Graph Basics

A graph G is an ordered pair (V, E) of a set V of vertices and a set E of edges.

Degree distribution $P(k)$

$$P(k) = \frac{n_k}{N}$$

Random network:
also called the "Erdös-Renyi model"
start from all nodes, add links randomly
$P(k) = "Poisson"$ (will show this on the next slides)

$$P(k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

Scale-free network:
grow with preferential attachment
$P(k) = \text{power law (dt. Potenzgesetz)}$
Connected Components

Connected graph <=) there is a path between all pairs of nodes

In large (random) networks: complete \(\{ V \} \) often not connected
→ identify connected subsets \(\{ V_i \} \) with \(\{ V \} = U \{ V_i \} \)
→ connected components (CC)

\[\#CC = 5 \]
\[N_{max} = 15 \]
\[N_{min} = 1 \]
Connectivity of the Neighborhood

How many of the neighboring vertices are themselves neighbors?

=> clustering coefficient $C(k)$

Number of possible edges between k nodes: $n_{\text{max}} = \frac{k(k-1)}{2}$

n_k is the actual number of edges between the neighbor nodes.

Fraction of actual edges \cong clustering coefficient $C(k, n_k) = \frac{2n_k}{k(k-1)}$

- **green:** $k = 2, \quad n_k = 1 \quad \rightarrow \quad C = 1$
- **red:** $k = 4, \quad n_k = 2 \quad \rightarrow \quad C = 1/3$
- **blue:** $k = 1, \quad n_k = ? \quad \rightarrow \quad C$ is not defined

Note: clustering coeff. sometimes also defined via fraction of possible triangles
Clustering Coefficient of a Graph

Data: \(C_i \) for each node \(i \) \(\rightarrow \) \(N \) values

Statistics:

average at fixed \(k \)

\[C(k) = \frac{1}{n_k} \sum_{k_i=k} C_i \]

average over all nodes

\[\langle C \rangle = \frac{1}{N} \sum C_i \]

Note: it is also possible to average the \(C(k) \)

\(\Rightarrow \) This yields a different value for \(\langle C \rangle \) !!!

because no weighting is done for different occupancy of \(k \)’s.
Basic Types: (1) Random Network

Generally: N vertices connected by L edges

More specific: **distribute** the edges **randomly** between the vertices

Maximal number of links between N vertices:

$$L_{max} = \frac{N(N-1)}{2}$$

\Rightarrow **probability** p for an edge between two randomly selected nodes:

$$p = \frac{L}{L_{max}} = \frac{2L}{N(N-1)}$$

\Rightarrow **average degree** λ

$$\lambda = \frac{2L}{N} = p(N-1)$$

path lengths in a random network grow with $\log(N)$ \Rightarrow small world
Random Network: \(P(k) \)

Network with \(N \) vertices, \(L \) edges

\(\Rightarrow \) probability for a random link:

\[
p = \frac{2L}{N(N-1)}
\]

Probability that random node has links to \(k \) other particular nodes:

\[
W_k = p^k (1 - p)^{N-k-1}
\]

Probability that random node has links to any \(k \) other nodes:

\[
P(k) = \binom{N-1}{k} W_k = \frac{(N-1)!}{(N-k-1)! k!} W_k
\]

Limit of large graph: \(N \to \infty \), \(p = \lambda / N \)

\[
\lim_{N \to \infty} P(k) = \lim_{N \to \infty} \frac{N!}{(N-k)! k!} p^k (1 - p)^{N-k}
\]

\[
= \lim_{N \to \infty} \left(\frac{N(N-1) \ldots (N-k+1)}{N^k} \right) \frac{\lambda^k}{k!} \left(1 - \frac{\lambda}{N} \right)^N \left(1 - \frac{\lambda}{N} \right)^{-k}
\]

\[
= 1 \frac{\lambda^k}{k!} e^{-\lambda} 1
\]

\[
= \frac{\lambda^k}{k!} e^{-\lambda}
\]
Random Network: $P(k)$

Many independently placed edges => Poisson statistics

$$P(k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

| k | $P(k | \lambda = 2)$ |
|-----|----------------------|
| 0 | 0.135335283237 |
| 1 | 0.270670566473 |
| 2 | 0.270670566473 |
| 3 | 0.180447044315 |
| 4 | 0.0902235221577 |
| 5 | 0.0360894088631 |
| 6 | 0.0120298029544 |
| 7 | 0.00343708655839 |
| 8 | 0.000859271639598 |
| 9 | 0.000190949253244 |
| 10 | 3.81898506488e-05 |

