V17 The Double Description method:
Theoretical framework behind EFM and EP /
Integration Algorithms

Double Description Method Revisited

Komei Fukuda! and Alain Prodon?

! Institute for Operations Research, ETHZ, CH-8092 Ziirich, Switzerland
? Department of Mathematics, EPFL, CH-1015 Lausanne, Switzerland

in ,Combinatorics and Computer Science Vol. 1120“ edited by Deza, Euler, Manoussakis, Springer, 1996:91

BIVIC Bioinformatics Bioled Centd

Research article

Computation of elementary modes: a unifying framework and the

new binary approach
Julien Gagneur™ and Steffen Klamt* 72

Address: 1Cellzome AG, Meyerhofstr. 1, 69117 Heidelberg, Germany and 2Max Planck Institute for Dynamics of Complex Technical Systems,
Sandtorstr. 1, D-392106 Magdeburg, Germany

Email: Julien Gagneur - julien.gagneur@cellzome.com; Steffen Klamt* - klamt@ mpi-magdeburg mpg.de
* Corresponding author  +Equal contributors

Published: 04 November 2004 Received: 28 June 2004
BMC Bionformatics 2004, 5:175  doi:10.1186/1471-2105-5-175 Accepted: 04 November 2004
This article is available from: heto:/fwww.biomedeentral.com/ 147 1-2105/5/175

17. Lecture WS 2015/16 Bioinformatics I 1



The Double Description method is the basis for simple & efficient algorithms for the
task of enumerating extreme rays.

It serves as a framework for popular methods to compute elementary flux modes.
Analogy with Computer Graphics problem:

How can one efficiently describe the space
in a dark room that is lighted by a torch

shining through the open door? V
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Left: all points above the dividing line (tHe shaded area) fulfill the condition x > 0.
Middle: the points in the grey area fulfill the conditions x, > 0 and x, > 0.

But how could we describe the points in the grey area on the right side in a

correspondingly simple manner?

Obviously, we could define a new coordinate system (r;, r,) as a new set of

generating vectors.

But we could also try to transform this area back into the grey area of the middle

panel and use the old axes x; and x..

In 2D, this transformation can be obviously best performed by multiplying all vectors
inside the grey area by a two-dimensional rotation matrix.
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A pair (A,R) of real matrices A and R is said to be a double description pair or
simply a DD pair if the relationship

Ax>0 ifandonly if X =R A forsomeA >0
holds. The column size of A has to equal the row size of R, say d.

For such a pair,
the set P(A) represented by A as

AA)={x e R*: Ax>0!
is simultaneously represented by R as

{Xeﬂ%":X: RA forsome XZO}

A subset P of RY is called polyhedral cone if P = P(A) for some matrix A,
and A is called a representation matrix of the polyhedral cone P(A).

Then, we say R is a generating matrix for P. Clearly, each column vector of a
generating matrix R lies in the cone P and every vector in Pis a nonnegative
combination of some columns of R.
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Theorem 1 (Minkowski‘s Theorem for Polyhedral Cones)
For any m x nreal matrix A, there exists some d x m real matrix R such that (A,R)
is a DD pair, or in other words, the cone P(A) is generated by R.

The theorem states that every polyhedral cone admits a generating matrix.
The nontriviality comes from the fact that the row size of R is finite.
If we allow an infinite size, there is a trivial generating matrix consisting of all

vectors in the cone.

Also the converse is true:

Theorem 2 (Weyl's Theorem for Polyhedral Cones)
For any d x n real matrix R, there exists some m x d real matrix A such that (A,R)
is a DD pair, or in other words, the set generated by R is the cone P(A).
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Task: how does one construct a matrix R from a given matrix A, and the converse?

These two problems are computationally equivalent.
Farkas‘ Lemma shows that (A,R) is a DD pair if and only if (RT,AT) is a DD pair.

A more appropriate formulation of the problem is to require the minimality of R:
find a matrix R such that no proper submatrix is generating P(A).

A minimal set of generators is unique up to positive scaling when we assume the
regularity condition that the cone is pointed, i.e. the origin is an extreme point of
P(A).

Geometrically, the columns of a minimal generating matrix are in 1-to-1
correspondence with the extreme rays of P.

