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Noisy Data — Clear Statements?

For yeast: ~ 6000 proteins — ~18 million potential interactions
rough estimates: < 100000 interactions occur

— 1 true positive for 200 potential candidates = 0.5%
— decisive experiment must have accuracy << 0.5% false positives

Different experiments detect different interactions
For yeast: 80000 interactions known,
only 2400 found in > 1 experiment

Y2H: — many false positives a0
(up to 50% errors)

Co-expression: — gives indications at best

annotated: septin
complex

Combine weak indicators = 7?7

HMS-PCI
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Conditional Probabilities
Joint probability for "A and B":

P(ANnB) = P(AB)P(B) = P(B|A) P(A)
@ Solve for conditional probability for "A when B is true"
W — Bayes' Theorem:

P(B|A)P(A) _ P(B|A)

P(A|\B) = = P(A
(A|B) ) ps) T
P(A) = prior probability (marginal prob.) for "A" — no prior knowledge about A
P(B) = prior probability for "B" — normalizing constant

P(B | A) = conditional probability for "B given A"

P(A | B) = posterior probability for "A given B"

— Use information about B to improve knowledge about A
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What are the Odds?

Express Bayes theorem @
P(AN B)
pulp) — PBIAPA) _ P(BIA) L

P(B)  P(B) w
In terms of odds:
~ P(B|A _
* Also Consider case "A does not apply": P(A|B) = é(;)) P(A)
» odds for A when we know about B
(we will interpret B as information or features):
P(A|B) P(B|A) P(A)
O(A|B) = = = - — = A(A|B) O(A)
P(A|B)  P(B|A) P(A) S \
posterior odds for A likelihood ratio prior odds for A

NA(A | B) — by how much does our knowledge about A improve?
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2 types of Bayesian Networks

Encode conditional dependencies between evidences

@ h@ = "Adepends on B
with the conditional probability P(A | B)

Evidence nodes can have a variety of types: numbers, categories, ...

(1) Naive Bayesian network

—s independent odds O(A|B,C) = A(A|B)A(A|C) O(A)
(2) Fully connected Bayesian network B B
— table of joint odds
C | 0.3 0.16
< A(A|B,C)
IC | 04 0.14
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Bayesian Analysis of Complexes

A Bayesian Networks Approach
for Predicting Protein-Protein
Interactions from Genomic Data

Ronald Jansen,’* Haiyuan Yu,' Dov Greenbaum,’ Yuval Kluger,’
Nevan ). Krogan,* Sambath Chung,’? Andrew Emili,*
Michael Snyder,? Jack F. Greenblatt,* Mark Gerstein'?{

. We have developed an approach using Bayesian networks to predict protein-

. protein interactions genome-wide in yeast. Our method naturally weights and
combines into reliable predictions genomic features only weakly associated
with interaction (e.g., messenger RNA coexpression, coessentiality, and colo-
calization). In addition to de novo predictions, it can integrate often noisy,
experimental interaction data sets. We observe that at given levels of sensi-
tivity, our predictions are more accurate than the existing high-throughput
experimental data sets. We validate our predictions with TAP (tandem affinity
purification) tagging experiments. Our analysis, which gives a comprehensive

 view of yeast interactions, is available at genecensus.org/intint.

Science 302 (2003) 449
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Improving the Odds

Is a given protein pair AB a complex (from all that we know)?

/

Opost(Complex| fi, fa,. .. )—}Cﬂmplex f1, f2,--.) Oprior(Complex)

likelihood ratio: prior odds for a
improvement of the odds when random pair AB to be
we know about features fy, o, a complex

! |

Idea: determine from known complexes .
- estimate (somehow)
and use for prediction of new complexes

Features used by Jansen et al (2003):

* 4 experimental data sets of complexes

* MRNA co-expression profiles

* biological functions annotated to the proteins (GO, MIPS)
 essentiality for the cell
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Gold Standard Sets

_ P(f1, f2,...|Complex)
P(f1, f2,...|no Complex)

To determine A(Complex| f1, fo,...)

