V6 — Biological PPl Networks
- are they really scale-free?
- network growth
- functional annotation in the network

Mon, Nov 16, 2015
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brief communications

Lethality and centrality in protein networks

The most highly connected proteinsin the cell are the mostimportant forits survival.

Jeong, Mason, Barabasi, Oltvai, Nature 411 (2001) 41
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Partial Sampling

Estimated for yeast: 6000 proteins, 30000 interactions

Table 1 Topological properties of interactome maps

Ito ef al. Uetz et al. Ito-Uetz Li et al. Giot et al. Minimum

Data set (yeast) (yeast) combined {worm) (fly) value
Total number of nodes Fa7 1,005 1,417 1,415 4,651 797
MNodes in main 417 (52%) 473 (47%) 970 (68%) 1,260 (B9%) 3,039 (65%) 47%
component
Total number 206 D48 1,520 2,135 4 787 206
of interactions
Interactions in main hdad akala 1,229 2,038 3,715 hdad
component
R-square 0.843 0.954 0.899 0.885 0.91 0.843
Y -1.82 —2.42 -1.91 -1.59 -2.75 -2.7/5
<K= 1.96 1.84 2.15 2.98 2.04 1.84
Average clustering 0.2 0.11 0.09 0.09 0.06 0.06
coefficient
MNumber of network 143 177 160 f0 291 f0
components
Average component size h.b 9.7 8.9 20.2 7.4 2.6
Characteristic path length b.14 748 6.5h 4.91 9.43 4.91
Number of baits 455 alZ H27 a0 2,820 455

Maximum
value

4,651
5%

4,787

3,715

0.924
—1.59
2.98
0.2

591

20.2
0.43
2,820

The linear regression R-square measures the linearity between login{ &)} and log(k} i.e. the fit to & power-law distribution. v is the exponent of the power law distribution
formula that best fits the observed distribution. <k= is the average number of interactions per protein observed in the network. For the Ito, Li and Giot data sets only the high

canfidence interactions were considerad (core).

Y2H covers only 3...9% of the complete interactome!

Han et al, Nature Biotech 23 (2005) 839
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Effect of sampling on topology predictions
of protein-protein interaction networks

Jing-Dong ] Han'—3, Denis Dupuy'», Nicolas Bertin!, Michael E Cusick! & Marc Vidal!

‘W_——’— o
Nature Biotech 23 (2005) 839

Generate networks of various types,
sample sparsely from them
— degree distribution?

 Random (ER / Erdos-Renyi) — P(k) = Poisson
* Exponential (EX) — P(k) ~ expl[-K]
 scale-free/ power-law (PL) — P(k)~ kY

* P(k) = truncated normal distribution (TN)
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Sparsely Sampled random (ER) Network

resulting P(k) for different coverages linearity between P(k) and power law
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Mapping coverage:
o Bait 10%/Edge 10% Bait 40%Edge 40% —¥— Bail B0%WEdge 80%

¢ Bait 20%/Edge 20%  —&—Bait 60%/Edge 60%  —#— Bail 100%/Edge 100%

— for sparse sampling (10-20%), even an ER networks
"looks" scale-free (when only P(k) is considered)
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Anything Goes
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Han et al, Nature Biotech 23 (2005) 839
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Compare to Uetz et al. Data
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Sampling density affects observed degree distribution
— true underlying network cannot be identified from available data
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Network Growth Mechanisms

Given: an observed PPl network — how did it grow (evolve)?

