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Network Robustness

Network = set of connections

Failure events: - loss of edges
* loss of nodes (together with their edges)

— loss of connectivity
 paths become longer (detours required)
» connected components break apart
— network characteristics change

Y- =3k

— Robustness = how much does the network (not)
change when edges/nodes are removed
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Error and attack tolerance
of complex networks

Réka Albert, Hawoong Jeong & Albert-Laszlé Barabasl

Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame,
Notre Dame, Indiana 46556, USA

against errors. For example, relatively simple organisms grow,
persist and reproduce despite drastic pharmaceutical or
environmental interventions, an error tolerance attributed to
i the robustness of the underlying metabolic network'. Complex
communication networks’ display a surprising degree of robust-
ness: although key components regularly malfunction, local fail-
] ures rarely lead to the loss of the global information-carrying
ability of the network. The stability of these and other complex
- systems is often attributed to the redundant wiring of the func-
tional web defined by the systems’ components. Here we demon-
strate that error tolerance is not shared by all redundant systems:
it is displayed only by a class of inhomogeneously wired networks,
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Random vs. Scale-Free
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Exponential

Scale-free

130 nodes, 215 edges

The top 5 nodes with the highest kK connect to...

... 27% of the network ... 60% of the network

Albert, Jeong, Barabasi, Nature 406 (2000)
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Failure vs. Attack

Failure: remove randomly

Attack: remove nodes with

selected nodes highest degrees

12 . 1
— | a
ICA E SF SF: scale-free network -> attack
) a o Failure o ©
10 ¢ O Attack o © ]
B o © :
i Lo ° E: exponential (random) network
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5| 2 o3 0 1 so a0 a0 b0 80 80 80292 | > failure / attack
= o a0 28 20 A A0 ]
Dol ¢ ] _
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4 i | l

0.00 0.02 0.04

fraction of nodes removed

N = 10000, L= 20000, but effect is size-independent;

Interpretation:

SF network diameter increases strongly when network is attacked
but not when nodes fail randomly
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Two real-world networks

Scale-free: - very stable against random failure ("packet re-rooting")
* very vulnerable against dedicated attacks ("9/11")
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http://moat.nlanr.net/Routing/rawdatal : WWW-sample containing 325729
6209 nodes and 12200 links (2000) nodes and 1498353 links
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Network Fragmentation

<s>: average size of the
Isolated clusters (except
the largest one)
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S: relative size of the
largest cluster S; this
is defined as the
fraction of nodes 5&"/ ! oL . oA
contained in the 0.2 0.4 0.0 0.2 0.4
largest cluster (that fraction of nodes removed

s, S=1forf=0)

=]

cluster sizes S and <s>

P

Random network: < no difference between attack and failure (homogeneity)
 fragmentation threshold at fc = 0.28 (S =0)

Scale-free network: ° delayed fragmentation and isolated nodes for failure
« critical breakdown under attack at fc = 0.18
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Modularity: an example of graph partitioning

The simplest graph partitioning problem is the division of a
network into just 2 parts. This is called graph bisection.

If we can divide a network into 2 parts, we can also divide
it further by dividing one or both of these parts ...

graph bisection problem: divide the vertices of a
network into 2 non-overlapping groups of given sizes
such that the number of edges running between
vertices in different groups is minimized.

The number of edges between groups is called the cut size.

In principle, one could simply look through all possible divisions
of the network into 2 parts and choose the one with smallest cut size.

Bioinformatics 3 — WS 15/16 V5 -



Algorithms for graph partitioning

But this exhaustive search is prohibitively expensive!

Given a network of n vertices. There are different ways of dividing it

n1!‘n2!
into 2 groups of n, and n, vertices.

The amount of time to look through all these divisions will go up roughly
exponentially with the size of the system.

Only values of up to n = 30 are feasible with current computers.
In computer science, either an algorithm can be clever and run quickly, but will

fail to find the optimal answer in some (and perhaps most) cases, or it will
always find the optimal answer, but takes an impractical length of time to do it.

