
Bioinformatics 3

V 5 – Robustness
and Modularity

Mon, Nov 9, 2015

Bioinformatics 3 – WS 15/16 V 5 – 2

Network Robustness
Network = set of connections

→ Robustness = how much does the network (not)
 change when edges/nodes are removed

Failure events: • loss of edges
• loss of nodes (together with their edges)

→ loss of connectivity
 • paths become longer (detours required)
 • connected components break apart
 → network characteristics change

Bioinformatics 3 – WS 15/16 V 5 – 3

Bioinformatics 3 – WS 15/16 V 5 – 4

Random vs. Scale-Free

Albert, Jeong, Barabási, Nature 406 (2000)
378

130 nodes, 215 edges

The top 5 nodes with the highest k connect to…

… 27% of the network … 60% of the network

Bioinformatics 3 – WS 15/16 V 5 – 5

Failure vs. Attack

fraction of nodes removed

ne
tw

or
k

di
am

et
er

Failure: remove randomly
 selected nodes

Attack: remove nodes with
 highest degrees

N = 10000, L = 20000, but effect is size-independent;

Interpretation:
SF network diameter increases strongly when network is attacked
but not when nodes fail randomly

Albert, Jeong, Barabási, Nature 406 (2000) 378

SF: scale-free network -> attack

E: exponential (random) network
-> failure / attack

SF: failure

Bioinformatics 3 – WS 15/16 V 5 – 6

Two real-world networks

fraction of nodes removed

ne
tw

or
k

di
am

et
er

Albert, Jeong, Barabási, Nature 406 (2000) 378

Scale-free: • very stable against random failure ("packet re-rooting")
• very vulnerable against dedicated attacks ("9/11")

http://moat.nlanr.net/Routing/rawdata/ :
6209 nodes and 12200 links (2000)

WWW-sample containing 325729
nodes and 1498353 links

http://moat.nlanr.net/Routing/rawdata/

Bioinformatics 3 – WS 15/16 V 5 – 7

Network Fragmentation

fraction of nodes removed

cl
us

te
r s

iz
es

 S
 a

nd
 <

s>
 <s>: average size of the

isolated clusters (except
the largest one)

S: relative size of the
largest cluster S; this
is defined as the
fraction of nodes
contained in the
largest cluster (that
is, S = 1 for f = 0)

• no difference between attack and failure (homogeneity)
• fragmentation threshold at fc ≳ 0.28 (S ≈ 0)

Random network:

• delayed fragmentation and isolated nodes for failure
• critical breakdown under attack at fc ≈ 0.18

Scale-free network:

Albert, Jeong, Barabási, Nature 406 (2000) 378

Bioinformatics 3 – WS 15/16 V 5 –

Modularity: an example of graph partitioning
The simplest graph partitioning problem is the division of a
network into just 2 parts. This is called graph bisection.

If we can divide a network into 2 parts, we can also divide
it further by dividing one or both of these parts …

graph bisection problem: divide the vertices of a
network into 2 non-overlapping groups of given sizes
such that the number of edges running between
vertices in different groups is minimized.

The number of edges between groups is called the cut size.

In principle, one could simply look through all possible divisions
of the network into 2 parts and choose the one with smallest cut size.

8

Bioinformatics 3 – WS 15/16 V 5 –

Algorithms for graph partitioning

9

But this exhaustive search is prohibitively expensive!

Given a network of n vertices. There are "!
"$!"%!

 different ways of dividing it

into 2 groups of n1 and n2 vertices.

The amount of time to look through all these divisions will go up roughly
exponentially with the size of the system.

Only values of up to n = 30 are feasible with current computers.

In computer science, either an algorithm can be clever and run quickly, but will
fail to find the optimal answer in some (and perhaps most) cases, or it will
always find the optimal answer, but takes an impractical length of time to do it.

Bioinformatics 3 – WS 15/16 V 5 –

The Kernighan-Lin algorithm

This algorithm proposed by Brian Kernighan and Shen Lin in 1970 is one of the
simplest and best known heuristic algorithms for the graph bisection problem.
(Kernighan is also one of the developers of the C language).

10

(a) The algorithm starts with any division of the vertices of a network into two
groups (shaded) and then searches for pairs of vertices, such as the pair
highlighted here, whose interchange would reduce the cut size between the
groups.
(b) The same network after interchange of the 2 vertices.

Bioinformatics 3 – WS 15/16 V 5 –

The Kernighan-Lin algorithm

(1) Divide the vertices of a given network into 2 groups (e.g. randomly)

(2) For each pair (i,j) of vertices, where i belongs to the first group and j to the

second group, calculate how much the cut size between the groups would
change if i and j were interchanged between the groups.

(3) Find the pair that reduces the cut size by the largest amount.