Inferring network mechanisms: The Drosophila
melanogaster protein interaction network

Manuel Middendorf?, Etay Ziv*, and Chris H. Wiggins5T

'Department of Physics, *College of Physicians and Surgeons, SDepartment of Applied Physics and Applied Mathematics, and "Center for Computational
Biology and Bioinformatics, Columbia University, New York, NY 10027

Communicated by Barry H. Honia, Calumbia Lniversite. Mew Yark. NY. Derember 20, 2004 (received far

- — ——

review Sente

PNAS 102 (2005) 3192

Look at network motifs (local connectivity):
compare motif distributions from various network prototypes to fly network

Idea: each growth mechanism leads to a typical motif distribution,
even if global measures are comparable

Bioinformatics 3 — WS 15/16 V6 — §



The Fly Network

Y2H PPI network for D. melanogaster from Giot et al. [Science 302 (2003) 1727]

4
10 -

Confidence score [0, 1] for LA

every observed interaction |

— use only data with &
p>0.65(0.5)

— remove self-interactions
and isolated nodes

percolation events for p > 0.65

107

number of vertices

High confidence network : z =P e e _*
with 3359 (4625) nodes |

and 2795 (4683) edges 10(;1 0.2 0l3 04 0.15 . 0.13 ':l.l? 0.18 0.9 1
p

Use prototype networks Size of largest components. At p = 0.65, there is one large

of same size for training component with 1433 nodes and the other 703 components

contain at most 15 nodes.

Middendorf et al, PNAS 102 (2005) 3192
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Network Motives

All non-isomorphic subgraphs that can be generated with a walk of length 8
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Middendorf et al, PNAS 102 (2005) 3192
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Growth Mechanisms

Generate 1000 networks, each, of the following 7 types
(same size as fly network, undefined parameters were scanned)

DMC Duplication-mutation, preserving complementarity

DMR Duplication with random mutations

RDS Random static networks

RDG Random growing network

LPA Linear preferential attachment network (Albert-Barabasi)
AGV Aging vertices network

SMW Small world network

Bioinformatics 3 — WS 15/16

V6 - 11



Growth Type 1: DMC

"Duplication — mutation with preserved complementarity”

Evolutionary idea: gene duplication, followed by a partial loss of
function of one of the copies, making the other copy essential

Algorithm:

Start from two connected nodes,
repeat N - 2 times:

* duplicate existing node with all interactions

« for all neighbors: delete with probability gger
either link from original node or from copy

Bioinformatics 3 — WS 15/16
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Growth Type 2: DMR

"Duplication with random mutations”

Gene duplication, but no correlation between original and copy
(original unaffected by copy)

Algorithm:

Start from five-vertex cycle,
repeat N - 5 times:

* duplicate existing node with all interactions

» for all neighbors: delete with probability qqe:
link from copy

» add new links to non-neighbors with
probability gnew/n

Bioinformatics 3 — WS 15/16

V6 - 13



Growth Types 3-5: RDS, RDG, and LPA

RDS = static random network

Start from N nodes, add L links randomly

RDG = growing random network

Start from small random network, add nodes,
then edges between all existing nodes

LPA = linear preferential attachment

Add new nodes similar to Barabasi-Albert algorithm,
but with preference according to (ki+ a), a=0...5
(BA for a = 0)

Bioinformatics 3 — WS 15/16
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Growth Types 6-7: AGV and SMW

AGV = aging vertices network

Like growing random network,
but preference decreases with age of the node
— citation network: more recent publications are cited more likely

SMW = small world networks (Watts, Strogatz, Nature 363 (1998) 202)

Randomly rewire regular ring lattice

Bioinformatics 3 — WS 15/16 V6 - 15



Alternating Decision Tree Classifier

Trained with the motif counts from 1000 networks of each of the 7 types
— prototypes are well separated and reliably classified

s V -‘«

1: Sl4 <16.5 2: S32 < 4479.5 3: S1<1.5

VNP \\

DMC: 0.49 DMC: 0.62 DMC: -0.65 DMC: -1.78
DMR: 0.58 DMR: -3.64 DMR: 0.19 DMR: 0.12

DMC: -0.86
DMR: -4.13

DMC: 4.41
DMR: -3.50

RDG: -1.62 RDG: 0.56 RDG: -3.82 RDG: 0.24 RDG: 0.10 RDG: -3.51
LPA: 0.32 LPA: -3.94 LPA: -4.25 LPA: 0.99 LPA: -0.01 LPA: -1.70
AGV: 0.32 AGV: -3.94 AGV: -0.03 AGV: 0.05 AGV: 0.01 AGV: -2.80