=> Small probability for $k >> \lambda$
Basic Types: (2) Scale-Free

Growing network a la Barabasi and Albert (1999):
• start from a small "nucleus"
• add new node with \(n \) links
• connect new links to existing nodes with probability proportional to degree \(k \)
 (preferential attachment; \(\beta(\text{BA}) = 1 \))

\[p_i = \left(\frac{k_i}{\sum k_i} \right)^\beta \]

=> "the rich get richer"

Properties:
• this leads to power-law degree distribution:

\[P(k) \propto k^{-\gamma} \quad \text{with } \gamma = 3 \text{ for the BA model} \]

• self-similar structure with highly connected hubs (no intrinsic length scale)
 => path lengths grow with \(\log(\log(N)) \)
 => very small world
The Power-Law Signature

Power law

\[P(k) \propto k^{-\gamma} \]

Take log on both sides:

\[\log(P(k)) = -\gamma \log(k) \]

Plot \(\log(P) \) vs. \(\log(k) \) => straight line

Note: for fitting \(\gamma \) against experimental data it is often better to use the integrated \(P(k) \n\) => integral smoothes the data

\[
\int_{k_0}^{k} P(k) \, dk = \left[-\frac{k^{-(\gamma-1)}}{\gamma} \right]_{k_0}^{k}
\]
Scale-Free: Examples

The World-Wide-Web:
=> growth via links to portal sites

Flight connections between airports
=> large international hubs, small local airports

Protein interaction networks
=> some central, ubiquitous proteins

http://a.parsons.edu/~limam240/blogimages/16_full.jpg
Saturation: Ageing + Costs

Example: network of movie actors (with how many other actors did an actor appear in a joint movie?)

Each actor makes new acquaintances for ~40 years before retirement => limits maximum number of links

Example: building up a physical computer network

It gets more and more expensive for a network hub to grow further => number of links saturates
Hierarchical, Regular, Clustered…

Tree-like network with similar degrees
=> like an organigram
=> hierarchic network

All nodes have the same degree and the same local neighborhood
=> regular network

\[P(k) \] for these example networks? (finite size!)

Note: most real-world networks are somewhere in between the basic types
C(k) for a Random Network

Clustering coefficient when \(m \) edges exist between \(k \) neighbors

\[
C(k, m) = \frac{2m}{k(k - 1)}
\]

Probability to have exactly \(m \) edges between the \(k \) neighbors

\[
W(m) = \binom{k}{m} p^m (1 - p)^{\frac{k(k-1)}{2} - m}
\]

In this way, we pick the \(m \) start nodes for the \(m \) edges from the \(k \) nodes.

Average \(C(k) \) for degree \(k \):

\[
C(k) = \frac{\sum_{m=0}^{\frac{k(k-1)}{2}} W(m) C(k, m)}{\sum_{m=0}^{\frac{k(k-1)}{2}} W(m)} = \ldots = p
\]

\(\rightarrow C(k) \) is independent of \(k \)

\(\leftrightarrow \) same local connectivity throughout the network
The Percolation Threshold

Connected component = all vertices that are connected by a path

Very few edges \Rightarrow only CCs of size 2

Percolation transition at \lambda = 2

Many edges \Rightarrow graph is one CC

Identify:
- \(N_{cc} \) = number of connected components (clusters) (green)
- \(N_{max} \) = size of the largest cluster (red)

For \(\lambda > 2 \):
“giant component” exists

average degree \(\lambda \)

\[\lambda = \frac{2L}{N} = p(N - 1) \]
Percolation Transition

Example: regular square lattice, $N = 25$ nodes, $L_{max} = 40$ links between next neighbors

- $L = 3$, $\lambda = 0.24$
 - $N_{cc} = 22$
 - $N_{max} = 2$

- $L = 11$, $\lambda = 0.88$
 - $N_{cc} = 14$
 - $N_{max} = 4$

- $L = 22$, $\lambda = 1.76$
 - $N_{cc} = 3$
 - $N_{max} = 15$

- $L = 24$, $\lambda = 1.92$
 - $N_{cc} = 1$
 - $N_{max} = 25$

Percolation = "spanning structure" emerges (long range connectivity)
for an infinite square lattice: percolation transition at $\lambda = 2$
here: finite size effect \Leftrightarrow fewer possible links at the boundaries
Clusters in scale free graphs

Scale-free network <-> no intrinsic scale
→ same properties at any \(k \)-level
 → same local connectivity
 → \(C(k) = \text{const.} \)

"Real" biological data
→ missing links
 → multiple clusters

Is the metabolic network of a cell fully connected?
Algorithms on Graphs

How to represent a graph in the computer?