Bioinformatics 3 — WS 15/16 V5 -



The Kernighan-Lin algorithm

This algorithm proposed by Brian Kernighan and Shen Lin in 1970 is one of the

simplest and best known heuristic algorithms for the graph bisection problem.
(Kernighan is also one of the developers of the C language).

el .
Sy - N — D
o - L ) Wi, ) > =) *

(a) The algorithm starts with any division of the vertices of a network into two
groups (shaded) and then searches for pairs of vertices, such as the pair
highlighted here, whose interchange would reduce the cut size between the
groups.

(b) The same network after interchange of the 2 vertices.
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The Kernighan-Lin algorithm

(1) Divide the vertices of a given network into 2 groups (e.g. randomly)

(2) For each pair (i,j) of vertices, where i belongs to the first group and j to the
second group, calculate how much the cut size between the groups would
change if i and j were interchanged between the groups.

(3) Find the pair that reduces the cut size by the largest amount.

If no pair reduces it, find the pair that increases it by the smallest amount.

Repeat this process, but with the important restriction that each vertex in the
network can only be moved once.

Stop when there is no pair of vertices left that can be swapped.

Bioinformatics 3 — WS 15/16 " vs



The Kernighan-Lin algorithm (ll)

(3) Go back through every state that the network passed through during the
swapping procedure and choose among them the state in which the cut size
takes its smallest value.

(4) Perform this entire process repeatedly, starting each time with the best
division of the network found in the last round.

(5) Stop when no improvement on the cut size occurs.
Note that if the initial assignment of vertices to group is done randomly,

the Kernighan-Lin algorithm may give (slightly) different answers
when it is run twice on the same network.
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The Kernighan-Lin algorithm (ll)
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(a) A mesh network of 547 vertices of the kind commonly used in finite element
analysis.

(b) The best division found by the Kernighan-Lin algorithm when the task is to
split the network into 2 groups of almost equal size.

This division involves cutting 40 edges in this mesh network and gives parts of
273 and 274 vertices.

(c) The best division found by spectral partitioning (alternative method).
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Runtime of the Kernighan-Lin algorithm

The number of swaps performed during one round of the algorithm is equal to the
smaller of the sizes of the two groups < [0, n/2].

— in the worst case, there are O(n) swaps.

For each swap, we have to examine all pairs of vertices in different groups to
determine how the cut size would be affected if the pair was swapped.

In the worst case, there are n/2 x n /2 = n? /4 such pairs, which is O(n?).

Bioinformatics 3 — WS 15/16 V5 - 14



Runtime of the Kernighan-Lin algorithm (ii)

When a vertex i moves from one group to the other group, any edges connecting
it to vertices in its current group become edges between groups after the swap.

Let us suppose that are k2™ such edges.

Similarly, any edges that i has to vertices in the other group, (say k°"e" ones)
become within-group edges after the swap.

There is one exception. If jis being swapped with vertex j and they are connected
by an edge, then the edge is still between the groups after the swap

— the change in the cut size due to the movement of jis kother - ksame — A,-j

A similar expression applies for vertex j.

— the total change in cut size due to the swap is kether - ksame +kI-0”79f - ksame — 2A,;

Bioinformatics 3 — WS 15/16 V5 - 15



Runtime of the Kernighan-Lin algorithm (ii)

For a network stored in adjacency list form, the evaluation of this expression
involves running through all the neighbors of jand j in turn, and hence
takes time on the order of the average degree in the network,

or O (m/n) with m edges in the network.

— the total running time is O (n x n? x m/n ) = O(mn?)

On a sparse network with m « n, this is O(n3)

On a dense network (with m — n(n2—1)) , this is O(n*)

This time still needs to be multiplied by the number of rounds the algorithm is
run before the cut size stops decreasing.

For networks up to a few 1000 of vertices, this number may be between 5 and
10.
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Mesoscale properties of networks
- identify cliques and highly connected clusters

Most relevant processes in biological networks correspond to the
mesoscale (5-25 genes or proteins) not to the entire network.

However, it is computationally enormously expensive to study mesoscale
properties of biological networks.

e.g. a network of 1000 nodes contains 1 x 1023 possible 10-node sets.

Spirin & Mirny analyzed combined network of protein interactions in S.
cereviseae with data from CELLZOME, MIPS, BIND: 6500 interactions.
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Identify connected subgraphs

The network of protein interactions is typically presented as an undirected
graph with proteins as nodes and protein interactions as undirected edges.