SMW: 0.32
RDS: 0.32

SMW: -3.94
RDS: -2.90

SMW: 0.29 SMW: -3.92

RDS: -3.94

SMW: 0.02
RDS: 0.03

SMW: -2.94

RDS: -3.01

¥ Y
6: S49 < 203.0

/y

4: S27 < 2761.5

¥

DMC: 0.04 DMC: -0.21 DMC: 0.65 DMC: -3.48
DMR: -0.75 DMR: -0.44 DMR: -0.57 DMR: 2.38
RDG: -1.63 RDG: -0.94 RDG: -1.60 RDG: 0.00

LPA: -2.46
AGV: -0.30
SMW: 0.05
RDS: 0.65

LPA: -1.40
AGV: 3.13
SMW: -3.13
RDS: -3.14

LPA: -0.00
AGV: 0.05
SMW: 0.73
RDS: -2.44

LPA: 5.90
AGV: -0.03
SMWw: -3.15
RDS: 0.86

Part of a trained ADT

Decision nodes count
occurrence of motifs

Bioinformatics 3 — WS 15/16

Prediction accuracy for networks
similar to fly network with p = 0.5:

Prediction
Truth DMR DMIC AGY LP& SV RD5S RDG
DMR 993 0.0 0.0 0.0 0.0 0.1 0.6
ODMC 0.0 Q9.7 0.0 0.0 0.3 0.0 0.0
AGY 0.0 0.1 B4.7 13.5 1.2 0.5 0.0
LP& 0.0 0.0 10.3 E9.6 0.0 0.0 0.1
SV 0.0 0.0 0.6 0.0 Q9.0 0.4 0.0
RDS 0.0 0.0 0.2 0.0 0.8 99.0 0.0
RDG 0.9 0.0 0.0 0.1 0.0 0.0 99.0

Middendorf et al, PNAS 102 (2005) 3192
V6 - 16



Are They Different?
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Example DMR vs. RDG: Similar global parameters <C> and <I> (left),
but different counts of the network motifs (right)

-> networks can (only) be perfectly separated by motif-based classifier

Bioinformatics 3 — WS 15/16

Middendorf et al, PNAS 102 (2005) 3192
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How Did the Fly Evolve?

Subgraphs with up to

Eight-step subgraphs seven edges Eight-step subgraphs
(p* = 0.65) (p* = 0.65) (p* = 0.5)

Rank Class Score Class Score Class Score

1 DMC 8.2=*1.0 DMC 8.6 = 1.1 DMC 0829
2 DMR —6.8 + 0.9 DMR —6.1 1.7 DMR -2.1x20
3 RDG —95+ 2.3 RDG -93*16 AGV —-3.1x22
4 AGV —10.6 = 4.2 AGV —11.5 = 4.1 LPA —10.1 = 3.1
5 LPA —16.5 = 3.4 LPA —14.3 = 3.2 SMW -206 1.9
6 SMW —18.9 = 0.7 SMW —18.3+1.9 RDS —-223 1.7
7 RDS —-19.1 £ 2.3 RDS —199 =15 RDG —225 =47

Drosophila is consistently (independently of the cut-off in subgraph size) classified as a DMC network, with an
especially strong prediction for a confidence threshold of p* = 0.65.

——
R ——
— Best overlap with DMC (Duplication-mutation, preserved complementarity)
— Scale-free or random networks are very unlikely

Middendorf et al, PNAS 102 (2005) 3192
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Motif Count Frequencies

10"8 ..