1. **Adjacency list**
 => list of neighbors for each node

 1: (3)
 2: (3)
 3: (1, 2, 4, 5)
 4: (3, 5, 6)
 5: (3, 4, 6, 7)
 6: (4, 5)
 7: (5)

 + minimal memory requirement
 + vertices can easily be added or removed
 – requires $O(\lambda)$ time to determine whether a certain edge exists

Note: for weighted graphs store pairs of (neighbor label, edge weight)
Graph Representation II

2. Adjacency matrix

→ \(N \times N \) matrix with entries \(M_{uv} \)
 \(M_{uv} = \) weight when edge between \(u \) and \(v \) exists,
 0 otherwise

→ symmetric for undirected graphs

+ fast \(O(1) \) lookup of edges
– large memory requirements
– adding or removing nodes is expensive

Note: very convenient in programming
languages that support sparse multi-dimensional arrays

=> Perl

\[
\begin{array}{cccccccc}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & - & 0 & 1 & 0 & 0 & 0 & 0 \\
2 & 0 & - & 1 & 0 & 0 & 0 & 0 \\
3 & 1 & 1 & - & 1 & 1 & 0 & 0 \\
4 & 0 & 0 & 1 & - & 1 & 1 & 0 \\
5 & 0 & 0 & 1 & 1 & - & 1 & 1 \\
6 & 0 & 0 & 0 & 1 & 1 & - & 0 \\
7 & 0 & 0 & 0 & 0 & 1 & 0 & - \\
\end{array}
\]
Graph Representation III

3. Incidence matrix
→ $N \times M$ matrix with entries M_{nm}
 $M_{nm} =$ weight when edge m ends at node n
 0 otherwise

→ for a plain graph there are two entries per column

→ directed graph:
 indicate direction via sign (in/out)

The incidence matrix is a special form of the stoichiometric matrix of reaction networks.
The Shortest Path Problem

Problem:
Find the shortest path from a given vertex to the other vertices of the graph (Dijkstra 1959).

We need (input):
• weighted graph $G(V, E)$
• start (source) vertex s in G

We get (output):
• shortest distances $d[v]$ between s and v
• shortest paths from s to v

Idea: Always proceed with the closest node → greedy algorithm

Real world application:
→ GPS navigation devices
Dijkstra Algorithm 0

Initialization:

for all nodes v in G:
 d[v] = oo
 pred[v] = nil

d[s] = 0

distance from source to source = 0
distance and path to all other nodes is still unknown

\[d[v]\] = length of path from s to v
\[pred[v]\] = predecessor node on the shortest path

In the example: s = 1

<table>
<thead>
<tr>
<th>node</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>0</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
</tr>
<tr>
<td>pred</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Dijkstra I

Iteration:

\[Q = V \]
while Q is not empty:
 \[u = \text{node with minimal } d \]
 if \(d[u] = \infty \):
 break
 delete \(u \) from \(Q \)
 for each neighbor \(v \) of \(u \):
 \[d_{\text{temp}} = d[u] + d(u,v) \]
 if \(d_{\text{temp}} < d[v] \):
 \[d[v] = d_{\text{temp}} \]
 \[\text{pred}[v] = u \]
return pred[]

Save \(\{V\} \) into working copy \(Q \)
choose node closest to \(s \)
exit if all remaining nodes are inaccessible
calculate distance to \(u \)'s neighbors
if new path is shorter => update
Q = (1, 2, 3, 4, 5, 6, 7)

<table>
<thead>
<tr>
<th>node</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>0</td>
<td>oo</td>
<td>23</td>
<td>12</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
</tr>
<tr>
<td>pred</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Q = (2, 3, 4, 5, 6, 7)

<table>
<thead>
<tr>
<th>node</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>0</td>
<td>oo</td>
<td>21</td>
<td>12</td>
<td>30</td>
<td>37</td>
<td>oo</td>
</tr>
<tr>
<td>pred</td>
<td>–</td>
<td>–</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>–</td>
</tr>
</tbody>
</table>

Q = (2, 3, 5, 6, 7)

<table>
<thead>
<tr>
<th>node</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>0</td>
<td>26</td>
<td>21</td>
<td>12</td>
<td>30</td>
<td>37</td>
<td>oo</td>
</tr>
<tr>
<td>pred</td>
<td>–</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>–</td>
</tr>
</tbody>
</table>

Q = (2, 5, 6, 7)

<table>
<thead>
<tr>
<th>node</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>0</td>
<td>26</td>
<td>21</td>
<td>12</td>
<td>30</td>
<td>37</td>
<td>42</td>
</tr>
<tr>
<td>pred</td>
<td>–</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Q = V

while Q is not empty:
 u = node with minimal d
 if d[u] = oo:
 break
 delete u from Q
 for each neighbor v of u:
 d_temp = d[u] + d(u,v)
 if d_temp < d[v]:
 d[v] = d_temp
 pred[v] = u
 return pred[]
Example contd.