Thus the problem is also known as the extreme ray enumeration problem.

No efficient (polynomial) algorithm is known for the general problem.
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Suppose that the m x d matrix A is given and let A(A)={x;Ax >0}

(This is equivalent to the situation at the beginning of constructing EPs or EFMs: we only know S.)

The DD method is an incremental algorithm to construct a d x m matrix R
such that (A,R) is a DD pair.

Let us assume for simplicity that the cone P(A) is pointed.

Let K be a subset of the row indices {1,2,...,m} of A and let Ax denote the
submatrix of A consisting of rows indexed by K.

Suppose we already found a generating matrix R for Ay, or equivalently,
(Ag,R) is a DD pair. If A = A ,we are done.

Otherwise we select any row index i not in K and try to construct a DD pair
(Ak,:» R’ using the information of the DD pair (Ag,R).

Once this basic procedure is described, we have an algorithm to construct a
generating matrix R for P(A).
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The procedure can be understood geometrically by looking at the
cut-section C of the cone P(Ax) with some appropriate hyperplane hin R
which intersects with every extreme ray of P(Ay) at a single point.

Let us assume that the cone is pointed and
thus Cis bounded.

Having a generating matrix R means that all
extreme rays (i.e. extreme points of the
cut-section) of the cone are represented

by columns of R.

Such a cutsection is illustrated in the Fig.

Here, Cis the cube abcdefgh.
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The newly introduced inequality A;-x >0 partitions the space R into three parts:
H={x € R9: A;x >0}
HP ={x € R9: Ayx =0}
H = {xeR:Ax<0}
The intersection of H? with P and the new extreme points iand j in the cut-section
C are shown in bold in the Fig.

Let J be the set of column indices of R. The rays r; (j €J ) are then partitioned into
three parts accordingly:

Jr={jed:rpe H*}

J={jed:re H}

J ={jed:re H}
We call the rays indexed by J*, J°, J the positive, zero, negative rays with
respect to /, respectively.
To construct a matrix R from R, we generate new | J*| x | J| rays lying on the ith
hyperplane HP? by taking an appropriate positive combination of each positive ray
r, and each negative ray r and by discarding all negative rays.
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The following lemma ensures that we have a DD pair (Ag,; ;R’), and provides the
key procedure for the most primitive version of the DD method.

Lemma 3 Let (A¢,R) be a DD pair and let / be a row index of A not in K.
Then the pair (Ag,; ,R’) is a DD pair, where R‘is the d x |J*| matrix with column
vectors r; (j € J) defined by

J=SrFuLu (S xJ) and

Proof omitted.
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It is quite simple to find a DD pair (Ak,R) when |K| = 1, which can serve as the
initial DD pair.

Another simple (and perhaps the most efficient) way to obtain an initial DD form of
Pis by selecting a maximal submatrix Ay of A consisting of linearly independent
rows of A.

The vectors r;'s are obtained by solving the system of equations
AcR=1
where | is the identity matrix of size |K|, R is a matrix of unknown column vectors
r,jed.
j

As we have assumed rank(A) = d, i.e. R = A", the pair (Ay,R) is clearly a DD
pair, since Ag'x >0« x=A"A, A >0.
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procedure DoubleDescriptionMethod(A4); This algorithm is very prlmltlve and

begin

Obtain any initial DD pair (Ax., R): the straightforward implementation

hile K 1,2,....m} d : :

:ﬂ;; #1L,2.....m} do will be quite useless, because the
Select any index ¢ from {1,2,...,m}\ K; size of Jincreases extremely fast.
Construct a DD pair (Ag ., RB') from (Ag. R);

/* by using Lemma 3 */

R:=R'; K:=K+i; This is because many vectors rj:
end: . )
Output R: generated by the algorithm (defined

end. in Lemma 3) are unnessary.

We need to avoid generating
redundant vectors!

To avoid generating redundant vectors, we will use the zero set or active set Z(x)
which is the set of inequality indices satisfied by x in P(A) with equality.

Noting A ;. the ith row of A, Z(x) ={i: A, . x =0}
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Two distinct extreme rays r and r of P are adjacent if the minimal face of P
containing both contains no other extreme rays.

