V22: involvement of microRNAs in GRNs

What are microRNAs?

How can one identify microRNAs?

What is the function of microRNAs?

diseases such as cancer and metabolic disorders**. The
number of miRNAs encoded by the genomes of the
organisms that have been studied so far varies con-
siderably from a handful to up to 500 in mammals'~.
Computational predictions and genome-wide identifica-
tion of miRNA targets estimate that each animal miRNA
regulates hundreds of different mRNAs, suggesting thata
remarkably large proportion of the transcriptome (about
50% in humans) is subject to miRNA regulation'~.

Elisa |zaurralde,
MPI TUbingen

Huntzinger, Izaurralde, Nat. Rev. Genet. 12, 99 (2011)

Laird, Hum Mol Gen 14, R65 (2005)
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short name full name function oligomerization

MRNA, rRNA, tRNA, you know them well ... Single-stranded
snRNA small nuclear RNA splicing and other functions
snoRNA small nucleolar RNA nucleotide modification of RNAs

Long ncRNA Long noncoding RNA various
miRNA microRNA gene regulation single-stranded

siRNA small interfering RNA gene regulation double-stranded
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RNA structure

Also single stranded RNA molecules frequently adopt a specific tertiary structure.

The scaffold for this structure is provided by secondary structural elements
which are non-covalent hydrogen bonds within the molecule.

This leads to several recognizable structural "domain® types of
secondary structure such as hairpin loops, bulges and internal loops.

RNA hairpin 2RLU Stem loop 1NZ1

www.rcsb.org

WS 2015/16 - lecture 22 BiologBaliequatics Ahalysis



Small nuclear RNA (snRNA) are found within the nucleus of eukaryotic cells.

They are transcribed by RNA polymerase |l or RNA polymerase Ill and are
involved in a variety of important processes such as

- RNA splicing,

- regulation of transcription factors or RNA polymerase Il, and

- maintaining the telomeres.

snRNAs are always associated with specific proteins.
The snRNA:protein complexes are referred to as
small nuclear ribonucleoproteins (snRNP) or sometimes as snurps.

ﬁ The spliceosomal snEMP subunits
. El ' :
5 small nuclear RNAs (snRNAs) and approximately 70K protein

Apr oLein
50 different proteins make up the splicing machinery.
‘:;-_?ﬁz 1 smRMA

The five snRNAs are essential splicing factors. e T\ ,
- o :_'r_':-"' core domain
Each snRNA is associated with several different MG cap
U2 snRNP
proteins to make up five snRNP complexes, called U1, U2, U4, U5 and UG. SF3a
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A large subgroup of snRNAs are known as small nucleolar RNAs (snoRNAs).

These are small RNA molecules that play an essential role in RNA biogenesis
and guide chemical modifications of rRNAs, tRNAs and snRNAs.

They are located in the nucleolus and the cajal bodies of eukaryotic cells.

ZL1 (TRRAP) ZL4 (RALGAPAL) ZL5/6 (LOC100499177)
y A—U -
o s r .
ey, b G=C ~uy SR
CAAACUGAUAAGAYSYS*  5'-GCCAAG—CGACCGAGAAN,ACAUU Cc acueccucuucacauctw*
LELTELTTTT , (lul}(l;llnlm (|:C|||||||5A=“°x LLELTELTTTTT
- GGCUCUU-5" UGACGACAAGUGUA
Bﬁ?}UUUGACUAgUCU Uty 4 o) G Cey,
o'~ a7 ~5, a 2402 ~5.
U2 snRNA U2 snRNA 28S rRNA

Predicted structure of hybrids between novel snoRNAs and target RNAs.
Top: predicted snoRNA

Bottom: target small nuclear RNA (snRNA)
Kishore et al. Genome Biology 2013 14:R45
www.wikipedia.org
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RNA interference

RNA interference may involve siRNAs or miRNAs.