First aim: identify fully connected subgraphs (cliques) |
A clique is a set of nodes that are all neighbors of each other.

“q

The ,maximum clique problem" — finding the largest clique in a glven griéﬁph
IS known be NP-hard.

In this example, the whole graph is a clique and consequently any subset of it is also a
clique, for example {a,c,d,e}or {b,e}.

A maximal clique is a clique that is not contained in any larger clique. Here only
{a,b,c,d,e}is a maximal clique.

In general, protein complexes need not to be fully connected.

Spirin, Mirny,
PNAS 100, 12123 (2003)
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Identify all fully connected subgraphs (cliques)

Although the general problem - finding all cliques of a graph - is very hard,
this can be done relatively quickly for the given network because the protein
interaction graph is quite sparse (the number of interactions (edges)

Is similar to the number of proteins (nodes).

To find cliques of size n one needs to enumerate only the cliques of size n-1.

The search for cliques starts with n = 4, pick all (known) pairs of edges

(6500 x 6500 protein interactions) successively.

For every pair A-B and C-D check whether there are edges between Aand C, Aand D,
B and C, and B and D. If these edges are present, ABCD is a clique.

For every clique identified, ABCD, pick all known proteins successively.
For every picked protein E, if all of the interactions E-A, E-B, E-C, and E-D exist,
then ABCDE is a clique with size 5.

Continue forn=6, 7, ...

The largest clique found in the protein-interaction network has size 14.
Spirin, Mirny, PNAS 100, 12123 (2003)
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Identify all fully connected subgraphs (cliques)

These results include, however, many redundant cliques.
For example, the cliqgue with size 14 contains 14 cliques with size 13.

To find all nonredundant subgraphs, mark all proteins comprising
the clique of size 14, and out of all subgraphs of size 13 pick those
that have at least one protein other than marked.

After all redundant cliques of size 13 are removed,
proceed to remove redundant twelves efc.

In total, only 41 nonredundant cliques with sizes 4 - 14
were found by Spirin & Mirny.

Spirin, Mirny, PNAS 100, 12123 (2003)
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Statistical significance of cliques

: A 5000— —
Number of complete cliques as a ol "
function of clique size enumerated in 2000. 0 |
the network of protein interactions (red) 3500/
: : <)
and in randomly rewired graphs (blue, 230001
3 |
averaged over >1,000 graphs where the 32500/
number of interactions for each protein §2°°°' g § W
. £ 150
IS preserved). 3

5 10 15 20
Inset shows the same plot on a log-normal scale. Note the Size of complex (n)

dramatic enrichment in the number of cliques in the protein-
interaction graph compared with the random graphs. Most of
these cliques are parts of bigger complexes and modules.

Spirin, Mirny, PNAS 100, 12123 (2003)
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Reducing Network Complexity?
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* Modular Decomposition (Gagneur, ..., Casari, 2004)
* Network Compression (Royer, ..., Schroder, 2008)
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Method

Modular decomposition of protein-protein interaction networks
Julien Gagneur™, Roland Krause®, Tewis Bouwmeester” and Georg Casari”

Addresses: "Cellzome AG, Meyerhofstrasse 1, 69117 Heidelberg, Germany. "Laboratoire de Mathématiques Appliquées aux Systémes, Ecole
Centrale Paris, Grande Voie des Vignes, 92295 Chitenay-Malabry cedex, France.

Abstract

We introduce an algorithmic method, termed modular decomposition, that defines the
organization of protein-interaction networks as a hierarchy of nested modules. Modular
decomposition derives the logical rules of how to combine proteins into the actual functional
complexes by identifying groups of proteins acting as a single unit (sub-complexes) and those that
can be alternatively exchanged in a set of similar complexes. The method is applied to experimental
data on the pro-inflammatory tumor necrosis factor-a (TNF-o)/NFkB transcription factor
pathway.

R ———
Genome Biology 5 (2004) R57
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Shared Components

Shared components = proteins or groups of proteins occurring in different complexes
are fairly common. A shared component may be a small part of many complexes,
acting as a unit that is constantly reused for its function.

Also, it may be the main part of the complex e.g. in a family of variant complexes that
differ from each other by distinct proteins that provide functional specificity.