Proposition 7. Let r and r* be distinct rays of P,

Then the following statements are equivalent

(a) r and r‘ are adjacent extreme rays,

(b) r and r" are extreme rays and the rank of the matrix Az, , 74 is d— 2,
(c)if r** is a ray with Z(r”) o Z({r) n Z(r’) then eitherr“=rorr“=r"

Lemma 8. Let (A¢,R) be a DD pair such that rank(Ak) = d and let i be a row index
of A notin K. Then the pair (A,; , R’) is a DD pair, where R"is the d x [ J'| matrix
with column vectors r; (j € J') defined by

J'=Jr U SOU Adj

Adj ={(jj) € J* x J :r;and ;. are adjacent in P(Ay)} and

r=(A;r;)ry — (Ar; ) r; for each (jj) €Adj.
Furthermore, if R is a minimal generating matrix for P(A¢) then R‘is a minimal
generating matrix for P(Ag,;).
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Algorithm for standard form of double description
method

This is now a straightforward variation of the DD method which produces a
minimal generating set for P:

procedure . DDMethodStandard(A)
begin R
Obtain any initial DD pair (A, R); such that R is minimal
while K # {1,2,....m} do
begin
Select any index i from {1,2,...,m}\ K;
Construct a DD pair (Ag ., R') from (Ag, R);
/* by using Lemmasg |/
R:=R'; K:=K+i;
end;
Output R;
end.

To implement DDMethodStandard, we must check for each pair of extreme rays
r and r‘ of P(A¢) with A, r > 0 and A, r* < 0 whether they are adjacent in P(Ay).

14
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V17 — second part

Dynamic Modelling: Rate Equations +
Stochastic Propagation
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Most simple dynamic system: inorganic chemistry

Consider reaction A+ B <=>AB %
<=>

Interesting quantities:
(changes of) densities of A, B, and AB

number of particles Ny d
unit volume A] = V' E[A](I)

density =

1 mol = 1 Mol/Liter = 6.022x 103x (0.1 m)=2 =0.6 nm=3

This means that proteins cannot reach 1 mol concentrations. Why?

Association: probability that A finds and reacts with B

=> changes proportional to densities of A and of B How to put this

i 2
Dissociation: probability for AB to break up into formulas®

=> changes proportional to density of AB
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Again: A+B<=>AB

Objective: mathematical description for the changes of
[Al, [B], and [AB]

Consider [A]:
Gain due to dissociation AB =>A + B Loss due to association A+ B => AB
d
—|A| =G4 — L
g =0~ La
AB falls apart A has to find B
=> Ga depends only on [AB] => |La depends on [A] and [B]
G4 =k, |AB] Ly =ks|A| B
phenomenological d ..
proportionality E[A] =k [AB| — ky|A]|B]
constant
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A+ B<=>AB

d
For [A]:  we just found: E[A] = k,|AB| — k¢|A||B]
For [B]:  for symmetry reasons E[B] = E[A]
| y i dat dt
. d d
For [AB]: exchange gain and loss E[AB] = _E[A] =k¢|A][B| — k. |AB]

with [A](to), [B](to), and [AB](to) => complete description of the system

time course = initial conditions + dynamics

17. Lecture WS 2015/16 Bioinformatics IlI 18



Slightly more complex: A+ 2B <=> AB>

Association: < one A and two B have to come together
« forming one complex AB:2 requires two units of B

Ly = k¢ [A][B][B] = k¢ [A][B]? Ly = 2k; [A][B]’
Dissociation: one AB:2 decays into one A and two B

Gx = k,[AB))] Gg = 2k, [AB))]

Put everything together

a4
dt

d d d
E[B] = ZE[A] E[ABEI

[A] =k, [AB2] — k¢[A][B]’

17. Lecture WS 2015/16 Bioinformatics IlI
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A+ 2B <=>AB> "Ais produced when AB: falls apart or
is consumed when AB:2 is built from one A and two B"

Sign matters: Gains with "+", losses with "-"

Logical conditions: "...from A and B"
“and” corresponds to "x"  “or” corresponds to "+"
Stoichiometries: one factor for each educt (=> [B]?)

