality Aix  0 partitions the space d into three parts:  
 Hi

+ = {x  d : Aix > 0 } 
 Hi

0 = {x  d : Aix = 0 } 
 Hi

- =  {x  d : Aix < 0 } 
The intersection of Hi

0 with P and the new extreme points i and j in the cut-section 
C are shown in bold in the Fig. 
 
Let J be the set of column indices of R. The rays rj (j J ) are then partitioned into 
three parts accordingly: 
 J+ = {j  J : rj  Hi

+ } 
 J0 = {j  J : rj  Hi

0 } 
 J-  = {j  J : rj  Hi

- } 
We call the rays indexed by J+, J0, J- the positive, zero, negative rays with 
respect to i, respectively. 
To construct a matrix R‘ from R, we generate new | J+|  | J-| rays lying on the ith 
hyperplane Hi

0 by taking an appropriate positive combination of each positive ray 
rj and each negative ray rj‘ and by discarding all negative rays. 

17. Lecture WS 2015/16 
 

Bioinformatics III 



 
10 

Geometric version of iteration step 
The following lemma ensures that we have a DD pair (AK+i ,R‘), and provides the 
key procedure for the most primitive version of the DD method. 
 
Lemma 3 Let (AK,R) be a DD pair and let i be a row index of A not in K. 
Then the pair (AK+i ,R‘) is a DD pair, where R‘ is the d  |J‘ | matrix with column 
vectors rj (j  J‘) defined by 
 J‘ = J+  J0  (J+  J-), and 
 rjj‘ = (Airj)rj‘ – (Airj‘)rj for each (j,j‘) J+  J- 
 
Proof omitted.  

17. Lecture WS 2015/16 
 

Bioinformatics III 



 
11 

Finding seed DD pair 
It is quite simple to find a DD pair (AK,R) when |K| = 1, which can serve as the 
initial DD pair. 
 
Another simple (and perhaps the most efficient) way to obtain an initial DD form of 
P is by selecting a maximal submatrix AK of A consisting of linearly independent 
rows of A. 
 
The vectors rj‘s are obtained by solving the system of equations  
  AK R = I 
where I is the identity matrix of size |K|, R is a matrix of unknown column vectors 
rj, j J.  
 
As we have assumed rank(A) = d, i.e. R = AK

-1 , the pair (AK,R) is clearly a DD 
pair, since AKx  0  x = AK

-1,   0. 

17. Lecture WS 2015/16 
 

Bioinformatics III 



 
12 

Primitive algorithm for DoubleDescriptionMethod 

To avoid generating redundant vectors, we will use the zero set or active set Z(x) 
which is the set of inequality indices satisfied by x in P(A) with equality.  
 
Noting A i• the ith row of A, Z(x) = {i : A i• x = 0} 

This algorithm is very primitive, and 
the straightforward implementation 
will be quite useless, because the 
size of J increases extremely fast. 
 
This is because many vectors rjj‘  
generated by the algorithm (defined 
in Lemma 3) are unnessary.  
We need to avoid generating 
redundant vectors! 

17. Lecture WS 2015/16 
 

Bioinformatics III 



 
13 

Towards the standard implementation 
Two distinct extreme rays r and r‘ of P are adjacent if the minimal face of P 
containing both contains no other extreme rays. 
 
Proposition 7. Let r and r‘ be distinct rays of P.  
Then the following statements are equivalent 
(a) r and r‘ are adjacent extreme rays, 
(b) r and r‘ are extreme rays and the rank of the matrix AZ(r)  Z(r‘) is d – 2, 
(c) if r‘‘ is a ray with Z(r‘‘)  Z(r)  Z(r‘) then either r‘‘ ≃ r or r‘‘ ≃ r ‘. 
 