Nobel prize in Physiology or Medicine 2006
for their discovery of RNAi in C. elegans in 1998. Andrew Fire Craig Mello

Potent and specific

genetic interference by
double-stranded RNA in
Caenorhabditis elegans

Andrew Fire*, SiQun Xu*, Mary K. Montgomery*,
Steven A. Kostas*#, Samuel E. Driver: & Craig C. Mello:

* Carnegie Institution of Washington, Department of Embryology,
115 West University Parkway, Baltimore, Maryland 21210, USA

+ Biology Graduate Program, Johns Hopkins University,

3400 North Charles Street, Baltimore, Maryland 21218, USA

I Program in Molecular Medicine, Department of Cell Biology,
University uf Massachusetts Cancer Center, Two Biotech Suite 213,
373 Plantation Street, Worcester, Massachusetts 01605, USA

www.wikipedia.org
WS 2015/16 - lecture 22 Bioinformatics Il



Small interfering RNA (siRNA), sometimes known as

short interfering RNA or silencing RNA, is a class of

- double-stranded RNA molecules,

- that are 20-25 nucleotides in length (often precisely 21 nt) and
play a variety of roles in biology.

Most notably, siRNA is involved in the RNA interference (RNAI) pathway,
where it interferes with the expression of a specific gene.

In addition to their role in the RNAI pathway,
SiRNAs also act in RNAi-related pathways,
e.g., as an antiviral mechanism or in

shaping the chromatin structure of a genome.

www.wikipedia.org
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MiRNAs

In contrast to double-stranded siRNA,
microRNAs (miRNA) are single-stranded RNA molecules
of 21-23 nucleotides in length.

MiRNAs have a crucial role in regulating gene expression.

Remember: miRNAs are encoded by DNA but not
translated into protein (non-coding RNA).

www.wikipedia.org
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Overview of the miRNA network

“\\

/_
@ miRNA gene

Pri-miRNA g
@ DGCRS8 —
@'I-‘llllll.

Pre-miRNA

Mature miRNA

Translational repression

[m7G] | ORF

Target mRNA cleavage

RNA polymerase Il (Pol II)
produces a 500-3,000
nucleotide transcript, called
the primary microRNA
(pri-miRNA).

This is then cropped to form
a pre-miRNA hairpin by a
multi-protein complex that
includes DROSHA (~60—
100 nucleotides).

AA, poly A tail;
m7G, 7-methylguanosine cap;
ORF, open reading frame.
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DROSHA X-ray structure

A O &
N
 C—m Aquifex RNase IIl (Class I) The overall structure of
xO . . .
& & & S @ DROSHA is surprisingly
éé\—q—q 2 p K < m- Human DROSHA (Class Il) imi i
& similar to that of Dicer
é\\o&e \){({iz?’ 4 Giardia Dicer (Class Ill) despite no sequence
— < ° 2 x——m Human DICER (Class IIl) homology apart from the

C-terminal part,

This suggests that
DROSHA may have
evolved from a Dicer
homolog.

Giardia Dicer

E F

Kwon et al. Cell. (2016) 164:81-90.
Giardia Dicer Human DICER 10



Overview of the miRNA network

/"
@ miRNA gene
v /W
h
Pri-miRNA E

"\\

Pre-miRNA

@ pecre,
g

Mature miRNA

[m7G|__| ORF

Target mRNA cleavage
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Translational repression

This double-stranded
hairpin structure is
exported from the
nucleus by RAN GTPase
and exportin 5 (XPQO5).

Finally, the pre-miRNA is
cleaved by DICER1 to
produce 2 miRNA strands,
a mature miRNA
sequence, approximately
20 nt in length, and its
short-lived complementary
sequence, which is
denoted miR.

Bioinformatics Il Ryan et al. Nature Rev. Cancer (2010) 10, 389
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Overview of the miRNA network

— R The thermodynamic stability of

miRNA gene
- @ /W the miRNA duplex termini and

the identity of the nucleotides
in the 3' overhang determines
which of the strands is
incorporated into the RNA-
inducing silencing complex
(RISC).

Pri-miRNA

Mature miRNA

The single stranded miRNA is
incorporated into RISC.

