Bioinformatics 3

V 2 – Clusters, Dijkstra, and Graph Layout

Mon, Oct 26, 2015

Graph Basics

A graph G is an ordered pair (V, E) of a set V of vertices and a set E of edges.

Degree distribution P(k)

$$P(k) = \frac{n_k}{N}$$

k	0	1	2	3	4
P(k)	0	3/7	1/7	1/7	2/7

Random network:

also called the "Erdös-Renyi model" start from all nodes, add links randomly P(k) = "Poisson" (will show this on the next slides) $P(k) = \frac{\lambda^k}{k!} e^{-\lambda}$

Scale-free network:

grow with preferential attachment P(k) = power law (dt. Potenzgesetz)

Connected Components

Connected graph <=> there is a path between all pairs of nodes

In large (random) networks: complete { V} often not connected

- \rightarrow identify connected subsets $\{V_i\}$ with $\{V\} = \bigcup \{V_i\}$
- → connected components (CC)

$$\#CC = 5$$

 $N_{max} = 15$

$$N_{min} = 1$$

Connectivity of the Neighborhood

How many of the neighboring vertices are themselves neighbors? => clustering coefficient C(k)

Number of possible edges between k nodes: $n_{max} = \frac{k(k-1)}{2}$

 n_k is the actual number of edges between the neighbor nodes.

Fraction of actual edges \cong clustering coefficient $C(k, n_k) = \frac{2n_k}{k(k-1)}$

green:
$$k = 2$$
, $n_k = 1 \rightarrow C = 1$

red:
$$k = 4$$
, $n_k = 2 \rightarrow C = 1/3$

blue:
$$k = 1$$
, $n_k = ? \rightarrow C$ is not defined

Note: clustering coeff. sometimes also defined via fraction of possible triangles

Clustering Coefficient of a Graph

Data: C_i for each node $i \rightarrow N$ values

Statistics:

average at **fixed k**

$$\rightarrow C(k) = \frac{1}{n_k} \sum_{k_i = k} C_i$$

average over all nodes

$$\rightarrow \langle C \rangle = \frac{1}{N} \sum C_i$$

Note: it is also possible to average the C(k)

⇒ This yields a different value for <*C*>!!!

because no weighting is done for different occupancy of k's.

Basic Types: (1) Random Network

Generally: N vertices connected by L edges

More specific: distribute the edges randomly between the vertices

Maximal number of links between N vertices:

$$L_{max} = \frac{N(N-1)}{2}$$

=> **probability** *p* for an edge between two randomly selected nodes:

$$p = \frac{L}{L_{max}} = \frac{2L}{N(N-1)}$$

=> average degree λ

$$\lambda = \frac{2L}{N} = p(N-1)$$

path lengths in a random network grow with log(N) => small world

Random Network: P(k)

Network with *N* vertices, *L* edges => probability for a random link:

$$p = \frac{2L}{N(N-1)}$$

Probability that random node has links to *k* other particular nodes:

$$W_k = p^k (1-p)^{N-k-1}$$

Probability that random node has links to any *k* other nodes:

$$P(k) = {N-1 \choose k} W_k = \frac{(N-1)!}{(N-k-1)! \, k!} W_k$$

Limit of large graph: $N \rightarrow \text{oo}$, $p = \lambda / N$

$$\lim_{N \to \infty} P(k) = \lim_{N \to \infty} \frac{N!}{(N-k)! \, k!} \, p^k \, (1-p)^{N-k}$$

$$= \lim_{N \to \infty} \left(\frac{N(N-1) \dots (N-k+1)}{N^k} \right) \, \frac{\lambda^k}{k!} \, \left(1 - \frac{\lambda}{N} \right)^N \, \left(1 - \frac{\lambda}{N} \right)^{-k}$$

$$= 1 \qquad \qquad \frac{\lambda^k}{k!} \quad e^{-\lambda} \qquad 1$$

$$= \frac{\lambda^k}{k!} e^{-\lambda}$$

Random Network: P(k)