— use two data sets with known features fy, fo, ... for training

Requirements for training data:

) independent of the data serving as evidence
1) large enough for good statistics

i)  free of systematic bias

Gold Standard Positive Set (GP):
8250 complexes from the hand-curated MIPS catalog of protein complexes
(MIPS stands for Munich Information Center for Protein Sequences)

Gold Standard Negative Set (GN):
2708746 (non-)complexes formed by proteins from different cellular
compartments (assuming that such protein pairs likely do not interact)
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Prior Odds

P(Complex) @ P(Complex)

Oprior(Complex) = P(no Complex) 1 — P(Complex)

Jansen et al:

 estimated = 30000 existing complexes in yeast

» 18 Mio. possible complexes — P(Complex) = 1/600

— Oprior = 1/600

— The odds are 600 : 1 against picking a complex at random

— expect 50% good hits (TP > FP) with 4 = 600

Note: Oprior Is mostly an educated guess
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Essentiality

Test whether both proteins are essential (E) for the cell or not (N)
— for protein complexes, EE or NN should occur more often

pos/neg: # of gold standard positives/ L(Ess) = P(Ess | pos)
negatives with essentiality information P(Ess | neg)

Essentiality pos neg Ess nos) P(Ess|neg) L(Ess)
EE 81924 1,43E-01 3,6

NE 624 285487 2 90E 4,98E-01 0,6

NN 412
possible overlap probabilities f likelihojpd
values of the standard sets\wi featu ratio
feature feature value
In the ,pos” case, the
essentiality was only known \
for 2150 out of 8250 1114 - 0518 0.19 - 05
complexes of the gold- 2150 O’ 036

standard.
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MRNA Co-Expression

Publicly available expression data from

* the Rosetta compendium
* the yeast cell cycle

Correlation between the data sets

— use principal component

Gold standard overlap
Expression correlation # protein pairs e neg P(exp|pos) | P(exp|neg) L

0.9 678 16 45 2. 10E-03 1.68E-05| 124.9

0.8 4 827 137 263 1.80E-02 2. 10E-04| 85.5

0.7 17,626 830 2,117 B6.96E-02 T.91E-04| 88.0

0.6 42,815 1,073 5,097 1.41E-01 2.08e-03| 67.4

0.5 96,650 1,089 14,458 1.43E-01 2. 40E-03| 2B6.5

0.4 225,712 993 35,3560 1.30E-01 1.32E-02 9.9

0.3 228,268 1,028 83,483 1.35E-01 3. 12E-02 4.3

0.2 1,200,331 870 183,356 1.14E-01 6.85E-02 1.7

® (0.4 2,575,103 a8 J68 469 8.71E-02 1.38E-01 0.7
{—ﬁ 0 9, 363,627 B4 1,244 477 1.17E-01 4 .65E-01 0.3
= |01 2,783,735 164 408 562 2.15E-02 1.53E-1 0.1
0.2 1,241,907 63 203 663 B.27E-03 7.61E-02 0.1

0.3 484 524 13 84 957 1.71E-03 3.18E-02 0.1

-0.4 160,234 3 28,870 J.94E-04 1.08E-02 0.0

0.5 48 852 o a,0u1 2.63E-04 3.02E-03 0.1

0.6 17,423 2,134 0.00E+00 7.98E-04 0.0

0.7 7,602 807 0.00E+00 3.02e-04 0.0

-0.8 2,147 261 0.00E+00 9.76E-05 0.0

-0.9 67 - 12 0.00E+00 4 49E-06 0.0
Sum 18,773,128 7,614 | 2675273 1.00E+00 1.00E+00 1.0
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 determine functional class shared by the two proteins; small values (1-9)

Biological Function

Use MIPS function catalog and Gene Ontology function annotations

Indicate highest MIPS function or GO BP similarity
« count how many of the 18 Mio potential pairs share this classification