This complex then targets it
e.g. to the target 3’
untranslated region of a mRNA
sequence to facilitate
repression and cleavage.

[m7G| | ORF

Target mRNA cleavage
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Mature miRNA molecules are partially complementary to one or more

MRNA molecules.

solution NMR-structure of let-7 miRNA:/in-41 mRNA
complex from C. elegans
Cevec et al. Nucl. Acids Res. (2008) 36: 2330.

The main function of miRNAs is to down-regulate
gene expression of their target mMRNAs.

MiRNAs typically have incomplete base pairing to a target

and inhibit the translation of many different mRNAs with similar sequences.

In contrast, siRNAs typically base-pair perfectly and
induce mMRNA cleavage only in a single, specific target.

www.wikipedia.org
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http://nar.oxfordjournals.org/content/36/7/2330/F5.large.jpg

The first two known microRNAs, lin-4
and let-7, were originally discovered in

the nematode C. elegans. a R - BB
They control the timing of stem-cell g ¢ cua
division and differentiation. v 2% b(;"'{} J{i a g °
let-7 was subsequently found as the o S g C g c
first known human miRNA. g X 5 % ;
let-7 and its family members are highly g o S o g
conserved across species in sequence U":" E o A U
and function. [;; j ,I 8 :
Misregulation of let-7 leads to a less g c o ¢ U
differentiated cellular state and the % Ué’ 3(, 0
development of cell-based diseases U ;-;' c
such as cancer. : b G ¢ 5
Pasquinelli et al. Nature (2000) 408, 86 6 U
www.wikipedia.org C. elegans D. melanogaster  H. sapiens chr22
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Let-7 directly down-regulates the expression of the oncogene RAS in human cells.

All the three RAS genes in human, K-, N-, and H-,
have the predicted let-7 binding sequences in their 3'UTRs.

In lung cancer patient samples, expression of RAS and let-7 is anticorrelated.
Cancerous cells have low let-7 and high RAS,
normal cells have high let-7 and low RAS.

Another oncogene, high mobility group A2 (HMGA2),
has also been identified as a target of let-7.

Let-7 directly inhibits HMGAZ2 by binding to its 3'UTR.
Removal of the let-7 binding site by 3'UTR deletion causes
overexpression of HMGAZ2 and formation of tumor.

MYC is also considered as a oncogenic target of /let-7.

www.wikipedia.org
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mMiRNA discovery approaches, both biological and bioinformatics,
have now yielded many thousands of miRNAs.

This process continues with new miRNA appearing daily in various databases.

MiRNA sequences and annotations are compiled in the
online repository miRBase (http://www.mirbase.org/).

Each entry in the database represents a predicted hairpin portion
of a miRNA transcript with information on the location and
sequence of the mature miRNA sequence

Liu et al. Brief Bioinf. (2012) doi: 10.1093/bib/bbs075
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MiRNAs recognize targets by Watson-Crick base pairing

(a) Plant miRNAs recognize fully 2 Pler=

or nearly complementary e ACOPIW dormat

binding sites. \/\—fﬂm
||||||||||||||||||N-F‘5'

(b) Animal miRNAs recognize alwolwzlslelnlel7lsl3]1
018 16 14 12 10 8 6 4 2

partially complementary binding miENA

sites which are generally located b Anima:  orr
in 3’ UTRs of mRNA. mJ\/AAAA

Complementarity to the 5" end of NNNNNNNNNNNNNmTPS-
' HO-N 6 4 2
the miRNA — the “seed” sequence PO iRna L

containing nucleotides 2-7 —is a
major determinant in target
recognition and is sufficient to
trigger silencing.

Huntzinger, Izaurralde, Nat. Rev. Genet. 12, 99 (2011)
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MRNAs are competent for translation if they possess a 5’cap structure
and a 3’-poly(A) tail

mRNA closed loop

mRNASs could, in principle, work by translational repression or by target
degradation.

This has not been fully answered yet.

Current view: degradation of target mMRNA dominates.