prefactors survive

Mass conservation: terms with "-" have to show up with "+", too

d d d d d

dt

17. Lecture WS 2015/16 Bioinformatics IlI
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A Worked Example

Lotka-Volterra population model

R1: A+ X => 2X prey X lives on A
R2: X+Y => 2Y predator Y lives on prey X
R3: Y => B predator Y dies stoichiometric
matrix S
Rates for the reactions Changes of the metabolites
dR;
—=kAX
dt !
dR;
— =k XY
a
dR;
—=kY
dt )
dX
=> change of X: — = 4+kAX — kXY 4+ 0

dt

17. Lecture WS 2015/16 Bioinformatics I 21



-1 0 0

= dR;/dt
dR -
With o= —- = | dRy/dt and 5=| o ' 0
dt 0 1 -1
ng/dt 0 0 1
A
d. dlx d . dX; dR;
_ ag a4 _¢4 — S —
we get: th 7|y S drR or dr ; I~ gy
/[ N\
amounts speeds of
_ processed per the
Plug in to get: reaction reactions
dA dR; dX dR dR
—:——:—klAX —_— l— Z:kAX—kXY
it dt AP TE TE .
dB dR; dY dR dR:
dt | dt i~ g @™ ’
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Lotka—Volterra: assume A = const, B ignored

=> cyclic population changes
ix 27 XY
pra k1AX — ko XY -
1 —
dY
— = ko XY — k3Y
7 2 3
ki =ko=ks=0.3 0) !
0 50 100
time
Steady State: when do the populations not change?
dX dY k1 k3 Steady state =
dr  dr 0 = Y= k_gA X = ka fluxes balanced

With ki =k2=k3=0.3 and A= 1 => X=Y=1

17. Lecture WS 2015/16 Bioinformatics IlI
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Reaction: A+B— AB

. dA
Rate equation: == —k-A-B= f(A(t),B(1))

! \

derivative of A(t) = some function

Taylor expansion for
displacement t around f, = O:
dA 2 d’A t* d*A
Alt)=A0)+t-—0)+ = —0)+...=) — - —(0
(1) =A0)+ dt( )+2 dt2( )+ = k! dik

Truncate this expansion after second term (linear approximation):

A() ~A(0)+ :-%(0) + o)
~A(0)+t- f (A(0),B(0)) + O(r*)
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Linear approximation to (true) A(t):

dA
Alt) 2 A0)+ 1-—(0)  + o(t?)
~A(0)+1- f(A(0),B(0)) + rf\)’
initial condition increment error
For t —Q
t d—A(O) > ﬁ @(0) >
dt 2 dt?

Use linear approximation for small time step At:

A(t+Ar) = A(t) + Ar-ﬂ(r) This is the so-called

& "forward Euler" algorithm

17. Lecture WS 2015/16 Bioinformatics IlI 25



General form:  Xj(t+At) = X,(t) + At- f(X;(2)) + O(Ar?)

. At?/2-X" .
relative error: g = / o« At 1st order algorithm
At X'
relative error decreases with 1st power of step size At
A
X b X
F—F—F % %@ LR AR AR
At t Al2 !

Black: ideal dynamic trajectory, red: dynamics integrated by forward Euler algorithm
Right side: integration time steps are half of left side -> smaller error
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Reaction:

Example: chained reactions

Time evolution:

concentrations

0 10 20 30 40
time

17. Lecture WS 2015/16

A= B=°0C

Bioinformatics Il

relative error

kag =0.1, kgc=0.07

Relative error vs. At
att=10:

0.17
Ml.l
0.01 7

C
0.001

0.1 04 1 4
time step At

runtime a (At)™’

27



Example Code: Forward Euler

‘® O 6 | BspCode_Euler.py

# Initial values

h=1.8

B =8.8

C=06.8

# Rate constants
kl1=8.1

k2 = B.87

dt. = 8.1

t=8

# main loop
while(t < 26.8):
# derivatives
dRl = k1 * &
dRf?2 = k2 ¥ B
# add up changes
A += dt * (-dR1)
B += dt * (dR1l - dRZ)
C += dt # dR2

# increment t
t += dt

# output,
print t, &, B, C

(&)

17. Lecture WS 2015/16

A=>B=C

lterate:

At +At) = A(t)

Important:

Bioinformatics Il

first calculate all derivatives,

then update densities!

dA
+ At

(t)

28



concentrations

What is the “correct” time step?