 If no pair reduces it, find the pair that increases it by the smallest amount.

Repeat this process, but with the important restriction that each vertex in the

network can only be moved once.

Stop when there is no pair of vertices left that can be swapped.

11

Bioinformatics 3 – WS 15/16 V 5 –

The Kernighan-Lin algorithm (II)

(3) Go back through every state that the network passed through during the

swapping procedure and choose among them the state in which the cut size
takes its smallest value.

(4) Perform this entire process repeatedly, starting each time with the best
division of the network found in the last round.

(5) Stop when no improvement on the cut size occurs.

Note that if the initial assignment of vertices to group is done randomly,
the Kernighan-Lin algorithm may give (slightly) different answers
when it is run twice on the same network.

12

Bioinformatics 3 – WS 15/16 V 5 –

The Kernighan-Lin algorithm (II)

(a) A mesh network of 547 vertices of the kind commonly used in finite element
analysis.
(b) The best division found by the Kernighan-Lin algorithm when the task is to
split the network into 2 groups of almost equal size.
This division involves cutting 40 edges in this mesh network and gives parts of
273 and 274 vertices.
(c) The best division found by spectral partitioning (alternative method).

13

Bioinformatics 3 – WS 15/16 V 5 –

Runtime of the Kernighan-Lin algorithm

The number of swaps performed during one round of the algorithm is equal to the
smaller of the sizes of the two groups [0, n / 2].

→ in the worst case, there are O(n) swaps.

For each swap, we have to examine all pairs of vertices in different groups to
determine how the cut size would be affected if the pair was swapped.

In the worst case, there are n / 2 n / 2 = n2 / 4 such pairs, which is O(n2).

14

Bioinformatics 3 – WS 15/16 V 5 –

Runtime of the Kernighan-Lin algorithm (ii)

When a vertex i moves from one group to the other group, any edges connecting
it to vertices in its current group become edges between groups after the swap.

Let us suppose that are ki

same such edges.

Similarly, any edges that i has to vertices in the other group, (say ki

other ones)
become within-group edges after the swap.

There is one exception. If i is being swapped with vertex j and they are connected
by an edge, then the edge is still between the groups after the swap

→ the change in the cut size due to the movement of i is ki

other - ki
same – Aij

A similar expression applies for vertex j.

→ the total change in cut size due to the swap is ki

other - ki
same +kj

other - kj
same – 2Aij

15

Bioinformatics 3 – WS 15/16 V 5 –

Runtime of the Kernighan-Lin algorithm (iii)

16

For a network stored in adjacency list form, the evaluation of this expression
involves running through all the neighbors of i and j in turn, and hence
takes time on the order of the average degree in the network,
or O (m/n) with m edges in the network.

→ the total running time is O (n n2 m/n) = O(mn2)

On a sparse network with m n, this is O(n3)

On a dense network (with 𝑚 → " ")*
+) , this is O(n4)

This time still needs to be multiplied by the number of rounds the algorithm is
run before the cut size stops decreasing.
For networks up to a few 1000 of vertices, this number may be between 5 and
10.

Bioinformatics 3 – WS 15/16 V 5 –

Mesoscale properties of networks
- identify cliques and highly connected clusters

Most relevant processes in biological networks correspond to the
mesoscale (5-25 genes or proteins) not to the entire network.

However, it is computationally enormously expensive to study mesoscale
properties of biological networks.
e.g. a network of 1000 nodes contains 1 1023 possible 10-node sets.

Spirin & Mirny analyzed combined network of protein interactions in S.
cereviseae with data from CELLZOME, MIPS, BIND: 6500 interactions.

17

Bioinformatics 3 – WS 15/16 V 5 –

Identify connected subgraphs
The network of protein interactions is typically presented as an undirected
graph with proteins as nodes and protein interactions as undirected edges.

First aim: identify fully connected subgraphs (cliques)
A clique is a set of nodes that are all neighbors of each other.

The „maximum clique problem“ – finding the largest clique in a given graph
is known be NP-hard.

In this example, the whole graph is a clique and consequently any subset of it is also a
clique, for example {a,c,d,e} or {b,e}.

A maximal clique is a clique that is not contained in any larger clique. Here only
{a,b,c,d,e} is a maximal clique.

In general, protein complexes need not to be fully connected.

Spirin, Mirny,
PNAS 100, 12123 (2003)

18

Bioinformatics 3 – WS 15/16 V 5 –

Identify all fully connected subgraphs (cliques)
Although the general problem - finding all cliques of a graph - is very hard,
this can be done relatively quickly for the given network because the protein
interaction graph is quite sparse (the number of interactions (edges)
is similar to the number of proteins (nodes).

To find cliques of size n one needs to enumerate only the cliques of size n-1.