Huntzinger, Izaurralde, Nat. Rev. Genet. 12, 99 (2011)

WS 2015/16 - lecture 22 Bioinformatics Il
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Mechanism of miRNA-mediated gene silencing

(a) The mRNA target is
presented in a closed-loop
conformation.

elF: eukaryotic translation
initiation factor
PABPC: poly(A)-binding protein

(b) Animal miRNAs bound
to the argonaute protein
AGO and to a GW182
protein recognize their
MRNA targets by base-
pairing to partially
complementary binding
sites.

a Target
recognition

mRMA closed loop

b E:tablishment Cap C terminus

of silencing?

mRNA closed loop

FABPC( PABPC

J."J."'l £ N l."l."l."l 'k

GWis2
AGO

Huntzinger, Izaurralde, Nat. Rev. Genet. 12, 99 (2011)
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Mechanism of miRNA-mediated gene silencing

(c) The AGO-GW182 P— e
complex targets the mRNA to - Cho
deadenylation by the m
deadenylation protein
complex CCR4-CAF1-NOT.

(e) The mRNA is decapped d Sienced
by the protein DCP2 and
then degraded (in f).

'
GW182 " GW182 "
. AGO AGO
Alternatively (d), the e e
C terminus C terminus

deadenylated mRNA remains
silenced. f 5'-t0-3' decay

GW1s2
AN
AGO PAM2
M2
Huntzinger, I1zaurralde, Nat. Rev. Genet. 1 C terminus
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With bioinformatics methods, putative miRNAs are first predicted
in genome sequences based on the structural features of miRNA.

These algorithms essentially identify hairpin structures
in non-coding and non-repetitive regions of the genome
that are characteristic of miRNA precursor sequences.

The candidate miRNAs are then filtered by their
evolutionary conservation in different species.

Known miRNA precursors play important roles in searching algorithms
because structures of known miRNA are used to train the learning processes
to discriminate between true predictions and false positives.

Many algorithms exist such as miRScan, miRSeeker, miRank, miRDeep,
miRDeep2 and miRanalyzer.

WS 2015/16 - lecture 22 Bioinformatics Il

Liu et al. Brief Bioinf. (2012) doi: 10.1093/bib/bbs075
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There seem to be two classes of binding patterns.

One class of miRNA target sites has perfect Watson—Crick complementarity
to the 5’-end of the miRNAs, referred to as ‘seed region’,
which includes positions 2—7 of miRNAs.

When bound in this way, miRNAs suppress their targets without requiring
significant further base pairings at the 3’-end of the miRNAs.

The second class of target sites has imperfect complementary base pairing at
the 5’-end of the miRNAs, but it is compensated via additional base pairings in
the 3’-end of the miRNAs.

The multiple-to-multiple relations between miRNAs and mRNAs
lead to complex miRNA regulatory mechanisms.

WS 2015/16 - lecture 22 Bioinformatics Il
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miRNA-target prediction algorithms

Table I: miRNA-target prediction algorithm

Algorithm Regions Species Species Brief description of the prediction method

scanned conservation

miRanda 3-UTR Yes Human, mouse, rat, fly Predict targets based on rules: (i) sequence complementarity,

and worm (ii) binding energy and (iii) evolutionary conservation.

mirSYR Mo restriction Yes Human, mouse, rat, fly To score and rank miRanda-predicted miRMNA-target sites with

and worm a supervised vector regression (SVR) model for features
including secondary structure accessibility of the site and
conservation.

Piclar 3-UTR Yes Vertebrates, fly and worm Filter alignments according to the thermodynamic stability, then
score and rank the predicted target by hidden Markov model
maximume-likelihood fit approach.

TargetScan 8mer and 7mer Yes Human, mouse, rate, dog Predict targets by searching for the presence of conserved 8mer
sites, and open and chicken and 7mer sites that match the seed region. Predictions are
reading frames ranked by a combinatorial score based on site number, site

type and site context.