A > B > C
Approximation works for:
dA
=> At K
C max (k)
0.507
Here: — —
0.00 Y T 7 ere kAB 01: kBC 0-07
0 10 20 30 40 »
time => At < 0.1 — 10
Note 1:

read “«” as “a few percent”

17. Lecture WS 2015/16 Bioinformatics IlI
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Rate equations <=> description via densities

L]
S A A e L it

.. _ Indistinguishable particles
density =
volume element
=> density is a continuum measure, “..
independent of the volume element '

009,°
293 v0®
SRR
..o. o,

....::.. o
o2 ' ) .o. o
:'.°.':°'o. o ®

"half of the volume => half of the particles"

When density gets very low .
=> each particle matters

Examples:
~10 Lac repressors per cell, chemotaxis, :
transcription from a single gene, ...
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Density Fluctuations

N=10 (e 1 7 N =100

O 1556

6 6

’ * K

i ‘B

° OO 3 6 9
N = 10000

OB 556
6

0
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Spread: Poisson Distribution

Stochastic probability that k events occur follows the Poisson distribution
(here: event = "a particle is present"):

Ak Y k=0,1,2, ...
Pk = Ee A > 0 is a parameter
Average: (k) = E kpre=A Variance: g2 — E pi (k— (k))2 — 2
c=VA
Relative spread (error): Ak _° _ L
PR TS RV/Y

=> Fluctuations are negligible for "chemical" test tube situations
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Consider association: A \
A+B => AB /%- » AB
B

Continuous rate equation: ~ —— = k[A][B]

Number of new AB in volume V during At:

d|AB
ANgp = [dt]VAt

Density “picture” Particle “picture”
reaction rate kag => reaction probability Pas
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Consider:

A+B => AB

Change in the number of AB:
ANsp = Pap No Np

Units: Continuous case

dAB _@ 1
dt | s A] =
Stochastic case
INaB| = N4

17. Lecture WS 2015/16
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Association probability:

kap At
Pyp = M;,
kag AB
Mol [
_— <=> k —_
[ [kas Mol s
[NB] =1 <=> [PAB] =1

Bioinformatics Il
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Direct Implementation

806 < Continuous_AB.py

A+B => AB

806 « Stochastic_AB.py

=

# contirjuous association of A and B

# porameter
tEnd = 5.8

dt = 8.1
volume = 188.0

# pote and probability
kAE = 1.8
prob = kAE #* dt / wolume

# jnitial conditions: particle numbers
A = 1808

B = 1808

AE = @

cotivart to densities

Afwo lume

B fwo lume

E = AB/volume

#
A
=]
A

# main loop
t=8.0
print t, "Wt", A, "4k, B, "4t", AE

whi le{t<tEnd }:
dAB = dt * kAE * A * B

AE += dAE
A —= dAB
B -= dAB

# jrncrement time and output
t += dt
prinmt &, LU, A, "Si0, B, "St', AB

v% vm vn:l

-r

# Ztochastic association of A + B =+ ABE
import random

# porameter
tEnd = 5.8

dt = B.61
volume = 186.8

# pote and probability
kAE = 1.0
prob = KRE * dt S volume

# jnitial conditions

A = 1888
E = 18&@@
AE = 8

# main loop
t=8.8
print £, "%t", Afvolume, "St", BAvolume, "Wt', ABSvolume

while{t{tEnd}:
dAE = @
# check for ewery pair A, E
for ia in xrange{A}:
for ib in xrangefB):
r = random.randomy

if {r « prab):
dAB+=1
AE += dAE
A —= dAE
E —-= dAE

# jpcrement time and output
t += dt
print £, "St", Afvolume, "Nt", BAvolume, "Wt, ABAvolume

e

Note: both versions are didactic implementations

17. Lecture WS 2015/16
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Example: Chained Reactions

A=>B=>C
Rates: dA dB dC
L — kA — =k A—kB —=kB
dt ! dt : 2 dt 2

Time course from continuous rate equations (benchmark):

AN

ki =k2=0.3 (units?)
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Stochastic Implementation

A=>B=>C Ao = 1000 particles initially

ki =k2=0.3 Values att =7 (1000 runs)

=> Stochastic version exhibits fluctuations
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Less Particles => Larger Fluctuations

Ao =100 shown are 4 different runs
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Even Less Particles




Spread vs. Particle Number

Poisson:
relative fluctuations o< 1/v/N

Repeat calculation 1000 times
and record values at t=7.