Aim: identify and properly represent the modularity of protein-protein interaction
networks by identifying the shared components and the way they are arranged to

generate complexes.

Gagneur et al. Genome Biology 5, R57 (2004)

Georg Casari, Cellzome (Heidelberg)
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Modular Decomposition of a Graph

Module := set of nodes that have the
same neighbors outside of the module

trivial modules:

{a}, {b}, ..., {9}
{a, b, ..., g}

non-trivial modules:
{a, b}, {a, ¢}, {b, c}
{a, b, ¢}
{e, f}

Quotient: representative node for a module

Iterated quotients — labeled tree representing the original network
— "modular decomposition”

Gagneur et al, Genome Biology 5 (2004)
Bioinformatics 3 — WS 15/16 R57 V5 - 25



Quotients

Series: all included nodes are direct neighbors (= clique)
T e )

} e. — {a@{:} ? _e.

. ¢/

Parallel: all included nodes are non-neighbors
é b
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A Simple Recursive Example

series
*—@—(1)—@
d g
‘) i (] l
) : p .
(%) o (D—@g
 {abg d  fef] - l l ‘ _l
-..1.“ '
/ a b c e f
prime !
®
{a,b,c,d.efg}

Gagneur et al, Genome Biology 5 (2004)
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Using data from protein complex purifications
e.g. by TAP

Different types of data:
« Y2H: detects direct physical interactions between proteins

« PCP by tandem affinity purification with mass-spectrometric identification of the
protein components identifies multi-protein complexes

— Molecular decomposition will have a different meaning due to different
semantics of such graphs.

Here, we focus analysis on PCP content from TAP-MS data.

PCP experiment: select bait protein where TAP-label is attached — Co-purify protein
with those proteins that co-occur in at least one complex with the bait protein.

Gagneur et al. Genome Biology 5, R57 (2004)
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Data from Protein Complex Purification

Graphs and module labels from

. . (a) (b)
SyStematIC PCP experlments Frotein complex purification Series = combined
o
(a) Two neighbors in the network are (-.0 @}Q’@@
proteins occurring in a same complex. 5 @a ) /o
- AN qt.'
(b) Several potential sets of complexes e
can be the origin of the same observed ® @
network. Restricting interpretation to the
. . : () (d)
simplest model (top right), the series i) Parallel - akematives P) Prime
module reads as a logical AND between @) 6('. 3 g g
its members. z 3
(¢) A module labeled “parallel’ @ @
corresponds to proteins or modules AN S AN
. . . . .-"f- ““‘x .”'------ ’ : g L
working as strict alternatives with x‘ .; . e .

respect to their common neighbors.

(d) The “prime” case is a structure
where none of the two previous cases
OCCuUrs.
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Real World Examples

Two examples of modular decompositions of protein-protein
Interaction networks.

In each case from top to bottom: schemata of the complexes,
the corresponding protein-protein interaction network as
determined from PCP experiments, and its modular
decomposition (MOD).

(a) Protein phosphatase 2A.

Parallel modules group proteins that do not interact but
are functionally equivalent.

PCP Pn::-.tn.ain u;nrnplex
V' purification

Here these are the catalytic proteins Pph21
and Pph22 (module 2) and the regulatory

‘MOD » Modular decomposition

@ Protein
proteins Cdc55 and Rts1 (module 3), Series module
connected by the Tpd3 ,backbone”. @ Parallel module

(a)

-]

Poh22
L

His1 [ s Ldchh

Pph21

Notes:* Graph does not show functional alternatives!!!
 other decompositions also possible

1
EE Tpd3

Ris1 Cdcbs Pph21 Pph22
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RNA polymerases |, Il and lli

RNAP | RNAP I RNAP Il Rpc10 Rpo26 Rpb8 Rpb5 Rpo10

NP\

Rpc19  Rped( . Rpbd Rpo21 Rpb7Rpbd Rpb3 RpbZ Rpbid
RpbZ

Rob
Rpt

Rpo21
Rpb? ] Rab11

Rpad3 Rpadd Rpadd Rpallio Rpald Rpal13s Rpal? RpcBZ Rpodl Rpchld Rpeld7? RApc34 Ret! Rpcdl Rpeds Rpel? Rpeld

podd
- Rp
Rpais s c17
Rpa12 - -1 RpcS:
= Again: modular decomposition is
Rpad pas pcit

' Focs? much easier to understand than
e L = the connectivity graph

Rpc18 Rpol1

Rpatl35

Rpald Roc31 Rpc82 Gagneur et al. Genome Biology 5, R57 (2004)
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Summary

Modular decomposition of graphs is a well-defined concept.