TargetScan$ 3-UTR Yes Human, mouse, rate, dog Predict targets that have a conserved 6nt seed match flanked by

and chicken either a mB match or a tlA anchor.

RNA22 Mo restriction Mo restriction Any Use the patterns discovered from the known mature miRMNAs for
predicting candidate miRMNA-target sites in a sequence.

PITA I-UTR Yes Human, mouse, worm and fly Predict miRMNA targets using a non-parameter model that
computes the difference between the free energy gained from
the formation of the miRNA-target duplex and the energetic
cost of unpairing the target to make it accessible to the miRNA.

RMNAhybird 3'-UTR and Mo restriction Any A tool to identify mRNA secondary structure and energetically
coding favourable hybridization between miRMNA and target mRMNA.
sequence

DIANA-micral  3'-UTR Mo restriction Human and mouse The fifth version of micraT algorithm which is specifically trained
and CDS on a positive and negative set of miRMNA recognition elements

located in both the 3'-UTR and CDS region. The conserved and
non-conserved miRNA recognition elements are combined into
a final prediction score.

WS 2015/16 - lecture 22
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Predicting miRNA function based on target genes

( —_ — ———— —— —— —» Asetof miRNAs

|
| !

miRNA target prediction softwares miRNA target Databases
(miRanda, mirSVR, PicTar, TargetScan,
TargetScanS, RNA22, PITA, DIANA

microT, RNAHyblrd ) ‘

PITA, RNAHybird, ...)

v

l A set of miRNA targets
(predictions from one software/
[ — —— ——— —> database, or union or intersection of

predictions from multiple software/
databases)
N 4 . Knowledge database
Gene (GO, KEGG, BioCarta,

enrichment <€——— Reactome, GND,
analysis GAD, Disease

Significantly enriched
functions or items
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(MicroCosm Targets, microRNA.org,
TarBase, PicTar, TargetScan, RNA22,

|
|
|
| Ontology, PPI, ...)
|
l

Bioinformatics Il

The most straight-forward
approach for miRNA functional
annotation is through functional
enrichment analysis using the
miRNA-target genes.

This approach assumes that

MiRNAs have similar functions
as their target genes.

24



Predicting miRNA function based on correlated expression

miRNA expression mRNA expression

data data
Differential Differential

expression analysis expression analysis

Other data sources snsehing lesivilre ot miRNA Target
(Sample type, PPl, — — — = s 8 - — — — — predictions/
S X statistical methods

clinical information ...) Databases

MRMs/FMRMs
(Groups of Co-expressed/Dependent/
clustered miRNAs and their target mRNAs)
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mMiRNA functional annotation
heavily relies on the miRNA-
target prediction.

In the last few years, many
studies have been conducted
to infer the miRNA regulatory
mechanisms by incorporating
target prediction with other
genomics data, such as

the expression profiles of
MiRNAs and mRNAs.

25



A MRM (group of co-expressed miRNAs and mRNAs) may be defined as a
special bipartite graph, named biclique, where
two sets of nodes are connected by edges.

Every node of the first set representing miRNA
is connected to every node of the second set
representing mRNAs.

The weights of edges correspond to the miRNA—mMRNA binding strength
inferred from target prediction algorithms

Most of the integrative methods of MRM discovery are based on the assumption
that miRNA negatively regulate their target mMRNAs so that the expression of a
specific miRNA and its targets should be anti-correlated.

WS 2015/16 - lecture 22 Bioinformatics Il
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MIRNA-mRNA network
A FMRM identified from analysis of
schizophrenia patients. It shows that

miRNAs may up/down regulate their

. @@ @ target mMRNAs, either directly or indirectly.
& S
o 58 2% 98 %
0 Gy ®
Eey @ Fe w @ ®.6.
..z XEP @Q 8 @ @
w6 \CCRT | . 4
® o - S @ ©
Yoo ©®
o) & e (- % '

Up-regulated miRNAs are coloured in red and down-regulated miRNAs are coloured
in green. Up-regulated mMRNAs are coloured in yellow, while down-regulated mRNAs
are coloured in blue.
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mMiRNAs can have dual oncogenic and tumour suppressive roles in cancer
depending on the cell type and pattern of gene expression.