10'6 §
g -> DMC and DMR
D. melanog. q102 8 .
2 networks contain
80 .
DMC most subgraphs in
DMRH similar amount as
fly network (top).
el " y (top)
AGV 8
=
LPAf <
SMW
RDS
st sio S0 s sS40 S50
rank score: fraction of test networks
with a higher count than Drosophila
(50% = same count as fly on avg.) N, count

Middendorf et al, PNAS 102 (2005) 3192
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Experimental Errors?

Randomly replace edges in fly network and classify again:

-10}

prediction score

—t
o

n
o

0 01 02 03 04 05 06 07 08 09 1
fraction of edges replaced

— Classification unchanged for < 30% incorrect edges,
at higher values RDS takes over (as to be expected)

Bioinformatics 3 — WS 15/16
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Summary (l)

Sampling matters!

— "Scale-free" P(k) obtained by sparse sampling
from many network types

Test different hypotheses for

* global features
— depends on unknown parameters and sampling
— no clear statement possible

* local features (motifs)
— are better preserved
— DMC best among tested prototypes

Bioinformatics 3 — WS 15/16
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What Does a Protein Do?
%8 BRENDA || 3;11”5;"“'9

Bioinformatics

Explorer [ SEARCH ][ BROWSE ]

B3 1 Oxidoreductases (4042 organisms) 2 %
= 2 Transferases (3198 organisms) 2 4%
B 2.1 Transferring one-carbon groups (615 organisms) 2 4
[32.1.1 Methyltransferases (514 organisms) & B ®
[32.1.2 Hydroxymethyl-, formyl- and related transferases (82 organisms) £ E &
[J2.1.3 Carboxy- and carbamoyltransferases (105 organisms) £ 4%
= 2.1.4 Amidinotransferases (32 organisms) 2 & D
®2.1.4.1 glycine amidinotransferase (17 organisms) 2 B
®2.1.4.2 scyllo-inosamine-4-phosphate amidinotransferase (15 organisms) 2 M ©
[0 2.2 Transferring aldehyde or ketonic groups (91 organisms) 2 B
01 2.3 Acyltransferases (930 organisms) 2 [E @
[0 2.4 Glycosyltransferases (925 organisms) 2 i
03 2.5 Transferring alkyl or aryl groups, other than methyl groups (547 organisms) 2 %
03 2.6 Transferring nitrogenous groups (377 organisms) 2 £
03 2.7 Transferring phosphorus-containing groups (1343 organisms) 2 1
03 2.8 Transferring sulfur-containing groups (276 organisms) 2 i
[J 2.9 Transferring selenium-containing groups (6 organisms) 2
003 Hydrolases (4453 organisms) 2 i
004 Lyases (2145organisms) 2 s
05 |somerases (849 organisms) 2 >
06 Ligases (686 organisms) 2 >

e

Enzyme Classification scheme
(from http://www.brenda}

enzymes.ord/)
Bioinformatics 3 — WS 15/16 V6 -
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Un-Classified Proteins?

Vol. 21 Suppl. 1 2005, pages 13023710
dai: 10, 1083 bicinformatics/bti 1054

b Whole-proteome prediction of protein function
?“mg:# via graph-theoretic analysis of interaction maps
!

Elena Nabieva'-2, Kam Jim?2, Amit Agarwal', Bernard Chazelle’
and Mona Singh-<*

"Computer Science Department and ZLewis-Sigler Institute for Integrative Genomics,
Princeton University, Princeton, NJ 08544, USA

Received on January 15, 2005, accepted on March 27, 2005

R ———

Many unclassified proteins:
— estimate: ~1/3 of the yeast proteome not annotated functionally
— BIoGRID: 4495 proteins in the largest cluster of the yeast physical
Interaction map.
2946 have a MIPS functional annotation

Bioinformatics 3 — WS 15/16 V6 — 23



Partition the Graph

Large PPI networks were built from:
* HT experiments (Y2H, TAP, synthetic lethality, coexpression, coregulation, ...)
* predictions (gene profiling, gene neighborhood, phylogenetic profiles, ...)