Gold standard overlap

MIPS function similarit # protein pairs P{MIPS|pos) | PiMIPS|ne L
¥ P P pos neg sum(pos )| sum{neg ) iuur:llﬁaesg ]{ ( |pos) | P Ineg)
1--9 6,584 171 1,094 171 1,094 0.16 2.12E-02 B.33E-04| 255
w |10--99 25,823 584 4,229 755 5,323 0.14 T.25E-02 3.22E-03| 225
Tju 100 -- 1000 88,548 688 13,011 1,443 18,334 0.08 B.65E-02 9.91E-03 B.6
= 1000 — 10000 255,098 6,146 47,126 7.589 65,460 012 T.63E-01 3.59E-02| 21.3
10000 -- Inf 5,785,754 462 1,248,119 8,051 1,313,579 0.01 5.7T4E-02 9.50E-01 0.1
Sum 6,161,805 8.051 1,313,579 - - - 1.00E+00 1.00E+Q0 1.0
Gold standard overlap
GO biclogical process similari # protein pairs P{GO|pos P{GO|ne L
gical p ty P P pos neg sum(pos )| sum{neg ) :uurrnn{i_'f:a:g ]; (GOlpos) (GOlneg)
1--9 4,789 BB B19 88 B19 0.11 1.17E-02 1.27E-03 9.2
m |10--99 20,467 5565 3,315 643 4,134 0.16 T.38BE-02 5.14E-03| 14.4
T:’E 100 -- 1000 58,738 523 10,232 1,166 14,366 0.08 6.95E-02 1.59E-02 4.4
= 1000 — 10000 152,850 1,003 28,225 2,169 42 591 0.05 1.33E-01 4.38BE-02 3.0
10000 -- Inf 2,909,442 5,351 602,434 7,520 645,025 0.01 7.12E-01 9.34E-01 0.8
Sum 3,146,286 7.520 645025 - - - 1.00E+00 1.00E+Q0 1.0
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Experimental Data Sets

In vivo pull-down: Gavin et al, Nature 415 (2002) 141 31304 pairs
Ho et al, Nature 415 (2002) 180 25333 pairs
HT-Y2H: Uetz et al, Nature 403 (2000) 623 981 pairs
Ito et al, PNAS 98 (2001) 4569 4393 pairs
4 experiments on overlapping PP pairs
— 2% =16 categories — table represents fully connected Bayes network
Gold-standard overlap
Gavin | Ho | Uetz | Ito | # protein

@ || @ || pairs pos neg cumipos) |sumineg) :3mgﬁ:;§f Pig,h,u,i | pos) |P(g,h,u,i| neg) L
1 1 1 0 16 G 0 3 0 - 7.27E-04 0.00E+00 -
1 0 0 1 23 26 2 32 2 16.0 3.15E-03 7.38E-07| 4268.3
1 1 1 1 il 9 1 41 3 13.7 1.09E-03 3.69E-07| 2955.0
1 0 1 1 22 B 1 47 4 11.8 7.27E-04 3.69E-07( 1970.0
1 1 0 1 27 16 3 B3 7 9.0 1.94E-03 1.11E-06| 17511
1 0 1 0 34 12 2 7o 12 6.3 1.45E-03 1.85E-06| 788.0
1 1 0 0 1920 337 208 412 221 1.8 4.08E-02 f.72E-05) 5294
0 1 1 0 29 ) 2 418 227 1.8 6.06E-04 1.80E-06| 328.3
] 1 1 1 16 1 1 413 222 1.9 1.21E-04 3.69E-07| 328.3
0 1 0 1 39 3 4 421 231 1.8 3.64E-04 1.48BE-06| 246.2
0 0 1 1 123 i) 23 427 254 1.7 7.27E-04 8.49E-06 8a.7
1 0 ] 0 29221 1331 G224 1758 6478 0.3 1.61E-01 2.30E-03 0.2
0 0 1 0 730 D 112 1763 6580 0.3 6.06E-04 4 13E-05 14.7
0 0 0 1 4102 1M G644 1774 7234 0.2 1.33E-03 2.38E-04 2.6
] 1 ] 0 23275 a7 aob3 1861 12797 0.1 1.05E-02 2.05E-03 2.1
0 0 0 0 | 2702284 6389 2685849 8250 2708746 0.0 7. 74E-01 9.85E-01 0.8
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Statistical Uncertainties

Gold
Gavin | Ho | Uetz | Ito | # protein -
@ || (| ()| pairs | pos | neg | |P@Muilpos) Plahuilneg) | L
1 11 110 16 6 0 7.27E-04 0.00E+00 -
1 0 0 1 23 26 2 J.15E-03 7.38E-07| 4268.3
1 1 1 1 11 9 1 1.08E-03 3.69E-07| 2955.0
1 0 1 1 22 B 1 7.27TE-04 3.69E-07| 1970.0
1 1 0 1 2f 16 3 1.94E-03 TA1E-06| 17311
1 0 1 0 34 12 ] 1.45E-03 1.85E-06| 788.0

1) L(1111) < L(1001)

statistical uncertainty: AN = VN +1

Overlap with all experiments is smaller — larger uncertainty

2) L(1110) = NaN?