Many independently placed edges => Poisson statistics

$$P(k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

=> Small probability for $k >> \lambda$

k	$P(k \mid \lambda = 2)$
0	0.135335283237
1	0.270670566473
2	0.270670566473
3	0.180447044315
4	0.0902235221577
5	0.0360894088631
6	0.0120298029544
7	0.00343708655839
8	0.000859271639598
9	0.000190949253244
10	3.81898506488e-05

Basic Types: (2) Scale-Free

Growing network a la Barabasi and Albert (1999):

- start from a small "nucleus"
- add new node with n links
- connect new links to existing nodes with probability proportional to degree k (preferential attachment; $\beta(BA) = 1$) $p_i = \left(\frac{k_i}{\sum k_i}\right)^{\beta}$

=> "the rich get richer"

Properties:

• this leads to power-law degree distribution:

$$P(k) \propto k^{-\gamma}$$
 with $\gamma = 3$ for the BA model

- self-similar structure with highly connected hubs (no intrinsic length scale)
 - => path lengths grow with log(log(N))
 - => very small world

The Power-Law Signature

Power law

$$P(k) \propto k^{-\gamma}$$

Take log on both sides:

$$\log(P(k)) = -\gamma \log(k)$$

Plot log(P) vs. log(k) => straight line

Note: for fitting γ against experimental data it is often better to use the integrated P(k) => integral smoothes the data

$$\int_{k_0}^k P(k)dk = \left[-\frac{k^{-(\gamma-1)}}{\gamma} \right]_{k_0}^k$$

Scale-Free: Examples

The World-Wide-Web:

=> growth via links to portal sites

Flight connections between airports

=> large international hubs, small local airports

Protein interaction networks
=> some central,
ubiquitous proteins

http://a.parsons.edu/~limam240/blogimages/16_full.jpg

Saturation: Ageing + Costs

Example: network of movie actors (with how many other actors did an actor appear in a joint movie?)

Each actor makes new acquaintances for ~40 years before retirement => limits maximum number of links

Example: building up a physical computer network

It gets more and more expensive for a network hub to grow further => number of links saturates

12

Hierarchical, Regular, Clustered...

Tree-like network with similar degrees

- => like an organigram
 - => hierarchic network

All nodes have the same degree and the same local neighborhood

=> regular network

P(k) for these example networks? (finite size!)

Note: most real-world networks are somewhere in between the basic types

C(k) for a Random Network

Clustering coefficient when *m* edges exist between *k* neighbors

$$C(k,m) = \frac{2m}{k(k-1)}$$

Probability to have exactly *m* edges between the *k* neighbors

$$W(m) = {k \choose m} p^m (1-p)^{\frac{k(k-1)}{2}-m}$$

In this way, we pick the m start nodes for the m edges from the k nodes.

Average C(k) for degree k:

$$C(k) = \frac{\sum_{m=0}^{\frac{k(k-1)}{2}} W(m) C(k,m)}{\sum_{m=0}^{\frac{k(k-1)}{2}} W(m)} = \dots = p$$

 \rightarrow C(k) is independent of k

<=> same local connectivity throughout the network

The Percolation Threshold

Connected component = all vertices that are connected by a path

Very few edges

⇒ only CCs

of size 2

Many edges

→ graph is one CC

Identify:

 N_{cc} = number of connected components (clusters)

(green)

 N_{max} = size of the largest

cluster (red)

For $\lambda > 2$:

"giant component" exists

average degree λ

$$\lambda = \frac{2L}{N} = p(N-1)$$

Percolation Transition

Example: regular square lattice, N = 25 nodes, $L_{max} = 40$ links between next neighbors

percolation = "spanning structure" emerges (long range connectivity) for an infinite square lattice: percolation transition at $\lambda = 2$ here: finite size effect <=> fewer possible links at the boundaries

Clusters in scale free graphs

Scale-free network <=> no intrinsic scale

- → same properties at any k-level
 - → same local connectivity
 - $\rightarrow C(k) = \text{const.}$

"Real" biological data

- → missing links
 - → multiple clusters

Is the metabolic network of a cell fully connected?