— proteins that are functionally linked

. @D oE-HE—
> @D —
oo — - g plon s

|dentify unknown functions from clustering of these networks by, e.g.:

 shared interactions (similar neighborhood — power graphs)

 membership in a community

* similarity of shortest path vectors to all other proteins (= similar path into
the rest of the network)

Bioinformatics 3 — WS 15/16 Vo6 — 24



Protein Interactions

Nabieva et al used the S. cerevisiae dataset from GRID of 2005 (now BioGRID)
— 4495 proteins and 12 531 physical interactions in the largest cluster

' Sear::h
BiIoGRID Cmrr——
General Repusnury for Interaction Datase!s

help / . .

home support contribute downloads  mirrors about us
About BioGRID BioGRID Links
The Biological General Repository for Interaction Datasets (BioGRID) database » Arabidopsis Information
(http:/fwww.thebiogrid.org) was developed to house and distribute collections of Resource
protein and genetic interactions from major model organism species. BioGRID « BioPIXIE
currently contains over 198 000 interactions from six different species, as + Biotechnology and Biological
derived from both high-throughput studies and conventional focused studies. Sciences Research Council
Through comprehensive curation efforts, BioGRID now includes a virtually (BBSRC)
complete set of interactions reported to date in the primary literature for both the e Canadian Institutes of Health
budding yeast Saccharomyces cerevisiae and the fission yeast Research (CIHR)
Schizosaccharomyces pombe. A number of new features have been added to » Cytoscape
the BioGRID including an improved user interface to display interactions based + Database of Interacting
on different attributes, a mirror site and a dedicated interaction management Proteins
system to coordinate curation across different locations. The BioGRID provides + Entrez-Gene
interaction data with monthly updates to Saccharomyces Genome Database, » Flybase
Flybase and Entrez Gene. Source code for the BioGRID and the linked Osprey + Gene DB
network visualization system is now freely available without restriction. + Gene Ontology

» Germ Online

http://www.thebiogrid.org/about.php

25
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Function Annotation

Task: predict function (= functional annotation) for a protein
from the available annotations

Similar:
How to assign colors to
the white nodes?

Use information on:

» distance to colored nodes
* local connectivity

* reliability of the links

<=>

Bioinformatics 3 — WS 15/16 V6 - 26



Algorithm |: Majority

Schwikowski, Uetz, and Fields, " A network of protein—protein interactions in
yeast" Nat. Biotechnol. 18 (2000) 1257

Consider all neighbors and sum up how often a certain annotation occurs
— score for an annotation = count among the direct neighbors
— take the 3 most frequent functions

Majority makes only limited

use of the local connectivity

— cannot assign function to
next-neighbors

For weighted graphs:
— weighted sum

Bioinformatics 3 — WS 15/16 V6 - 27



Extended Majority: Neighborhood

Hishigaki, Nakai, Ono, Tanigami, and Takagi, "Assessment of prediction
accuracy of protein function from protein—protein interaction data", Yeast 18

(2001) 523

Look for overrepresented functions within a given radius of 1, 2, or 3 links
— use as function score the value of a y’—test

Neighborhood algorithm does not

O consider local network topology
.\(‘j/ Both examples (left) are
treated identically with r= 2
@

Bioinformatics 3 — WS 15/16 V6 - 28



Minimize Changes: GenMultiCut

Karaoz, Murali, Letovsky, Zheng, Ding, Cantor, and Kasif, "Whole-genome
annotation by using evidence integration in functional-linkage networks"
PNAS 101 (2004) 2888

"Annotate proteins so as to minimize the number of times that different
functions are associated with neighboring proteins”

— generalization of the multiway k-cut problem for weighted edges,
can be stated as an integer linear program (ILP)

P PR g A

Multiple possible solutions — scores from frequency of annotations

Bioinformatics 3 — WS 15/16 V6 - 29



Nabieva et al: FunctionalFlow

Extend the idea of "guilty by association”
— each annotated protein is a source of "function"-flow
— simulate for a few time steps
— choose the annotation a with the highest accumulated flow