4)

Q = (2, 5, 6, 7)

<table>
<thead>
<tr>
<th>node</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>0</td>
<td>26</td>
<td>21</td>
<td>12</td>
<td>30</td>
<td>37</td>
<td>42</td>
</tr>
<tr>
<td>pred</td>
<td>–</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

5)

Q = (5, 6, 7)

<table>
<thead>
<tr>
<th>node</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>0</td>
<td>26</td>
<td>21</td>
<td>12</td>
<td>30</td>
<td>37</td>
<td>42</td>
</tr>
<tr>
<td>pred</td>
<td>–</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Q = (6, 7)

Q = (7)

Final result:

\[
d(1, 7) = 42 \quad \text{path} = (1, 4, 3, 2, 7)
\]

\[
d(1, 6) = 37 \quad \text{path} = (1, 4, 6) \quad \text{or} \quad (1, 4, 5, 6)
\]
Beyond Dijkstra

Dijkstra works for directed and undirected graphs with **non-negative** weights.

Straight-forward implementation: $O(N^2)$

Graphs with positive and negative weights
→ **Bellman-Ford**-algorithm

If there is a heuristic to estimate weights:
→ improve efficiency of Dijkstra
 → **A***-algorithm
Graph Layout

Task: visualize various interaction data:

- **protein interaction data** (undirected):
 - nodes – proteins
 - edges – interactions

- **metabolic pathways** (directed):
 - nodes – substances
 - edges – reactions

- **regulatory networks** (directed):
 - nodes – transcription factors + regulated proteins
 - edges – regulatory interaction

- **co-localization** (undirected):
 - nodes – proteins
 - edges – co-localization information

- **homology** (undirected/directed):
 - nodes – proteins
 - edges – sequence similarity (BLAST score)
Graph Layout Algorithms

Graphs encapsulate relationship between objects → drawing gives visual impression of these relations

Good Graph Layout: aesthetic
• minimal edge crossing
• highlight symmetry (when present in the data)
• even spacing between the nodes

Many approaches in literature (and in software tools), most useful ones usually NP-complete (exponential runtime)

Most popular for straight-edge-drawing:
→ force-directed: spring model or spring-electrical model
→ embedding algorithms like H3 or LGL
Force-Directed Layout

Peter Eades (1984): graph layout heuristic

→ "Spring Embedder" algorithm.

• edges → springs
 vertices → rings that connect the springs

• Layout by dynamic relaxation

→ lowest-energy conformation

→ "Force Directed" algorithm

http://www.hpc.unm.edu/~sunls/research/treelayout/node1.html
Energy and Force

Energy: describes the altitude of the landscape

\[E(x) = mgh(x) \]

Energy increases when you go up the hill

You need more force for a steeper ascent

\[F(x) = -\frac{dE(x)}{dx} \]

Force: describes the change of the altitude, points downwards.
Spring Embedder Layout

Springs regulate the mutual distance between the nodes
• too close \rightarrow repulsive force
• too far \rightarrow attractive force

Spring embedder algorithm:
• add springs for all edges
• add loose springs to all non-adjacent vertex pairs

Total energy of the system:
\[
E = \sum_{i=1}^{V-1} \sum_{j=i+1}^{V} \frac{R}{l_{ij}^2} \left(|x_i - x_j| - l_{ij} \right)^2
\]

$x_i, x_j =$ position vectors for nodes i and j
$l_{ij} =$ rest length of the spring between i and j
$R =$ spring constant (stiffness)

Problem: l_{ij} have to be determined a priori, e.g., from network distance
Spring Model Layout

Task: find configuration of **minimal energy**

In 2D/3D: force = negative gradient of the energy

\[
\vec{F}(\vec{x}) = -\nabla E(\vec{x}) = - \begin{pmatrix} \frac{\partial E}{\partial x} \\ \frac{\partial E}{\partial y} \\ \frac{\partial E}{\partial z} \end{pmatrix}
\]

→ Iteratively **move** nodes "downhill" along the gradient of the energy
→ displace nodes **proportional** to the **force** acting on them