Lemma 8. Let (AK,R) be a DD pair such that rank(AK) = d and let i be a row index 
of A not in K. Then the pair (AK+i , R‘) is a DD pair, where R‘ is the d  | J‘| matrix 
with column vectors rj (j  J‘) defined by 
 J‘ = J+  J0  Adj 
 Adj = {(j,j‘)  J+  J- : rj and rj‘ are adjacent in P(AK)} and 
 r = (Ai rj ) rj‘ – (Airj ) rj for each (j,j‘) Adj. 
Furthermore, if R is a minimal generating matrix for P(AK) then R‘ is a minimal 
generating matrix for P(AK+i). 

17. Lecture WS 2015/16 
 

Bioinformatics III 



Bioinformatics III  
14 

Algorithm for standard form of double description 
method 

This is now a straightforward variation of the DD method which produces a 
minimal generating set for P: 

To implement DDMethodStandard, we must check for each pair of extreme rays 
r and r‘ of P(AK) with Ai r > 0 and Ai r‘ < 0 whether they are adjacent in P(AK).   

DDMethodStandard(A) 

such that R is minimal  

Lemma 8  

17. Lecture WS 2015/16 
 

Bioinformatics III 



V17 – second part 
 

Dynamic Modelling: Rate Equations + 
Stochastic Propagation 

 
15 17. Lecture WS 2015/16 

 
Bioinformatics III 



Mass Action Kinetics 
Most simple dynamic system:  inorganic chemistry 

Consider reaction A + B <=> AB 

Association:  probability that A finds and reacts with B 
=> changes proportional to densities of A and of B 

Dissociation:  probability for AB to break up 
=> changes proportional to density of AB 

Interesting quantities:  
(changes of) densities of A, B, and AB 

<=> 

density =  
number of particles 

unit volume 

How to put this 
into formulas? 

1 mol  =  1 Mol / Liter   =  6.022 x 1023 x (0.1 m)–3  = 0.6  nm–3 

This means that proteins cannot reach 1 mol concentrations. Why? 

 
16 17. Lecture WS 2015/16 

 
Bioinformatics III 



Mass Action II 
Again: A + B <=> AB 

Objective: mathematical description for the changes of 
[A], [B], and [AB] 

Consider [A]: 

Loss due to association A + B => AB Gain due to dissociation AB => A + B 

A has to find B 
=> LA depends on [A] and [B] 

AB falls apart 
=> GA depends only on [AB] 

phenomenological 
proportionality 

constant 
 

17 17. Lecture WS 2015/16 
 

Bioinformatics III 



Mass Action !!! 
A + B <=> AB 

For [A]: 

For [B]: 

we just found: 

for symmetry reasons 

For [AB]: exchange gain and loss 

time course  =  initial conditions + dynamics 

with [A](t0), [B](t0), and [AB](t0)  =>  complete description of the system 

 
18 17. Lecture WS 2015/16 

 
Bioinformatics III 



A Second Example 

Slightly more complex: A + 2B <=> AB2 

Association: • one A and two B have to come together 
• forming one complex AB2 requires two units of B 

Dissociation: one AB2 decays into one A and two B 

Put everything together 

 
19 17. Lecture WS 2015/16 

 
Bioinformatics III 



Some Rules of  Thumb 

Sign matters:   Gains with "+", losses with "–" 

A + 2B <=> AB2 "A is produced when AB2 falls apart or  
is consumed when AB2 is built from one A and two B" 

Logical conditions:  "…from A and B" 
“and” corresponds to "×"      “or” corresponds to "+" 

Stoichiometries: one factor for each educt (=> [B]2) 
prefactors survive 

Mass conservation: terms with "–" have to show up with "+", too 

 
20 17. Lecture WS 2015/16 

 
Bioinformatics III 



A Worked Example 
Lotka-Volterra population model 

R1: A + X  =>  2X prey X lives on A 
R2: X + Y  =>  2Y predator Y lives on prey X 
R3: Y  =>  B predator Y dies 

Rates for the reactions Changes of the metabolites 

R1 R2 R3 

A –1 

X 1 –1 

Y 1 –1 

B 1 

stoichiometric 
matrix S 

=> change of X:  

 
21 17. Lecture WS 2015/16 

 
Bioinformatics III 



Setting up the Equations 

With and 

we get: 

Plug in to get: 

or 

amounts 
processed per 

reaction 

speeds of 
the 

reactions 

 
22 17. Lecture WS 2015/16 

 
Bioinformatics III 



How Does It Look Like? 
Lotka–Volterra:    assume  A = const,   B ignored 

0 50 100
0

1

2

time 

X,
 

Y
 

X Y 

k1 = k2 = k3 = 0.3 

Steady State: when do the populations not change? 