Each node u has a reservoir R{u), each edge a capacity constraint (weight) wu,v

oo, 1f u 1s annotated with a,

0, otherwise. and 80 (u,v) =0

Initially:  R(u) = {

Then: downhill flow with capacity constraints

) 0, if R ,(u)<R; ,(v)
8 (u,v) = min( Wu ) , otherwise.

wu Vs ,
’ Z(u,y}EE wus}‘

d
Score from accumulated in-flow: £, (u) = Z Z g% (v,u)

=1 vi(u,v)eE

Bioinformatics 3 — WS 15/16 Nabieva et al, Bioinformatics 21 (2005) i302
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accumulated

An Example

thickness = current flow
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Comparison

Proteins predicted correctly

1000

800

Majority
Neighborhood, r =1
Neighborhoeod, r = 2
Neighborhoed, r = 3

GenMultiCut

FunctionalFlow

unweighted yeast map

+ +

gt T

600

JImmn'
'y

R
o

.
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400 L2
.-'\c""‘r‘?ﬁ
200 F —
v vV
v
7 v
v
v ¥ ¥ v v ¥ 7
vwwv vVv ¥V
0 = '
1000 1500 2000 2500

Proteins predicted incorrectly

For FunctionalFlow:
SiX propagation steps
(diameter of the yeast
network = 12)

Change score threshold for accepting annotations — ratio TP/FP
— FunctionalFlow performs best in the high-confidence region

— but many false predictions!!!

Bioinformatics 3 — WS 15/16

Nabieva et al, Bioinformatics 21 (2005) i302
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Going the Distance for Protein Function Prediction: A
New Distance Metric for Protein Interaction Networks

Citation: Cao M, Zhang H, Park J, Daniels NM, Crovella ME, et al. (2013) Going the Distance for Protein Function Prediction: A New Distance Metric for Protein
Interaction Networks. PLoS ONE 8(10): e76339. doi:10.1371/journal.pone 0076339

_ distibution of shorest path disances Relying on the ordinary shortest-path distance
metric in PP| networks is problematic because
PPl networks are “small world” networks.
Most nodes are close to all other nodes.

— any method that infers similarity based on
| B proximity will find that a large fraction of the

shortestpath distance network is proximate to any typical node.
(a) (b)

Largest connected component of S. cerevisiae PPl network (BioGRID) has
4990 nodes and 74,310 edges (physical interactions).

Fig. shows the histogram of shortest-path lengths from this network. Over
95% of all pairs of nodes are either 2 hops or 3 hops apart

Bioinformatics 3 — WS 15/16 V6 — 33



The 2-hop neighborhood of a typical node probably includes around half of
all nodes in the graph.

One of the reasons that paths are typically short in biological networks like
the PPl network is due to the presence of hubs.

Hubs often represent proteins with different functional roles than their
neighbors.

Hubs are also more likely to be proteins with multiple, distinct functions.

— not all short paths provide equally strong evidence of similar function in
PPl networks.
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DSD Distance Metric
Given some fixed k>0, we define He{k}(A,B) to be the expected

number of times that a random walk starting at A and proceeding

for k steps, will visit B.

Consider the undirected graph G(V,E) on the vertex set
V={vi,v2,v3,..,vy} and |V|=n.