Use conservative lower bound — assume 1 overlap with GN
— L(1110) =2 1970

Jansen et al, Science 302 (2003) 449
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Overview

> Integration process

Data source

'ij-F’mbabilistic interactome (P}

Maive
Bayes
PIT
Data type |Dataset # protein pairs |Used for ...
. In-vivo pull-|Gavin et al. 31,304 Integration
Experimentall ., Ho et al. 25,333|experimental
interaction AL
data Yeast two- |Uetz et al. 981|interaction
{hybrid lto et al. 4,393|data (PIE)
mRNA Rosetta compendium 19,334,806
Other Expression |Cell cycle 17,467,005|De novo
genomic Biological |GO biological process 3,145,235|pradictiun
features function  [MIPS function 6,161,805|(PIP)
Essentiality 8,130,528}
. Proteins in the same
Gold Positives MIPS complex 8,250 Training &
standards . Proteins separated by testing
Negatives localization

Jansen et al, Science 302 (2003) 449

V4 -




Performance of complex prediction

A 100 B 100
PIP (de novo prediction) PIE
Essentiality Gavin
10 4 Expression correlation 10 - Ho
MIPS function o Ustz
. GO biclogical process !ﬁﬁ v . lto
o, L
Y & Ty
3 £ :
0.1 - o ~ 01-
f-—
"
=3
0.01 4 - 0.01 -
p—— Loy = 600
0.001 : . - ] 0.001 : ; .
0.001 0.1 10 1000 100000 0.001 0.1 10 1000
Lcut Lc:m

Re-classify Gold standard complexes:
Ratio of true positives to false positives
— None of the evidences alone was enough

EL}Lcut pos(L)
21> L., 1€8(L)

TP
ﬁ (Lcut) —
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Predicted set covers 27% of the GP
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Coverage

" PIP only

I Gold std. pos.
Overlap B Gold std. neg.

B rE

Jansen et al, Science 302 (2003) 449

FIE + gold std. pos.
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Verification of Predicted Complexes

Mucleosome
proteins

—— MNew TAP-tag dala (A)

Prewiously known
interactions (B)

m—— CWeriap between
{A) and (B)

Replicaton ~ ~ ~ .. y.
complex proteins N 4

Bioinformatics 3 — WS 15/16

Jansen et al, Science 302 (2003) 449

Compare predicted
complexes with available
experimental evidence
and directed new TAP-
tag experiments

— use directed
experiments to verify
new predictions
(more efficient)
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Follow-up work: PrePPIl (2012)

PDB structures/ Structural Template Interaction Structural-based
homology models neighbours complexes models score
from PDB

| MB
Sequence Structural Structural ~ | Model
similarity similarity Ay superposition evaluation
ﬁ MB NB, Bayesian PrePPI
" " oo classification / [T

QB ) ® © o
Non-structural evidence

Co-expression Functional Evolutionary
similarity similarity

Given a pair of query proteins that potentially interact (QA, QB), representative structures for the individual
subunits (MA, MB) are taken from the PDB, where available, or from homology model databases.

For each subunit we find both close and remote structural neighbours. A ‘template’ for the interaction exists
whenever a PDB or PQS structure contains a pair of interacting chains (for example, NA,—NB,) that are
structural neighbours of MA and MB, respectively. A model is constructed by superposing the individual
subunits, MA and MB, on their corresponding structural neighbours, NA, and NB..

We assign 5 empirical-structure-based scores to each interaction model and then calculate a likelihood for

each model to represent a true interaction by combining these scores using a Bayesian network trained on

the HC and the N interaction reference sets.

We finally combine the structure-derived score (SM) with non-structural evidence associated with the query
proteins (for example, co-expression, functional similarity) using a naive Bayesian classifier.

Bioinformatics 3 — WS 15/16 Zhang et al, Nature (2012) 490, 556-560 V4 - 19



Results

Recelver-operator characteristics
(ROC) for predicted yeast complexes.

Examined features:

- structural modeling (SM),

- GO similarity,

- protein essentiality (ES) relationship,
- MIPS similarity,

- co-expression (CE),

- phylogenetic profile (PP) similarity.

Also listed are 2 combinations:

- NS for the integration of all
non-structure clues, i.e. GO, ES,
MIPS, CE, and PP, and

- PrePPI for all structural and
non-structure clues).