Fit distributions with Gaussian
(Normal distribution)

g(x) = exp l < >)2]
W/\HA{}
<A>=0.13, wa = 0.45
<B>=0.26, ws = 0.55
<C>=0.61, wc = 0.45
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Naive implementation:

Features of this implementation

For every timestep:

events =0

For every possible pair of A, B:
get random number r € [0, 1)
if r < PaB:

events++
AB += events
A, B —= events

+ very simple
+ direct implementation of the
underlying process

— costly runtime O(N?)
— first order approximation
— one trajectory at a time

=> how to do better???

Determine complete
probability distribution
=> Master equation

17. Lecture WS 2015/16
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propagation
=> Gillespie algorithm
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A Fast Algorithm

Daniel T. Gillespie

Exact Stochastic Simulation of Coupled Chemical Reactions

Daniel T. Gillespie*®

Research Department, Naval Weapons Center, China Lake, California 93555 (Received May 12, 1977)

Publication costs assisted by the Naval Weapons Center

There are two formalisms for mathematically describing the time behavior of a spatially homogeneous chemical
system: The deterministic approach regards the time evolution as a continuous, wholly predictable process
which is governed by a set of coupled, ordinary differential equations (the “reaction-rate equations”); the stochastic
approach regards the time evolution as a kind of random-walk process which is governed by a single dif-
ferential-difference equation (the “master equation”). Fairly simple kinetic theory arguments show that the
stochastic formulation of chemical kinetics has a firmer physical basis than the deterministic formulation, but
unfortunately the stochastic master equation is often mathematically intractable. There is, however, a way
to make exact numerical calculations within the framework of the stochastic formulation without having to
deal with the master equation directly. It is a relatively simple digital computer algorithm which uses a rigorously
derived Monte Carlo procedure to numerically simulate the time evolution of the given chemical system. Like
the master equation, this “stochastic simulation algorithm™ correctly accounts for the inherent fluctuations
and correlations that are necessarily ignored in the deterministic formulation. In addition, unlike most procedures
for numerically solving the deterministic reaction-rate equations, this algorithm never approximates infinitesimal
time increments dt by finite time steps Af. The feasibility and utility of the simulation algorithm are demonstrated
by applying it to several well-known model chemical systems, including the Lotka model, the Brusselator, and
the Oregonator.

D. Gillespie, J. Phys. Chem. 81 (1977) 2340-2361
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Consider decay reation: A => @ (this model describes e.g. the radioactive decay)

Probability for one reaction in (¢, t+Af) with A(f) molecules = A(t) k At

Naive Algorithm:
A=A0
For every timestep:
get random numberr € [0, 1)
if r < A*k*dt:
A = A-1
It works, but: A*k*dt << 1 for reasons of (good) accuracy

=> many many steps where nothings happens

=> Use adaptive stepsize method?
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Idea: Figure out when the next reaction will take place!

(In between the discrete events nothing happens anyway ... :-)

Suppose there are A(t) molecules in the system at time t

f(A(t), s) = probability that with A(t) molecules the next reaction takes place in
interval (t+s, t+s+ds) with ds =>0

g(A(t), s) = probability that with A(t) molecules no reaction occurs in (t, t+s)

Then: f(A(t),s)ds = g(A(t),s) A(t +s) kds
No reaction during (t, t+s):

f(A(t),s)ds = g(A(z),s) A(t)kds

probability for reaction in (i+s, t+s+ds)
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Now we need g(A(t), s)
Extend g(A(t), s) a bit:
g(A(t),s+ds) = g(A(t),s) [1 —A(t+s)kds|