Approximately 50% of all annotated human miRNA genes are located
in fragile sites or areas of the genome that are associated with cancer.

E.g. Abelson et al. found that a mutation in the miR-189 binding site
of SLITRK1 was associated with Tourette’'s syndrome.

SNPs in miRNA genes are thought to affect function in one of three ways:
(1) through the transcription of the primary transcript;

(2) through pri-miRNA and pre-miRNA processing; and

(3) through effects on miRNA-mMRNA interactions

WS 2015/16 - lecture 22 Bioinformatics Ill Volinia et al. PNAS (201 3) 110, 7413
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SNPs in pri-miRNA and pre-miRNA sequences

SNPs in pri-miRNA sequences: C-T mir-15 and mir-16

SNP

Wild type
cC

Variant
TT

SNPs in pre-miRNA sequences: rs11614913 mir-196a-2*

i Y
Wild type im0 _}mﬂﬁnﬁm
cc Pre to mature
miRNA processing

Variant —— Tl Yo
T ;Egﬂmo i e

Altered pre to mature miR-196a-2
miRNA processing 4

miR-196a-2

Reduced mature
miRNA
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SNPs can occur in the pri-miRNA and
pre-miRNA strands and are likely to
affect miRNA processing and
subsequent mature miRNA levels.

Such SNPs can lead to either an
increase or decrease in processing.

29
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A e SNPs in mature microRNAs (miRNAs)
within the seed sequence can strengthen
or reduce binding between the miRNA

and its mRNA target.

Different range
of target genes

RIsC Moreover, such SNPs can create or
SNPs in RNA regulatory regions . destroy target binding sites, as is the
wEEer case for mir-146a*.
» miRNA target site created 1 » miRNA target site destroyed
* Decrease in mRNA translation * Increase in mMRNA translation
CD86 (rs17281995) KRAS (rs61764370)

SNPs located within the 3" untranslated region of miRNA binding sites function
analogously to seed region SNPs and modulate the miRNA—mMRNA interaction.

They can create or destroy miRNA binding sites
and affect subsequent mMRNA translation.

Ryan et al. Nature Rev. Cancer (2010) 10, 389

WS 2015/16 - lecture 22 Bioinformatics Il
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SNPs in miRNA

SnPs in miRNA processing machinery

SNPs can also occur within the

processing machinery

DROSHA
rs6877842

RAN
rs14035

DICER1
rs3742330

GEMIN3
» 15197414
» 1197412

GEMIN4
* rs2740348
* 57813

L)

@ DGCR8
nfugiifnm
LI ®

D

Q

||I|||||I|m

Global changes in miRNAome
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SNPs in
DROSHA
complex

SNPs in
nuclear
export
complex

SNPs in
DICER
complex

SNPs in
RISC
complex

processing machinery.

These SNPs are likely to affect the
microRNAome (miRNAome) as a
whole, possibly leading to the overall
suppression of miRNA output.

In addition, SNPs in cofactors of
mMiRNA processing, such as p53,
may indirectly affect miRNA
maturation.

Bioinformatics Il

Ryan et al. Nature Rev. Cancer (2010) 10, 389
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microRNAs as biomarkers for cancer

MiRNASs can be used for sensitive classification of cancer risks or cancer
progression (e.g. 95%), see research in the Keller and Lenhof groups.