Bioinformatics 3 — WS 15/16
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This gave 30.000 high-confidence PP
interactions for yeast and 300.000 for
human.
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Summary: Bayesian Analysis

Combination of weak features yields powerful predictions
* boosts odds via Bayes' theorem
» Gold standard sets for training the likelihood ratios

Bayes vs. other machine learning techniques:
(voting, unions, SVM, neuronal networks, decision trees, ...)

— arbitrary types of data can be combined

— weight data according to their reliability

— include conditional relations between evidences

— easily accommodates missing data (e.g., zero overlap with GN)
— transparent procedure

— predictions easy to interpret
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Connected Regions

Observation: more interactions inside a complex than to the outside

— how can one identify highly connected regions in a network?

1) Fully connected region: Clique
clique := G'= (V' E'= V{?)

Problems with cliques:

» finding cliques is NP-hard
(but "works" O(N\?) for the sparsely
connected biological networks)

* biological protein complexes are not
always fully connected

Bioinformatics 3 — WS 15/16 V4 - 22



Communities

Community := subset of vertices, for which the internal connectivity is
denser than to the outside

Aim: map network onto tree that reflects the community structure
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Radicchi et al, PNAS 101 (2004) 2658:
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Hierarchical Clustering

1) Assign a weight Wi to each pair of vertices i, jthat measures
how "closely related" these two vertices are.
2) Iteratively add edges between pairs of nodes with decreasing Wi

Measures for Wi

1) Number of vertex-independent paths between vertices /and j
(vertex-independent paths between /and j. no shared vertex except i and ))

Menger (1927): the number of vertex-independent paths equals the
number of vertices that have to be removed to cut all paths between jand j
— measure for network robustness

2) Number of edge-independent paths between jand j

3) Total number of paths L between jand j
but L =0 or » — weight paths with their length a- with a < 1

Problem: vertices with a single link are separated from the communities
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Vertex Betweenness

Freeman (1927). count on how many shortest paths a vertex is visited

Foragraph G =(V, E) with IVI=n

Betweenness for vertex v: N
& * 7 -_‘fi:; 2 j
Cp(v) = 2stvitev Ost(V) +
(n—1)(n—2)
Alternative: edge betweenness VH
— to how many shortest paths does 4 "*::;ﬂ
this edge belong T

Bioinformatics 3 — WS 15/16
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Girvan-Newman Algorithm
Girvan, Newman, PNAS 99 (2002) 7821

Foragraph G =(V, E) with |V]|=n, IEl =

1
2

) Calculate betweenness for all m edges
)

3) Recalculate betweenness for all affected nodes
)
)

Remove edge with highest betweenness

4
)

Repeat from 2) until no more edge is left (at most m iterations)
Build up tree from V by reinserting vertices in reverse order

Works well, but slow: O(mn?) = O(n3) for scale-free networks (|E|
Reason for complexity: compute shortest paths (n?) for m edges

— recalculating a global property is expensive for larger networks

Bioinformatics 3 — WS 15/16
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Zachary's Karate Club

 observed friendship relations of 34 members over two years
» correlate fractions at break-up with calculated communities

with edge betweenness:

/ A . AN A AR T P 3 = 4 & ; TP AN T R—
with number of edge-independent paths:
administrator's Instructor's
fraction fraction

Y 3 3334 4 37 91424 8 NN2BIO S B FI120293 251318 22 10 17 15 16 19 29 23 27 12

Girvan, Newman, PNAS 99 (2002) 7821
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Collaboration Network

Structure of RNA

Bioinformatics 3 — WS 15/16

**%o
o *e ”v—®
" & ® A\ \n%t:;: d
"¢
8:..“':@.. The largest component of the
L7 . .
®J eeos Santa Fe Institute collaboration

Sood network, with the primary
divisions detected by the GN
algorithm indicated by different
vertex shapes.

Edge: two authors have co-
authored a joint paper.

Girvan, Newman, PNAS 99 (2002) 7821
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Determining Communities Faster

Radicchi et al, PNAS 101 (2004) 2658:

Determine edge weights via edge-clustering coefficient
— local measure
— much faster, esp. for large networks

Modified edge-clustering coefficient:
— fraction of potential triangles
with edge between jand j

zz(f,}) + 1
min[(k; — 1), (k; — 1)

(3)
Cﬂ'sj o

Here, z; (¥ is the number of triangles,
k;and k; are the degrees of nodes jand j. C®=(2+1)/3=1

Note: "+ 1" to remove degeneracy for z;©® =0
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Performance

Instead of triangles: cycles of higher order g o9 _ ij) +1
— continuous transition to a global measure ~ *” Sgi?