* One can proof thoroughly for which graphs a modular decomposition
exists.

 Efficient O(m + n) algorithms exist to compute the decomposition.

However, experiments have shown that biological complexes are not
strictly disjoint. They often share components

— separate complexes do not always fulfill the strict requirements of
modular graph decomposition.

Also, there exists a ,danger” of false-positive or false-negative interactions.

— other methods, e.g., for detecting communities (Girven & Newman) or
densely connected clusters are more suitable for identification of
complexes because they are more sensitive.
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Power Graph Analysis

OPEN G ACCESS Freely available online PI.OS computaTionaL BIOLOGY

Unraveling Protein Networks with Power Graph Analysis

Loic Royer, Matthias Reimann, Bill Andreopoulos, Michael Schroeder*

Biotechnology Center, Technische Universitdt Dresden, Germany

R —

PLoS Comp Biol 4 (2008) e1000108

Lossless compact abstract representation of graphs:
* Power nodes = set of nodes (criterion for grouping?)
* Power edges = edges between power nodes

Exploit observation that cliques and bi-cliques are abundant in real networks
— explicitly represented in power graphs

Bioinformatics 3 — WS 15/16 V5 - 33



Power Nodes

In words: "... if two power nodes are connected by a power edge in
G', this means in G that all nodes of the first power node are
connected to all nodes of the second power node.

Similarly, if a power node is connected to itself by a power
edge in G', this means that all nodes in the power node are
connected to each other by edges in G.

With: "real-world" graph G ={V, E}
power graph G'={V', E'
Star motif Clique motif Biclique motif

- % -

Royer et al, PLoS Comp Biol 4 (2008) e1000108
Bioinformatics 3 — WS 15/16 V5 - 34



Power Graph Analysis Algorithm

Two conditions:

» power node hierarchy condition:

two power nodes are either disjoint, or one is included in the other one
» power edge disjointness condition: each edge of the original graph is
represented by one and only one power edge

Algorithm:

1) identify potential power nodes with hierarchical clustering based
on neighborhood similarity

2) greedy power edge search

() identical neighborhoods
similar neighborhoods

Neighborhood- Power edge search
similarity clustering

Royer et al, PLoS Comp Biol 4 (2008) e1000108
Bioinformatics 3 — WS 15/16 V5 - 35



Complex = Star or Clique?

Corresponding

Motifs Power Graphs Biological examples
Star motif Spoke model Hub proteins
bait
— jhub
preys
Cligue motif Matrix model Protein Complexes
bait ckal ckb
LN
o o0
o9 cka2 ckb?2
preys
Bicliqgue motif Domain induced interactions

% - e -

[ClE] ]

Figure 1. The Three Basic Motifs: Star, Biclique, and Clique.
Stars often occur because of hub proteins or when affinity purification
complexes are interpreted using the spoke model. Bicliques often arise
because of domain-domain or domain-motif interactions inducing
protein interactions [25]). Power nodes are sets of nodes and power
edges connect power nodes. A power edge between two power nodes
signifies that all nodes of the first set are connected to all nodes of the
second set. Note that nodes within a power node are not necessarily
connected to each other.

doi:10.1371/journal.pchi.1000108.g001

In pull-down experiments:
Bait is used to capture
complexes of prey proteins
— do they all just stick to
the bait or to each other?