Various companies market such tools.

i~ o~ .:" i o £y .
g™ i ~ ra S ¢ A = N = qPCR classifier BOG
o .:_ .__L‘r Nl i_[lrl-_?} e i ||-.+ e W ¥ o IR My g W .
OO s il ¥ e pdgam) :
- -y L [ L r_1 Loy . o A4 . =
] M || Tyt . z" - ol A ! i
{ | \ %'\ I I | \f -i_ - Bia - T E‘ i
i ik | It 1-"1{ i - _LEly e i s 'c'-‘ t ‘J
A R ks % == = SNl e e - :
Al o R & : Vel 7' z "
([l e e —s i il Py
- =L - | i, m—" ¢ THETY 15t princpal companent
Samples from defined Identification of Assessment using blinded Validaticn of microRMNA Identification of gFCR-based
patient groups classifier microRNAs samples classifier classifier
www.exigon.com
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Briefings in Bioinformatics Advance Access published December 4, 2013
BRIEFINGS IN BIOINFORMATICS. page | of |4 doi:0.1093/bib/bbt085

Transcription factor and microRNA
co-regulatory loops: important
regulatory motifs in biological
processes and diseases

Hong-Mei Zhang, Shuzhen Kuang, Xushen Xiong, Tianliuyun Gao, Chenglin Liu and An-Yuan Guo

Key Points

e TFs and miRMNAs can jointly regulate gene expression in the

forms of FFLs and FBLs, which influence many aspects of

normal cells and diseases. FFL: feed-forward loop (see lecture V8)
e FFLs and FBLs can be classified into different types based on the
master regulator or the regulation effects of two paths on FBL: feedback loop

target. Different types of loops have different mechanisms in
gene regulation.

e The identification of TF and miRNA targets is a key step
for detecting FFLs and FBLs. It is better to combine the experi-
mentally verified targets with predicted targets by different
methods.

e FFLs and FBLs are popular regulatory models and critical for
biological processes and diseases. FFL has a specific function in
noise buffering effect. It can minimize the cell response to
stochastic signaling noise and maintain steady-state levels of
targets. FBL can act as a toggle switch between two different
fates in cell differentiation.

WS 2015/16 - lecture 22 Bioinformatics Ill Volinia et al. PNAS (201 3) 110, 7413
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(@) : FFL types
TEF-FFL miRNA-FFL composite FFL

(b) : Coherent FFLs

v —
N ./ N\ / \./

(c) : Incoherent FFLs

\ Vs /

(d) : FBL types

signal negative double negative

— W — .

— —_
Figure I: FFL and FBL types. (@) Three types of FFLs classified by the master regulator. Blunt arrows with dot end
represent transcriptional activation or repression. (b) Coherent FFLs. In this kind of FFLs, two paths that regulate
target gene have the same effects (either activation or repression). (c) Incoherent FFLs. The target gene is regulated

by two opposite paths. (d) FBL types. Nodes: triangles are TFs; rectangles are miRNAs; ovals are genes; Edges:
sharp arrow means activation; T-shaped arrow represents repression.

v\,/ \/
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Identification of TF, miRNA and gene relations

Verified Predicted Verified Predicted
TRANSFAC, CHEA, ; miR2Disease, miRTarBase ;
BS prediction, UCSC etc ' | | TargetScan, miRanda etc.
Factorbook.org : MiRecords and TarBase L

Y

[ TF->Gene/TF->miRNA ] [miRNA->Gene/miRNA->TFJ

Detection of FFLs and FBLs *

T —e mRNA I —— mRNA T ———° miRNA

\.\/ | \./ LW 7 —

Visualization with Cytoscape *
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Figure 3: A schematic model for TF-miRNA co-regu-
latory network in cell proliferation. The E2F family and
three miRNA clusters form several composite FFLs
with CDK inhibitors and pocket proteins. They corpor-
ately control the progression of the cell cycle. The
oncogene c¢-Myc can promote cell cycle progress
through directly activating the E2F family and miRNA
clusters, while the tumor repressor p53 represses E2Fs
activity in an indirect way. The meanings of sharp
arrows and T-shaped solid arrows are same as Figure |.
T-shaped dotted arrow indicates the indirect repression
of P53 to E2Fs. This figure is drawn based on two
previous articles [55,56].