He(v;)=(He(v;,v1),He(v;,v2),....,He(v;,v,))

DSD(u,v)=||He(u)— He(v)||,
|He(u)— He(v)||,; denotes the L; norm of the He vectors

The one-norm (also known as the Li-norm, £; norm, or mean norm) of a vector v is denoted
|U]|; and is defined as the sum of the absolute values of its components:

T
13, =3 ol (1)
1=1

(1, —4,5), we calculate the one-norm:

for example, given the vector

Bioinfor, (1, —4,5)|l; = |1| + | — 4| +|5] = 10 35
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DSD clearly improves functional predictions
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e Qriginal MV

F1 Score on GO term Prediction for 5. cerevisiae

Exact Match

MV: majority voting

Overlap Depth Qverlap Counting

® Majority Vote

m MV (weighted DSD)

® Functional Flow

B FF with DSD

m Neighborhood

B Neighborhood with DSD
B Multi-cut

® Multi-cut with DSD

Figure 6. Improvement on F1 Score for DSD using three
evaluation methods: exact match, overlap depth and overlap
counting, on informative GO terms for the four algorithms for
S. cerevisiae in 10 runs of 2-fold cross validation.
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What you can else do with
Interaction graphs?

E.g. efficiently tracking interactions

between many particles
In dynamics simulations

Bioinformatics 3 — WS 15/16
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Strongly attracting particles form large “blob”

(a) (b) (d)

How can one analyze
the particle connectivity

efficiently?

Fori=1to N-1
Forj=itoN
Fork=jto N
If (i .iIs bound to. j) then

If (j .Is bound to. k) then ....
M.Sc. thesis Florian Lauck (2006)

this is impractical!

38
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Map simulation to interaction graph

(a) (d)

Figure 2.7: Graph and spatial view of a simulation with 50 particles at four different points
in time. The green bar denotes the energy of the system.

M.Sc. thesis Florian Lauck (2006)
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Large number of simultaneous assocications:
map simulations to interaction araphs

function INITIALIZE(N)
for P € List of Particles do
CREATE RANDOM COORDINATES(P)

CREATE GRAPH(N)
for all Iterations do
for P € List of Particles do
MoVE AND ROTATE(P)
for all P; € (List of Particles - P) do
d = DisTaANCE(P, F;)

e; = POTENTIAL(d)
if d < r¢ then ArPEND(List of Interactions, (P, F;))

Enew += €;

. a = TRANSITION PROBABILITY(E, .., Eoq)
Slmp|e MC SCheme x = RANDOMNUMBER
fOr dIﬁUSIOn + aSSOClatIOn/ if x < p then > accept new state
] o ApPEND(List of ALL interactions, List of Interactions)
dissociation Eutd = Boeu
else > discard new state

RESET(P) CLEAR(List of Interactions)
UprDATE(Graph, List of ALL Interactions)

ANALYSIS(Graph)
L ! r
2 = =
[ub] [of] [}
= = c
o jub] jui]
010 M IO,
— . _| -
v dislance +— I distance «— I distance
-— —
I'; o

40
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Interaction patches define complex geometry

=
i
o

o/l'
S -‘,

Gij(rij, 05) = exp !(QH 3 ”)]

2
20pw

Viotal = V(1ij) % Gij(rij,0i5) x Gji(riz, 05:)

Lauck et al. , JCTC 5, 641 (2009)
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Assembly of icosahedral complexes

- B

Lauck et al. , JCTC 5, 641 (2009)
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P(k) = —2 k
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20

Clustersizes

<k>, max(K)

Dynamical view at particle agglomeration
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Two snhapshots

T=2.85us
most of the
particles are part
of a large cluster,

T=15.44 ps
largest cluster
has 3 particles.

Geyer,

BMC Biophysics (2011)
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Summary: Static PPI-Networks

"Proteins are modular machines" <=> How are they related to each other?

1) Understand "Networks"
prototypes (ER, SF, ...) and their properties (P(k), C(k), clustering, ...)

2) Get the data
experimental and theoretical techniques (Y2H, TAP, co-regulation, ...),
quality control and data integration (Bayes)

3) Analyze the data
compare P(k), C(k), clusters, ... to prototypes — highly modular, clustered
with sparse sampling — PPI networks are not scale-free

4) Predict missing information
network structure combined from multiple sources — functional annotation

Next step: environmental changes, cell cycle
— changes (dynamics) in the PPl network — how and why?
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