Algorithms on Graphs

How to **represent** a graph in the **computer**?

1. Adjacency list

=> list of neighbors for each node

- 1: (3)
- 2: (3)
- 3: (1, 2, 4, 5)
- 4: (3, 5, 6)
- 5: (3, 4, 6, 7)
- 6: (4, 5)
- 7: (5)

- + minimal memory requirement
- + vertices can easily be added or removed
- requires $O(\lambda)$ time to determine whether a certain edge exists

Note: for weighted graphs store pairs of (neighbor label, edge weight)

Graph Representation II

2. Adjacency matrix

→ $N \times N$ matrix with entries M_{uv} M_{uv} = weight when edge between u and v exists, 0 otherwise

- + fast O(1) lookup of edges
- large memory requirements
- adding or removing nodes is expensive

Note: very convenient in programming languages that support sparse multi-dimensional arrays => Perl

	ı						
	1	2	3	4	5	6	7
1	_	0	1	0	0	0	0
2	0	_	1	0	0	0	0
3	1	1	_	1	1	0	0
4	0	0	1	_	1	1	0
5	0	0	1	1	_	1	1
6	0	0	0	1	1	_	0
7	1 - 0 1 0 0 0	0	0	0	1	0	_

Graph Representation III

3. Incidence matrix

 \rightarrow N x M matrix with entries M_{nm} M_{nm} = weight when edge m ends at node n 0 otherwise

→ for a plain graph there are two entries per column

→ directed graph: indicate direction via sign (in/out)

The incidence matrix is a special form of the stoichiometric matrix of reaction networks.

	e1	e2	еЗ	e4	e5	e6	e7
1	1						
2		1					
3	1	1	1	1			
4			1		1		
5				1		1	1
6					1	1	
7							1

The Shortest Path Problem

Problem:

Find the shortest path from a given vertex to the other vertices of the graph (Dijkstra 1959).

We need (input):

- weighted graph *G(V, E)*
- start (source) vertex s in G

We get (output):

- shortest distances *d[v]* between *s* and *v*
- shortest paths from s to v

Edsger Dijkstra (1930-2002):

Idea: Always proceed with the closest node

→ greedy algorithm

Real world application:

→ GPS navigation devices

Dijkstra Algorithm 0

Initialization:

d[v] = length of path from s to vpred[v] = predecessor node on the shortest path

In the example: s = 1

node	1	2	3	4	5	6	7
d	0	00	00	00	00	00	00
pred	_	_	_	_	_	_	_

Dijkstra I

Iteration:

```
O = V
while Q is not empty:
   u = node with minimal d
   if d[u] = oo:
      break
   delete u from O
   for each neighbor v of u:
      d temp = d[u] + d(u, v)
      if d temp < d[v]:
         d[v] = d temp
         pred[v] = u
return pred[]C
```

Save {*V*} into working copy *Q* choose node closest to *s* exit if all remaining nodes are inaccessible

calculate distance to *u*'s neighbors

if new path is shorter
=> update

Dijkstra-Example

Q = (1,	, 2,	3,	4,	5,	6,	7)
---------	------	----	----	----	----	----

node							
d	0	00	23	12	00	00	00
pred	_	_	1	1	_	_	_

$$Q = (2, 3, 4, 5, 6, 7)$$

	. `		•		,		
node							
d	0	00	21	12	30	37	00
pred	_	_	4	1	4	4	_

$$Q = (2, 3, 5, 6, 7)$$

	. `		-	,			
node	1	2	3	4	5	6	7
d	0	26	21	12	30	37	00
pred	_	3	4	1	4	4	_

```
Q = V
while Q is not empty:
    u = node with minimal d
    if d[u] = oo:
        break

    delete u from Q

    for each neighbor v of u:
        d_temp = d[u] + d(u,v)

        if d_temp < d[v]:
            d[v] = d_temp
            pred[v] = u

return pred[]C</pre>
```


$$Q = (2, 5, 6, 7)$$

node						6	7
d	0	26	21	12	30	37	42
pred	_	3	4	1	4	4	2

Example contd.