=> 

With k1 = k2 = k3 = 0.3  and  A = 1 =>  X = Y = 1 

=> cyclic population changes 

Steady state = 
fluxes balanced 

 
23 17. Lecture WS 2015/16 

 
Bioinformatics III 



From rates to differences 

Rate equation: 

Reaction: 

derivative of A(t)  =  some function 

Taylor expansion for  
displacement t around t0 = 0: 

Truncate this expansion after second term (linear approximation): 

 
24 17. Lecture WS 2015/16 

 
Bioinformatics III 



From rates to differences II 
Linear approximation to (true) A(t): 

initial condition increment error 

For          : 

Use linear approximation for small time step Δt: 

This is the so-called 
"forward Euler" algorithm 

 
25 17. Lecture WS 2015/16 

 
Bioinformatics III 



“Forward Euler” algorithm 

General form: 

relative error: 1st order algorithm 

relative error decreases with 1st power of step size Δt 

t

 X (t)

t t

 X (t)

t/2

 
26 17. Lecture WS 2015/16 

 
Bioinformatics III 

Black: ideal dynamic trajectory, red: dynamics integrated by forward Euler algorithm 
Right side: integration time steps are half of left side -> smaller error 



Example: chained reactions 

Relative error vs. Δt  
at t = 10: 

A, B 

0.1 0.4 1 4

0.001

0.01

0.1

time step Δt 

re
la

tiv
e 

er
ro

r 

C 

Reaction: 

Time evolution: 

0 10 20 30 40
0.00

0.50

1.00

0 10 20 30 40
0.00

0.50

1.00

time 

co
nc

en
tra

tio
ns

 

A 
C 

B A 

B 

C 

Δt = 1 

Δt = 10 

runtime α (Δt)–1 

 
27 17. Lecture WS 2015/16 

 
Bioinformatics III 



Example Code:  Forward Euler 

A  =>  B  =>  C 

Iterate: 

Important: 

first calculate all derivatives, 
then update densities! 

 
28 17. Lecture WS 2015/16 

 
Bioinformatics III 



What is the “correct” time step? 

Approximation works for: 

=> 

Here: 

=> 

Note 1:   
read “«” as  “a few percent” 

0 10 20 30 40
0.00

0.50

1.00

0 10 20 30 40
0.00

0.50

1.00

time 

co
nc

en
tra

tio
ns

 

A 
C 

B A 

B 

C 

Δt = 1 

Δt = 10 

 
29 17. Lecture WS 2015/16 

 
Bioinformatics III 



From Test Tubes to Cells 
Rate equations  <=>  description via densities 

density  = indistinguishable particles 
volume element 

=> density is a continuum measure, 
     independent of the volume element 

"half of the volume => half of the particles" 

When density gets very low 
=> each particle matters 

Examples: 
~10 Lac repressors per cell, chemotaxis, 
transcription from a single gene, … 

 
30 17. Lecture WS 2015/16 

 
Bioinformatics III 



Density Fluctuations 

0 3 6 9
0

2

4

6
0 5.56N = 100 

0 3 6 9
0

2

4

6
0 55.6N = 1000 

0 3 6 9
0

2

4

6
0 556N = 10000 

0 3 6 9
0

2

4

6
0 1.67N = 10 

 
31 17. Lecture WS 2015/16 

 
Bioinformatics III 



Spread: Poisson Distribution 
Stochastic probability that k events occur follows the Poisson distribution 
(here: event = "a particle is present"):  

k = 0, 1, 2, … 
λ > 0 is a parameter 

Average: Variance: 