10 T T

(=3 G

Time (sec)

10°

Radicchi et al-algorithm: O(N?) for large networks

Radicchi et al, PNAS 101 (2004) 2658:
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Comparison of algorithms

Data set: football teams from US colleges; different symbols = different

conferences, teams played ca. 7 intraconference games and 4 inter-
conference games in 2000 season.
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Girven-Newman algorithm Radicchi with g = 4
— very similar communities
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Comparison of modularity maximization methods

A large number of approaches have been developed to maximize modularity for
divisions into any number of communities of any sizes.

Author Ret. Label Order
Eckmann & Moses [13] EM Of{m{k*})
Zhou & Lipowsky [14] ZL O(n®)

Latapy & Pons [15] LP O(n?)
Newrman [24] NF O(nlog?n)
Newrman & Girvan [25] NG O(m?n)
Girvan & Newman [32] GN O(n*m)
Guimera et al. [27, 43] SA parameter dependent
Duch & Arenas [31] DA O(n?logn)
Fortunato et al. 33] FLIM O(n)
Radicchi et al. [34] RCCLP O(n?)
Donetti & Mufioz (35, 36] | DM /DMN O(n?)
Bagrow & Bollt [37] BB O(n®)
Capocci et al. [38] CSCC O(n?)
W & Huberman [39] WH O(n+m)
Falla, et al. [40] PK Ofexp(n))
Reichardt & Bornholdt | [41] REBE parameter dependent,

Table 1. Tabkle summarising how the computational cost of different approachas scales
with number of nodes n, number of links m and average degree (k) [42]. The labsls
shown here are used in Figures 2 and 3.
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Comparison of modularity maximization methods

One way to test the sensitivity of these methods is to see how well a particular
method performs when it is applied to ad hoc networks with a well known, fixed
community structure.

Such networks are typically generated with n = 128 nodes, split into 4
communities containing 32 nodes each.

Pairs of nodes belonging to the same community are linked with probability p,,
whereas pairs belonging to different communities are joined with probability p, ..

The value of p,is taken so that the average number of links that a node has to
members of any other community, z, ,, can be controlled.

While p,,; (and therefore z, ;) is varied freely, the value of p,,is chosen to keep
the total average node degree, k constant, and is set to 16.

Danon, Duch, Diaz-Guilera, Arenas, J. Stat. Mech. P09008 (2005)
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Comparison of modularity maximization methods

As z, increases, the communities become more and more diffuse and harder to
identify, (see figure).

Since the “real” community structure is well known in this case, it is possible to
measure the number of nodes correctly classified by the method of community
identification.
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Comparison of modularity maximization methods

One of the most successful approaches is simulated annealing.

The process begins with any initial partition of the nodes into communities.

At each step, a node is chosen at random and moved to a different community,
also chosen at random.

If the change improves the modularity it is always accepted, otherwise it is
accepted with a probability exp(AQ/KT).

The simulation will start at high temperature T and is then slowly cooled down.

Several improvements have been tested.
Firstly, the algorithm is stopped periodically, or quenched,

and AQ is calculated for moving each node to every community that is not its
own.

Finally, the move corresponding to the largest value of AQ is accepted.
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Comparison of modularity maximization methods
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Strong Communities

"Community := subgraph with more interactions inside than to the outside"

A subgraph Vis a community in a...

...strong sense when: ...weak sense when:
(V) > ENV) VieV > KMV) > ) kM)
i€V i€V
— Check every node individually — allow for borderline nodes

Radicchi et al, PNAS 101 (2004)
2658

2 Kin = 2, 2 Kout =1
{kin, kOUt} = {151}, {1 10}
— community in a weak sense

*2 kin=10, Z Kout = 2
{kin, kout} = {2,1}, {2, 0}, {3, 1}, {2,0}, {1,0}
— community in a strong and weak sense
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Summary

What you learned today:

* how to combine a set of noisy evidences into a powerful prediction tool
— Bayes analysis

* how to find communities in a network efficiently
— betweenness, edge-cluster-coefficient

Next lecture: Mon, Nov 9, 2015

* Modular decomposition
* Robustness
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