Bioinformatics Il

36



Epithelial

\ E-cadherin 4

Figure 4: FFLs and FBLs in cell differentiation. Orange ovals are TFs; green ovals are miRNAs; light blue ovals are
upstream signals. Dotted line means the activation or repression is inactive; dotted oval means the gene or
miRNA is repressed or in a low expression. (@) The FBL betweenTFs ZEBI/SIPl and miR-200 family in EMT. In epithe-
lial cells, ZEBI and SIPI are repressed by miR-200 family. EMT is induced when ZEBI and SIPI are activated by the
TGFp signal and miR-200 family is repressed. (b) The FBLs in skeletal myogenesis. The high expression of TF YY1 acti-
vated by NF-kB signal maintains the undifferentiated states of myoblast cells. At the onset of myogenesis, the down-
regulation of the NF-kB-YY| pathway leads to an upregulation of miR-1 and miR-29, which ensures myoblast cells
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Figure 5: FFLs and FBLs in diseases. (@) The FBL in granulocytic differentiation and myeloid cell proliferation.
In the undifferentiated cells, TF NFI-A maintains the miR-223 at low level. The TF C/EBPx is activated by retinoic
acid and upregulates miR-223 expression, which in turn represses TFs NFI-A and E2FI, resulting in inhibition of cell
cycle and advance of granulocytic differentiation (left). C/EBPx is deregulated in AML and overexpressed E2Fl in-
hibits miR-223 transcription, thus promoting myeloid cell proliferation and blocking granulocytic differentiation
(right). (b) A FFL in T-ALL. (c) The predicted FFLs in breast cancer. (d) A predicted FFL in glioblastoma. (e) A FFL
in schizophrenia. TF EGR3 activates the transcription of miR-195, and in turn miR-195 indirectly reduces the expres-

sion of EGR3 by repressing gene BDNF.
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We identified statistically significant TF and miRNA pairs that cooperatively
regulate the same target gene using the hypergeometric distribution and
evaluated P-values:

x (ky M-k
P-value =1 — Z (f)(N—f)

= V)

k : number of target genes of a certain miRNA,

N : number of genes regulated by a certain TF,

X : number of common target genes between these TF and miRNA,

M : number of genes in the union of all human genes targeted by human
mMiRNAs and all human genes regulated by all human TFs in our databases.

Then, determine the false discovery rate according to the Benjamini-Hochberg
method. Keep only those pairs with an adjusted P-value <0.05 as significant TF—
mMiRNA pairs.
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Compare how often FFL motifs appear in the real network to the number of times
they appear in randomized ensembles preserving the same node degrees.

In order to retain stronger attachment of biological key driver nodes, we applied
a degree preserving randomization algorithm of the ‘igraph’ R-package.

For 2 X L steps, two edges e1 = (v1, v2) and e2 = (v3, v4) are randomly chosen
from the network and rewired such that the start and end nodes are swapped,
i.e. e3 = (v1,v4)and e4 = (v3, v2)if {e3, ed} € V.

The random networks were constructed 100 times and compared to the real
network. The P-value is calculated as . . Vi

where N, is the number of random times that a certain motif type is acquired
more than or equal to its number in the real network, and N.is 100.
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Enriched motifs

We identified 53 significantly enriched FFL motifs (3 compositeFFLs, 2 TF-FFLs,

6 miRNA-FFLs and 42 coreg-FFLs).

An interesting motif involves the TF SPI1, the miRNA hsa-mir-155 and the target
gene FLI1. Recent studies reported that the oncogene SPI1 is involved in tumor

progression and metastasis. However, the co-regulation of the oncogene FLI1 by
both SPI1 and the oncomiR hsa-mir-155 was not reported before.

Co-regulated subnetwork for TF: SPI1, miRNA: hsa-mir-155, Gene: FLI1

FLI1
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The discovery of microRNAs has led to an additional layer of complexity in
understanding cellular networks.

Prediction of mMiRNA-mRNA networks is challenging due to the often non-perfect
base matching of miRNAs to their targets.

Individual SNPs may alter network properties, and may be associated with
cancerogenesis.

MiRNAs can be exploited as sensitive biomarkers.

MiRNAs are becoming important elements of GRNs
-> new hierarchical layer, novel types of network maotifs ...

Bioinformaticians do not run out of work ©
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