Final result:

$$Q = (6, 7)$$

$$Q = (7)$$

node	1	2	3	4	5	6	7
d	0	26	21	12	30	37	42
pred	_	3	4	1	4	4	2

$$d(1, 7) = 42$$

$$d(1, 7) = 42$$
 path = $(1, 4, 3, 2, 7)$

$$d(1, 6) = 37$$
 path = $(1, 4, 6)$ or $(1,4,5,6)$

Beyond Dijkstra

Dijkstra works for directed and undirected graphs with **non-negative** weights.

Straight-forward implementation: $O(N^2)$

Graphs with positive and negative weights

→ **Bellman-Ford**-algorithm

If there is a heuristic to estimate weights:

- → improve efficiency of Dijkstra
 - → **A***-algorithm

Graph Layout

Task: visualize various interaction data: e.g. protein interaction data (undirected): nodes – proteins edges – interactions metabolic pathways (directed) nodes – substances edges – reactions regulatory networks (directed): nodes – transcription factors + regulated proteins edges – regulatory interaction co-localization (undirected) nodes – proteins edges – co-localization information **homology** (undirected/directed) nodes – proteins edges – sequence similarity (BLAST score)

Graph Layout Algorithms

Graphs encapsulate relationship between objects

→ drawing gives visual impression of these relations

Good Graph Layout: aesthetic

- minimal edge crossing
- highlight symmetry (when present in the data)
- even spacing between the nodes

Many approaches in literature (and in software tools), most useful ones usually NP-complete (exponential runtime)

Most popular for **straight-edge-drawing**:

- → force-directed: spring model or spring-electrical model
- → embedding algorithms like H3 or LGL

Force-Directed Layout

Peter Eades (1984): graph layout heuristic

- → "Spring Embedder" algorithm.
- edges → springs
 vertices → rings that connect the springs
- Layout by dynamic relaxation
- → lowest-energy conformation
- → "Force Directed" algorithm

http://www.hpc.unm.edu/~sunls/research/treelayout/node1.html

Bioinformatics 3 – WS 15/16

Energy and Force

Energy: describes the altitude of the landscape

$$E(x) = mgh(x)$$

Energy increases when you go up the hill

You need more force for a steeper ascent

$$F(x) = -\frac{dE(x)}{dx}$$

Force: describes the change of the altitude, points downwards.

Spring Embedder Layout

Springs regulate the mutual distance between the nodes

- too close → repulsive force
- too far → attractive force

Spring embedder algorithm:

- add springs for all edges
- add loose springs to all non-adjacent vertex pairs

Total energy of the system:

$$E = \sum_{i=1}^{|V|-1} \sum_{j=i+1}^{|V|} \frac{R}{l_{ij}^2} (|x_i - x_j| - l_{ij})^2$$

 x_i , x_j = position vectors for nodes i and j l_{ij} = rest length of the spring between i and j R = spring constant (stiffness)

Problem: *lij* have to be determined a priori, e.g., from network distance

Spring Model Layout

Task: find configuration of minimal energy

In 2D/3D: force = negative gradient of the energy
$$\vec{F}(\vec{x}) \ = \ -\nabla E(\vec{x}) \ = \ -\left(\begin{array}{c} \frac{\partial E}{\partial x} \\ \frac{\partial E}{\partial y} \\ \frac{\partial E}{\partial z} \end{array}\right)$$

- → Iteratively move nodes "downhill" along the gradient of the energy
 - → displace nodes proportional to the force acting on them

Problems:

- local minima
- a priori knowledge of all spring lengths
- → works best for regular grids

The Spring-Electrical-Model

More general model than spring embedder model: use two types of forces

1) attractive harmonic force between connected nodes (springs)

$$F_{ij}^h = -k |r_i - r_j|$$
 one uses usually the same spring constant k for all edges

2) repulsive Coulomb-like force between all nodes"all nodes have like charges" → repulsion

$$F_{ij}^c = rac{Q_{ij}}{|r_i - r_j|^2}$$
 either $Q_{ij} = Q$ or, e.g., $Q_{ij} = k_i \, k_j$

Repulsion pushes all nodes apart, springs pull connected nodes together **workhorse method** for small to medium sized graphs

→ Do-it-yourself in Assignment 2 <=

Spring-Electrical Example

http://www.it.usyd.edu.au/~aquigley/3dfade/

Force-Directed Layout: Summary

Analogy to a physical system

- => force directed layout methods tend to meet various **aesthetic** standards:
 - efficient space filling,
 - uniform edge length (with equal weights and repulsions)
 - symmetry
 - smooth animation of the layout process (visual continuity)

Force directed graph layout → the "work horse" of layout algorithms.