Relative spread (error): 

Avg. number of particles per unit volume 

relative uncertainty 

100 

10% 

1000 

3% 

1 Mol 

1e-12 

=> Fluctuations are negligible for "chemical" test tube situations 

 
32 17. Lecture WS 2015/16 

 
Bioinformatics III 



Reactions in the Particle View 
Consider association:  

A + B  =>  AB 

Continuous rate equation: 

Number of new AB in volume V during Δt: 

Density “picture”  Particle “picture” 
reaction rate kAB  =>   reaction probability PAB 

 
33 17. Lecture WS 2015/16 

 
Bioinformatics III 



Units! 

A + B  =>  AB 

Consider: 

Change in the number of AB: Association probability: 

Units: 

<=> 

Continuous case 

<=> 

Stochastic case 

 
34 17. Lecture WS 2015/16 

 
Bioinformatics III 



Direct Implementation 

Note: both versions are didactic implementations 

A + B  =>  AB 

 
35 17. Lecture WS 2015/16 

 
Bioinformatics III 



Example: Chained Reactions 
A  =>  B  =>  C 

k1 = k2 = 0.3   (units?) 

0 10 20 30
0.00

0.50

1.00

      time

N A
, N

B,
 N

C 
[N

A0
] 

Rates: 

Time course from continuous rate equations (benchmark): 

 
36 17. Lecture WS 2015/16 

 
Bioinformatics III 



Stochastic Implementation 

k1 = k2 = 0.3 

0 10 20 30
0.00

0.50

1.00

      time

A 

B 

C 

A0 = 1000  particles initially 

Values at t = 7 (1000 runs) 

0.00 0.25 0.50 0.75 1.00
0

100

200

300

400
A 

B C 

A
, B

, C
 / 

A
0 

t = 7 

fre
qu

en
cy

 

=> Stochastic version exhibits fluctuations 

A => B => C 

 
37 17. Lecture WS 2015/16 

 
Bioinformatics III 



Less Particles => Larger Fluctuations 

0 10 20 30
0.00

0.50

1.00

      time
0 10 20 30

0.00

0.50

1.00

      time

0 10 20 30
0.00

0.50

1.00

      time
0 10 20 30

0.00

0.50

1.00

      time

A0 = 100     shown are 4 different runs 
A,

 B
, C

 / 
A 0

 

A,
 B

, C
 / 

A 0
 

A,
 B

, C
 / 

A 0
 

A,
 B

, C
 / 

A 0
 

 
38 17. Lecture WS 2015/16 

 
Bioinformatics III 



Even Less Particles 
A0 = 30 

A,
 B

, C
 / 

A 0
 

A,
 B

, C
 / 

A 0
 

A,
 B

, C
 / 

A 0
 

A,
 B

, C
 / 

A 0
 

0 10 20 30
0.00

0.50

1.00

      time
0 10 20 30

0.00

0.50

1.00

      time

0 10 20 30
0.00

0.50

1.00

      time
0 10 20 30

0.00

0.50

1.00

      time

 
39 17. Lecture WS 2015/16 

 
Bioinformatics III 



Spread vs. Particle Number 

0.00 0.50 1.00
0

100
200
300

0.00 0.50 1.00
0

150

300

0.00 0.50 1.00
0

200

400

A0 = 1000 

A0 = 100 

A0 = 30 

A 
B C 

B A 

A B 
C 

fre
qu

en
ci

es
 

Poisson:  
relative fluctuations 

Repeat calculation 1000 times 
and record values at t = 7. 