The search for cliques starts with n = 4, pick all (known) pairs of edges
(6500 6500 protein interactions) successively.
For every pair A-B and C-D check whether there are edges between A and C, A and D,
B and C, and B and D. If these edges are present, ABCD is a clique.

For every clique identified, ABCD, pick all known proteins successively.
For every picked protein E, if all of the interactions E-A, E-B, E-C, and E-D exist,
then ABCDE is a clique with size 5.

Continue for n = 6, 7, ...
The largest clique found in the protein-interaction network has size 14.

Spirin, Mirny, PNAS 100, 12123 (2003)

19

Bioinformatics 3 – WS 15/16 V 5 –

Identify all fully connected subgraphs (cliques)
These results include, however, many redundant cliques.
For example, the clique with size 14 contains 14 cliques with size 13.

To find all nonredundant subgraphs, mark all proteins comprising
the clique of size 14, and out of all subgraphs of size 13 pick those
that have at least one protein other than marked.

After all redundant cliques of size 13 are removed,
proceed to remove redundant twelves etc.

In total, only 41 nonredundant cliques with sizes 4 - 14
were found by Spirin & Mirny.

Spirin, Mirny, PNAS 100, 12123 (2003)

20

Bioinformatics 3 – WS 15/16 V 5 –

Statistical significance of cliques
Number of complete cliques as a
function of clique size enumerated in
the network of protein interactions (red)
and in randomly rewired graphs (blue,
averaged over >1,000 graphs where the
number of interactions for each protein
is preserved).

Inset shows the same plot on a log-normal scale. Note the
dramatic enrichment in the number of cliques in the protein-
interaction graph compared with the random graphs. Most of
these cliques are parts of bigger complexes and modules.

Spirin, Mirny, PNAS 100, 12123 (2003)

21

Bioinformatics 3 – WS 15/16 V 5 – 22

Reducing Network Complexity?

Is there a representation that highlights
the structure of these networks???

• Modular Decomposition (Gagneur, …, Casari, 2004)
• Network Compression (Royer, …, Schröder, 2008)

Bioinformatics 3 – WS 15/16 V 5 – 23
Genome Biology 5 (2004) R57

Bioinformatics 3 – WS 15/16 V 5 – 24

Shared Components
Shared components = proteins or groups of proteins occurring in different complexes
are fairly common. A shared component may be a small part of many complexes,
acting as a unit that is constantly reused for its function.

Also, it may be the main part of the complex e.g. in a family of variant complexes that
differ from each other by distinct proteins that provide functional specificity.

Aim: identify and properly represent the modularity of protein-protein interaction
networks by identifying the shared components and the way they are arranged to
generate complexes.

Gagneur et al. Genome Biology 5, R57 (2004)

Georg Casari, Cellzome (Heidelberg)

Bioinformatics 3 – WS 15/16 V 5 – 25

Modular Decomposition of a Graph
Module := set of nodes that have the
 same neighbors outside of the module

trivial modules:
{a}, {b}, …, {g}
{a, b, …, g}

non-trivial modules:
{a, b}, {a, c}, {b, c}
{a, b, c}
{e, f}

Gagneur et al, Genome Biology 5 (2004)
R57

Quotient: representative node for a module

Iterated quotients → labeled tree representing the original network
→ "modular decomposition"

Bioinformatics 3 – WS 15/16 V 5 – 26

Quotients
Series: all included nodes are direct neighbors (= clique)

→

Parallel: all included nodes are non-neighbors

→

Prime: "anything else" (best labeled with the actual structure)

→

Bioinformatics 3 – WS 15/16 V 5 – 27

A Simple Recursive Example

Gagneur et al, Genome Biology 5 (2004)
R57

series
parallel

prime

Bioinformatics 3 – WS 15/16 V 5 – 28

Using data from protein complex purifications
e.g. by TAP

Different types of data:

• Y2H: detects direct physical interactions between proteins

• PCP by tandem affinity purification with mass-spectrometric identification of the
protein components identifies multi-protein complexes

→ Molecular decomposition will have a different meaning due to different
semantics of such graphs.

Gagneur et al. Genome Biology 5, R57 (2004)

Here, we focus analysis on PCP content from TAP-MS data.

PCP experiment: select bait protein where TAP-label is attached → Co-purify protein
with those proteins that co-occur in at least one complex with the bait protein.

Bioinformatics 3 – WS 15/16 V 5 – 29

Data from Protein Complex Purification
Graphs and module labels from
systematic PCP experiments:

(a) Two neighbors in the network are
proteins occurring in a same complex.

(b) Several potential sets of complexes
can be the origin of the same observed
network. Restricting interpretation to the
simplest model (top right), the series
module reads as a logical AND between
its members.

(c) A module labeled ´parallel´
corresponds to proteins or modules
working as strict alternatives with
respect to their common neighbors.