Not so nice: the **initial random placement** of nodes and even very small changes of layout parameters will lead to **different representations**. (no unique solution)

Side-effect: vertices at the periphery tend to be closer to each other than those in the center...

Runtime Scaling

Force directed layout:

```
loop until convergence:

calculate forces:

L \text{ springs}
N(N-1)/2 \text{ charge pairs}

move vertices

output positions

arrangements!!!

(local minima)

O(N^2)!!!
```

→ force directed layout suitable for small to medium graphs (≤ O(1000) nodes?)

Speed up layout by:

- multi-level techniques to overcome local minima
- clustering (octree) methods for distant groups of nodes → O(N log N)

Several possible

H3 Algorithm

Two problems of force directed layout:

- runtime scaling
- 2D space for drawing the graph

Tamara Munzner (1996-1998): H3 algorithm

- → interactively visualize large data sets of <100.000 nodes.
 - focusses on quasi-hierarchical graphs
 - → use a **spanning tree** as the backbone of a layout algorithm
 - graph layout in **exponential space** (projected on 2D for interactive viewing)

Spanning tree: connected acyclic subgraph that contains all the vertices of the original graph, but does not have to include all the links

→ find a minimum-weight spanning tree through a graph with weighted edges, where domain-specific information is used to compute the weights

Spanning Tree

Some algorithms work only/better on trees

Idea: remove links until graph has tree structure, keep all nodes connected → spanning tree

Minimal spanning tree = spanning tree with the least total weight of the edges

Greedy **Kruskal**-Algorithm:

→ iteratively choose unused edge with smallest weight, if it does not lead to a circle!

greedy <=> base choice on current state, (locally optimal choice)

Kruskal - Example

Proof that there is no spanning tree with a **lower** weight?

Minimum spanning tree weight = 66

Cone Layout

Place the nodes according to their hierarchy starting from the root node

→ direction indicates lineage

For arbitrary graphs

- → how to get weights?
- → which node is the root?

Bioinformatics 3 - WS 15/16 V 2 - 40

Exponential Room

In Euklidian space: circumference of a circle grows linear:

$$U = 2\pi r$$

In hyperbolic space:

$$U = 2\pi \sinh r$$

→ exponentially **growing** space on the circle

For (cone) graph layout

→ there is enough room for yet another level

Also: **mappings** of the complete hyperbolic space

→ finite volume of Euklidian space

Models of hyperbolic space

Figure 3.5: Models of hyperbolic space. Left: The projective model of hyperbolic space, which keeps lines straight but distorts angles. Right: The conformal model of hyperbolic space, which preserves angles but maps straight lines to circular arcs. These images were created with the *webviz* system from the Geometry Center [MB95], a first attempt to extend cone tree layouts to 3D hyperbolic space that had low information density. The cone angle has been widened to 180°, resulting in flat discs that are obvious in the projective view. The arcs visible in conformal view are actually distorted straight lines.

PhD thesis Tamara Munzner, chapter 3

GIFs don't work here...

http://www.caida.org/tools/visualization/walrus/gallery1/

H3: + layout based on MST → fast

- + layout in hyperbolic space → enough room
- how to get the MST for biological graphs????

Summary

What you learned today:

- → Local connectivity: clustering
- → random graphs vs. scale-free graphs
- → shortest path: Dijkstra algorithm
- → graph layout: force-directed and embedding schemes
- → spanning tree: Kruskal algorithm

Next lecture:

→ biological data to build networks from