Fit distributions with Gaussian 
(Normal distribution) 

<A> = 0.13,  wA = 0.45 

<B> = 0.26,  wB = 0.55 

<C> = 0.61,  wC = 0.45 

 
40 17. Lecture WS 2015/16 

 
Bioinformatics III 



Stochastic Propagation 
Naive implementation: 
 
For every timestep: 

events = 0 
For every possible pair of A, B: 

get random number r ∈ [0, 1) 
if r ≤ PAB: 

events++ 
AB += events 
A, B –= events 

 

Features of this implementation 
+ very simple 
+ direct implementation of the  
   underlying process 

– costly runtime O(N2) 
– first order approximation 

=> how to do better??? 

Determine complete  
probability distribution 
=> Master equation 

More efficient 
propagation 

=> Gillespie algorithm 

– one trajectory at a time 

 
41 17. Lecture WS 2015/16 

 
Bioinformatics III 



A Fast Algorithm 

D. Gillespie, J. Phys. Chem. 81 (1977) 2340–2361 

 
42 17. Lecture WS 2015/16 

 
Bioinformatics III 



Gillespie – Step 0 

Consider decay reation: A  =>  Ø  (this model describes e.g. the radioactive decay) 

Probability for one reaction in (t, t+Δt) with  A(t) molecules  =  A(t) k Δt 

Naive Algorithm:  
  A = A0 
  For every timestep: 

get random number r ε [0, 1) 
if r ≤ A*k*dt: 

A = A-1 

 

It works, but: A*k*dt << 1  for reasons of (good) accuracy 
=> many many steps where nothings happens 

=> Use adaptive stepsize method? 

 
43 17. Lecture WS 2015/16 

 
Bioinformatics III 



Gillespie – Step 1 

Idea:  Figure out when the next reaction will take place! 

(In between the discrete events nothing happens anyway … :-) 

Suppose there are  A(t) molecules in the system at time t 

f(A(t), s) = probability that with A(t) molecules the next reaction takes place in 
                interval (t+s, t+s+ds)  with  ds => 0 

g(A(t), s) = probability that with A(t) molecules no reaction occurs in (t, t+s) 

Then: 

No reaction during (t, t+s): 

probability for reaction in (t+s, t+s+ds) 
 

44 17. Lecture WS 2015/16 
 

Bioinformatics III 



Probability for (No Reaction) 
Now we need g(A(t), s) 

Extend g(A(t), s) a bit: 

Replace again A(t+s) by A(t) and rearrange: 

With g(A, 0) = 1  ("no reaction during no time") 

=> Distribution of waiting times between discrete reaction events: 

Life time = average waiting time: 

 
45 17. Lecture WS 2015/16 

 
Bioinformatics III 



Exponentially Distributed Random Numbers 

Exponential probability distribution: 

Solve for s: 

 
A = A0 
While(A > 0): 

get random number r ε [0, 1) 
t = t + s(r) 
A = A - 1 

 

1

0
t0

r ε
 [0
,1
] 

life time 

Simple Gillespie algorithm for the decay reaction A  =>  Ø : 

 
46 17. Lecture WS 2015/16 

 
Bioinformatics III 



Gillespie vs. Naive Algorithm 
Naive: Gillespie: 

"What is the probability 
that an event will occur 
during the next Δt?" 

"How long will it take until 
the next event?" 

=> small fixed timesteps => variable timesteps 

=> 1st order approximation => exact 

t 

N A
 

0.00 0.20 0.40

20

25

30

0 1 2 3 4
0

10

20

30

t 

N A
 

• Gillespie 
• naive 
- analytic 

• Gillespie 
• naive 
- analytic 

 
47 17. Lecture WS 2015/16 

 
Bioinformatics III 



Gillespie – Complete 
For an arbitrary number of reactions (events): 

(i) determine probabilities for the individual reactions:  αi   i = 1, …, N 
total probability  α0 = Σ αi  

(ii) get time s until next event in any of the reactions: 

(iii) Choose the next reaction j from: 