spoke model
— underestimates
connectivity

matrix model
— overestimates
connectivity

Rovyer et al, PLoS Comp Biol 4 (2008) e1000108
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Casein Kinase Il Complex

elF3 sub-complex

>~
FRC I
A ’»\,"\

N S

PAF1 complex
A B

Figure 2. Casein Kinase Il Complex. Two catalytic alpha subunits (CKA1, CKA2) and two regulatory beta subunits (CKB1, CKB2) interacting with
the FACT complex, with sub-complex NIP1-RPG-PRT1, and with the PAF1 complex. The graph representation (A) consists of 80 edges whereas the
power graph representation (B) has 30 power edges, thus an edge reduction of 62%. This simplification of the representation makes the separation of
the regulatory subunits from the catalytic subunits immediately apparent without loss of information on individual interactions.
doi:10.1371/journal.pcbi.1000108.g002

— Power graph: compressed and cleaner representation

Royer et al, PLoS Comp Biol 4 (2008) e1000108
Bioinformatics 3 — WS 15/16 V5 —
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Various Similarities

) . , Phylogenetic tree according
@ SH3-domain protein to SH3 domain sequences

@ Motif class 1 proteins : l

* Motif class 2 proteins

ABP1

: OO
5 =
m;g 5 & e E
- LL :
oo @ > > =

j:%

|

Meighborhood similarity
tree of interaction partners

A B

Figure 4. Interactions of SH3 Carrying Proteins. (A) Protein interaction network showing the 105 interaction partners of the SH3 domain
carrying proteins: SHO1, ABP1, MY(QS5, BOI1, BOI2, RVS167, YHROM6C and YFRO24. The underlying network consists of 182 interactions represented
here as 36 power edges—a reduction of 80%-leaving all but only the core information. Class 1 motif (RexdPxxP) proteins are shown in black. Class 2
motif (PxxPxR) proteins are shown in light grey [15]. Note how power graphs group proteins having similar binding motifs together. (B) Phylogeny
and interaction profiles. Comparison of the phylogenetic tree of the SH3 domains sequences with the neighbourhood similarity tree of interaction
partners. The neighbourhood sirmilarity implied by the power graph reflects the sequence similarity of the 5H3 domains.

doi:1 0.1 37T 6urmal.peb. TUOUTUE.guoE

Royer et al, PLoS Comp Biol 4 (2008) e1000108
Bioinformatics 3 — WS 15/16

V5 -

38



Network Compression

Power graph analysis: group nodes with similar neighborhood
— often functionally related proteins end up in one power node

Protein Interaction Avg.
. Network # Nodes 3# Edges Degree e.sr. Gr
LOSSIeSS CompreSSIOn Lim et al. (2006) [46] 571 701 2.45 85% 12.1
Of graphs: Hazbun et al. (2003) [47] 2243 3130 2.79 /9% 13
. Kim et al. (2006) [48] 577 1090 3.78 67/% 4.1
38' - '85% edge redUCtIon Gunsalus et al. (2004) [49] 281 514 3.6 65% 4.6
for bIOlOg ical networks Gavin et al. (2006) [4] 1462 6042 0.4 64% 7.2
Ewing et al. (2007) [50] 2294 54459 5.62 54% 6.6
Ito et al. (2001) [51] 3243 4367 2.69 53% 53
Rual et al. (2005) [12] 1527 2529 3.31 50% 4.5
Krogan et al. (2006) [6] 2708 /123 5.26 49% 4.5
Stanyon et al. (2004) [9] 478 1778 743 48% 5.3
Stanyon et al. (2004) [9] 478 1778 743 48% 5.3
Butland et al. (2005) [52] 1277 5324 8.33 43% 6.0
Arifuzzaman et al. (2006) 2457 8663 /.05 39% 54
[53]
Lacount et al. (2005) [13] 1272 2643 4.16 38% 3.8

Average degree, edge reduction (e.r.}, and edge to power node conversion rate

Royer et al, PLoS Comp Biol 4 (2008) e1000108 (c.r.).
doi:10.1371/journal.pchi.1000108.1001
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Some PPl Networks

For some time: "Biological networks are scale-free..."
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Y2H PPI network from Uetz etal, Nature 403 (2003) 623 P(k) compared to a power law

However, there are some doubts... — next lecture
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Summary

What you learned today:

* Network robustness

1 scale-free networks are failure-tolerant, but fragile to attacks
<=> the few hubs are important

=> Immunize hubs!

 Modules in networks
=> modular decomposition
=> power graph analysis

Next lecture:

* Are biological networks scale-free? (other models?)
* Network growth mechanisms
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