Replace again A(t+s) by A(t) and rearrange:

g AT D) 29 A0 GO gk g, )

With g(A, 0) =1 ("no reaction during no time")

=> Distribution of waiting times between discrete reaction events:
8(A(r),s) = exp[—A(t)ks]

Life time = average waiting time: so =
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Exponentially Distributed Random Numbers

Exponential probability distribution:

8(A(r),s) = exp[—A(t)ks]

Solve r — exp[—A(f) ks] for s:

=t [ = sl

Simple Gillespie algorithm for the decay reaction A => O :

A=A0

While(A > 0):
get random number r € [0, 1)
t=t+s(r)
A=A-1
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Gillespie vs. Naive Algorithm
Naive: Gillespie:

"What is the probability
that an event will occur
during the next At?"

"How long will it take until
the next event?"

=> small fixed timesteps => variable timesteps

=> 1st order approximation => exact

® Gillespig
* naive
- analytic

® Gillespi¢g
* naive
- analytic
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Gillespie — Complete

For an arbitrary number of reactions (events):

(i) determine probabilities for the individual reactions: ai i=1,...,N
total probability ao = 2 q;
1 1
(ii) get time s until next event in any of the reactions: 5§ = Ot_o In [—]
F1
j—1 J
(iif) Choose the next reaction j from: Z o < Qg < Ea,-
i=1 i=1

(iv) update time and particle numbers
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Reactions: A+A &' g A+B £ g g £ A g &4 B

. , dA 5
Continuous rate equations: o = k3 — 2A°ky — ABk

Stationary state:

with ki =103 s ko =102 s ks=1.2s ka=1s""
=> Ass = 10,Bss =10
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Gillespie Algorithm
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Stochastic Simulation

=
3
g
<
S
3
g

time [sec] time [sec]

w
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Distribution of Stationary States

A+A 24 g A+B £ g o % A o 4B
ki =103 s k2 =102 s ks3=1.2s ks=1s""
Continuous model: => From long—time Gillespie runs:
Ass =10, Bss =10 <A>=96, <B>=12.2

AN
>

=

B

S

-

=]
o
g

o

=
3 L
g 2
E &
as] =

15

5 5
3 s
E =
2 W

n
e
[=]
ra

ﬂ e

5 10 15 20 25 a0 2 4 6 8 10 12 14 16 18 20 22 24
number of A molecules number of A molecules

=]

w
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For many simple systems:
stochastic solution looks like noisy deterministic solution

Yet in some cases, stochastic description gives qualitatively different results

» swapping between two stationary states
* noise-induced oscillations
* Lotka-Volterra with small populations

* sensitivity in signalling
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k]_ kf_‘l
Reactions: 2A — 3A, 0 — A F. Schldgl, Z. Physik 253 (1972) 147—-162
k2 ky

dA
Rate equation: o = klAz — k2A3 + k3 — k4A

With: ki =0.18 min~! k2=25x10%min'" k3=2200 min-! ks = 37.5 min~!

Stationary states: As1 =100, As2 =400 (stable) Au =220 (unstable)

=> Depending on initial conditions (A(0) <> 220),
the deterministic system goes into As1 or As2 (and stays there).
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Two States — Stochastic

—stochastic
= deterministic

o
=)

I
S

M
&

o
o
g
£ 300
IS
2
E
=3
=

number of molecules

=> Fluctuations can drive the system from one stable state into another
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Self-Induced Stochastic Resonance
System oA+B 29 3A % <E§2A o £ B
3

Compare the time evolution from
initial state (A, B) = (10, 10) | — stochastic
in deterministic and stochastic - aerministe
simulations.

=> deterministic simulation
converges to and stays at fixed
point (A, B) = (10, 1.1e4)

wn
o
=
]
o9
o
E
<
ks
e
)
o
E
=)
=

40
time [min]

=> periodic oscillations in the
stochastic model
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* Mass action kinetics
=> solving (integrating) differential equations for time-dependent behavior

=> Forward-Euler: extrapolation, time steps

» Stochastic Description
=> why stochastic?
=> Gillespie algorithm
=> different dynamic behavior
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