0 1

1 2 3 4 5 6

012 123 1…4 1…5

(iv) update time and particle numbers 

 
48 17. Lecture WS 2015/16 

 
Bioinformatics III 



An Example with Two Species 

Reactions: A + A  =>  Ø k1 A + B  =>  Ø k2 Ø  =>  A k3 Ø  =>  B k4 

Continuous rate equations: 

Stationary state: 

with k1 = 10–3 s–1 k2 = 10–2 s–1 k3 = 1.2 s–1 k4 = 1 s–1 

=>  Ass = 10,  Bss = 10 

 
49 17. Lecture WS 2015/16 

 
Bioinformatics III 



Er
ba

n,
 C

ha
pm

an
, M

ai
ni

, a
rX

iv
:0

70
4.

19
08

v2
 [q

-b
io

.S
C]

 

Gillespie Algorithm 

 
50 17. Lecture WS 2015/16 

 
Bioinformatics III 



Stochastic Simulation 

A + A  =>  Ø k1 A + B  =>  Ø k2 Ø  =>  A k3 Ø  =>  B k4 

 
 

Er
ba

n,
 C

ha
pm

an
, M

ai
ni

, a
rX

iv
:0

70
4.

19
08

v2
 [q

-b
io

.S
C]

 

 
51 17. Lecture WS 2015/16 

 
Bioinformatics III 



Er
ba

n,
 C

ha
pm

an
, M

ai
ni

, a
rX

iv
:0

70
4.

19
08

v2
 

Distribution of Stationary States 

k1 = 10–3 s–1 k2 = 10–2 s–1 k3 = 1.2 s–1 k4 = 1 s–1 

Continuous model:  
Ass = 10,   Bss = 10 

From long–time Gillespie runs: 
<A> = 9.6,   <B> = 12.2 <=> 

A + A  =>  Ø k1 A + B  =>  Ø k2 Ø  =>  A k3 Ø  =>  B k4 

 
52 17. Lecture WS 2015/16 

 
Bioinformatics III 



Stochastic vs. Continuous 
For many simple systems:   
             stochastic solution looks like noisy deterministic solution 

Yet in some cases, stochastic description gives qualitatively different results 

• swapping between two stationary states 

• noise-induced oscillations 

• Lotka-Volterra with small populations 

• sensitivity in signalling 

 
53 17. Lecture WS 2015/16 

 
Bioinformatics III 



Two Stationary States 

Reactions: F. Schlögl, Z. Physik 253 (1972) 147–162 

k1 = 0.18 min–1 k2 = 2.5 x 10–4 min–1 k3 = 2200 min–1 k4 = 37.5 min–1 With: 

Stationary states: As1 = 100,   As2 = 400 (stable) Au = 220  (unstable) 

Rate equation: 

=> Depending on initial conditions (A(0) <> 220),  
     the deterministic system goes into As1 or As2 (and stays there). 

 
54 17. Lecture WS 2015/16 

 
Bioinformatics III 



Er
ba

n,
 C

ha
pm

an
, M

ai
ni

, a
rX

iv
:0

70
4.

19
08

v2
 

Two States – Stochastic 

=> Fluctuations can drive the system from one stable state into another 

 
55 17. Lecture WS 2015/16 

 
Bioinformatics III 



Self-Induced Stochastic Resonance 

System 2A + B  =>  3A k1 Ø  =>  B k4 Ø  <=>  A k2 

k3 

Compare the time evolution from 
initial state (A, B) = (10, 10) 
in deterministic and stochastic 
simulations. 

=> deterministic simulation 
converges to and stays at fixed 
point (A, B) = (10, 1.1e4) 

=> periodic oscillations in the 
stochastic model 

 
56 17. Lecture WS 2015/16 

 
Bioinformatics III 



Summary 

• Mass action kinetics  
  => solving (integrating) differential equations for time-dependent behavior 
  => Forward-Euler: extrapolation,  time steps 
 

• Stochastic Description 
  => why stochastic? 
  => Gillespie algorithm 
  => different dynamic behavior 

 
57 17. Lecture WS 2015/16 

 
Bioinformatics III 