Problems:
• local minima
• a priori knowledge of all spring lengths
→ works best for regular grids
The Spring-Electrical-Model

More general model than spring embedder model: use two types of forces

1) **attractive harmonic** force between connected nodes (springs)
 \[F_{ij}^h = -k |r_i - r_j| \]
 one uses usually the same spring constant \(k \) for all edges

2) **repulsive Coulomb**-like force between all nodes
 "all nodes have like charges" \(\rightarrow \) repulsion
 \[F_{ij}^c = \frac{Q_{ij}}{|r_i - r_j|^2} \]
 either \(Q_{ij} = Q \) or, e.g., \(Q_{ij} = k_i k_j \)

Repulsion pushes all nodes apart, springs pull connected nodes together
\(\rightarrow \) **workhorse method** for small to medium sized graphs

\(\rightarrow \) Do-it-yourself in Assignment 2 \(\leq \)
Spring-Electrical Example

http://www.it.usyd.edu.au/~aquigley/3dfade/
Force-Directed Layout: Summary

Analogy to a physical system
=> force directed layout methods tend to meet various aesthetic standards:

- efficient space filling,
- uniform edge length (with equal weights and repulsions)
- symmetry
- smooth animation of the layout process (visual continuity)

Force directed graph layout → the "work horse" of layout algorithms.

Not so nice: the initial random placement of nodes and even very small changes of layout parameters will lead to different representations.
(no unique solution)

Side-effect: vertices at the periphery tend to be closer to each other than those in the center…
Runtime Scaling

Force directed layout:

loop until convergence:

- calculate forces:
 - L springs
 - \(N(N-1)/2 \) charge pairs
- move vertices
- output positions

Several possible arrangements!!! (local minima)

\(O(N^2) \)!!!

→ force directed layout suitable for small to medium graphs (≤ O(1000) nodes?)

Speed up layout by:

- **multi-level** techniques to overcome local minima
- **clustering** (octree) methods for distant groups of nodes → \(O(N \log N) \)
H3 Algorithm

Two problems of force directed layout:
• runtime scaling
• 2D space for drawing the graph

Tamara Munzner (1996-1998): H3 algorithm
→ interactively visualize large data sets of <100,000 nodes.
 • focusses on quasi-hierarchical graphs
 → use a spanning tree as the backbone of a layout algorithm
 • graph layout in exponential space (projected on 2D for interactive viewing)

Spanning tree: connected acyclic subgraph that contains all the vertices of the original graph, but does not have to include all the links
→ find a minimum-weight spanning tree through a graph with weighted edges,
 where domain-specific information is used to compute the weights
Spanning Tree

Some algorithms work only/better on trees

Idea: remove links until graph has tree structure, keep all nodes connected → spanning tree

Minimal spanning tree = spanning tree with the least total weight of the edges

Greedy Kruskal-Algorithm:
→ iteratively choose unused edge with smallest weight, if it does not lead to a circle!

greedy <=> base choice on current state, (locally optimal choice)
Kruskal - Example

Proof that there is no spanning tree with a lower weight?

Minimum spanning tree weight = 66
Cone Layout

Place the nodes according to their hierarchy starting from the root node → direction indicates lineage

For arbitrary graphs → how to get weights? → which node is the root?
Exponential Room

In Euklidian space: circumference of a circle grows linear:

\[U = 2\pi r \]

In hyperbolic space:

\[U = 2\pi \sinh r \]

→ exponentially growing space on the circle

For (cone) graph layout

→ there is enough room for yet another level

Also: mappings of the complete hyperbolic space

→ finite volume of Euklidian space
Figure 3.5: **Models of hyperbolic space.** **Left:** The projective model of hyperbolic space, which keeps lines straight but distorts angles. **Right:** The conformal model of hyperbolic space, which preserves angles but maps straight lines to circular arcs. These images were created with the *webviz* system from the Geometry Center [MB95], a first attempt to extend cone tree layouts to 3D hyperbolic space that had low information density. The cone angle has been widened to 180°, resulting in flat discs that are obvious in the projective view. The arcs visible in conformal view are actually distorted straight lines.
H3: + layout based on MST → fast
+ layout in hyperbolic space → enough room
– how to get the MST for biological graphs????

http://www.caida.org/tools/visualization/walrus/gallery1/
Summary

What you learned today:
→ Local connectivity: clustering
→ random graphs vs. scale-free graphs

→ shortest path: Dijkstra algorithm
→ graph layout: force-directed and embedding schemes
→ spanning tree: Kruskal algorithm

Next lecture:
→ biological data to build networks from