(d) The ´prime´ case is a structure
where none of the two previous cases
occurs.

Gagneur et al. Genome Biology 5, R57 (2004)

Bioinformatics 3 – WS 15/16 V 5 – 30

Two examples of modular decompositions of protein-protein
interaction networks.

In each case from top to bottom: schemata of the complexes,
the corresponding protein-protein interaction network as
determined from PCP experiments, and its modular
decomposition (MOD).

Real World Examples

Gagneur et al. Genome Biology 5, R57 (2004)

(a) Protein phosphatase 2A.

Parallel modules group proteins that do not interact but
are functionally equivalent.

Here these are the catalytic proteins Pph21
and Pph22 (module 2) and the regulatory
proteins Cdc55 and Rts1 (module 3),
connected by the Tpd3 „backbone“.

Notes: • Graph does not show functional alternatives!!!
 • other decompositions also possible

Bioinformatics 3 – WS 15/16 V 5 – 31
Gagneur et al. Genome Biology 5, R57 (2004)

RNA polymerases I, II and III

Again: modular decomposition is
much easier to understand than
the connectivity graph

Bioinformatics 3 – WS 15/16 V 5 – 32

Modular decomposition of graphs is a well-defined concept.
• One can proof thoroughly for which graphs a modular decomposition
exists.
• Efficient O(m + n) algorithms exist to compute the decomposition.

However, experiments have shown that biological complexes are not
strictly disjoint. They often share components
→ separate complexes do not always fulfill the strict requirements of
modular graph decomposition.

Also, there exists a „danger“ of false-positive or false-negative interactions.

Summary

→ other methods, e.g., for detecting communities (Girven & Newman) or
densely connected clusters are more suitable for identification of
complexes because they are more sensitive.

Bioinformatics 3 – WS 15/16 V 5 – 33

Power Graph Analysis

Lossless compact abstract representation of graphs:
• Power nodes = set of nodes (criterion for grouping?)
• Power edges = edges between power nodes

PLoS Comp Biol 4 (2008) e1000108

Exploit observation that cliques and bi-cliques are abundant in real networks
→ explicitly represented in power graphs

Bioinformatics 3 – WS 15/16 V 5 – 34

Power Nodes
In words: "… if two power nodes are connected by a power edge in

G', this means in G that all nodes of the first power node are
connected to all nodes of the second power node.

Similarly, if a power node is connected to itself by a power
edge in G', this means that all nodes in the power node are
connected to each other by edges in G.

With: "real-world" graph G = {V, E}
power graph G' = {V', E'}

Royer et al, PLoS Comp Biol 4 (2008) e1000108

Bioinformatics 3 – WS 15/16 V 5 – 35

Power Graph Analysis Algorithm
Two conditions:
• power node hierarchy condition:
two power nodes are either disjoint, or one is included in the other one
• power edge disjointness condition: each edge of the original graph is
represented by one and only one power edge

Algorithm:
1) identify potential power nodes with hierarchical clustering based
on neighborhood similarity
2) greedy power edge search

Royer et al, PLoS Comp Biol 4 (2008) e1000108

Bioinformatics 3 – WS 15/16 V 5 – 36

Complex = Star or Clique?
In pull-down experiments:
Bait is used to capture
complexes of prey proteins
→ do they all just stick to
 the bait or to each other?

spoke model
→ underestimates
 connectivity

matrix model
→ overestimates
 connectivity

Royer et al, PLoS Comp Biol 4 (2008) e1000108

Bioinformatics 3 – WS 15/16 V 5 – 37

Casein Kinase II Complex

→ Power graph: compressed and cleaner representation

Royer et al, PLoS Comp Biol 4 (2008) e1000108

Bioinformatics 3 – WS 15/16 V 5 – 38

Various Similarities

Royer et al, PLoS Comp Biol 4 (2008) e1000108

Bioinformatics 3 – WS 15/16 V 5 – 39

Network Compression
Power graph analysis: group nodes with similar neighborhood
→ often functionally related proteins end up in one power node

Lossless compression
of graphs:
38…85% edge reduction
for biological networks

Royer et al, PLoS Comp Biol 4 (2008) e1000108

Bioinformatics 3 – WS 15/16 V 5 – 40

Some PPI Networks
For some time: "Biological networks are scale-free…"

However, there are some doubts… → next lecture

Y2H PPI network from Uetz etal, Nature 403 (2003) 623 P(k) compared to a power law

Bioinformatics 3 – WS 15/16 V 5 – 41

Summary
What you learned today:

Next lecture:
• Are biological networks scale-free? (other models?)
• Network growth mechanisms

• Network robustness
 scale-free networks are failure-tolerant, but fragile to attacks
 <=> the few hubs are important
 => immunize hubs!

• Modules in networks
 => modular decomposition
 => power graph analysis

