
Bioinformatics III
Prof. Dr. Volkhard Helms
Markus Hollander, Thorsten Will, Nicolas Künzel,
Andreas Denger, Dr. Pratiti Bhadra
Winter Semester 2019/2020

Saarland University
Chair for Computational Biology

Exercise Sheet 2
Due: November 1, 2019 13:15

Submit your solutions on paper, hand–written or printed at the beginning of the lecture or in
building E2.1 room 309. Alternatively, you can send an email with a single PDF attachment to
markus-hollander@web.de. Your PDF should include commented code listings for programming
exercises. Additionally, hand in a .zip file with your source code via email.

2 Scale–Free and Interaction Networks, Fourier Transform
We continue to evolve the classes from the first assignment. The assignment of this week deals with
scale–free networks, characterising network structure and real data on protein–protein interaction
networks. Additionally, we will have a closer look at the Fourier transform convolution theorem.

Exercise 2.1: Scale–Free Network (45 Points)
First, we construct a scale–free network according to the Barabási–Albert model. Then, we ex-
amine the degree distribution of such networks and determine some characteristics in comparison
to random networks. Finally, we try to fit the degree distribution to a theoretical distribution.

(a) Implement the Barabási–Albert algorithm for setting up scale–free networks in the initial-
isation method of the ScaleFreeNetwork–class that inherits basic functionality from the
AbstractNetwork–class.

Given the number of nodes in the network n and the edge parameter m, start by adding
three nodes and fully connecting them. Iteratively add the remaining nodes to the network:

i. Add the new node to the network.
ii. Establish m undirected edges from the new node to nodes that are already in the

network. Existing nodes i with current degree ki are selected for the new edges with
probability:

pi =
ki∑
i ki

.

To obtain a much faster implementation and full points, think of a method that avoids
recomputing the node probabilities from scratch every time you want to add a new edge.

(b) First, create two scale–free networks with n = 10, 000 and n = 100, 000 nodes, respectively.
In both networks add m = 2 edges for each new node. Plot the degree distribution of
both networks with logarithmic axes by using a new, pre–implemented plotting function in
tools.py.

Next, create a random network with n = 10, 000 nodes andm = 20, 000 edges. Plot its degree
distribution together with the degree distribution of the first scale–free network, again with
logarithmic scale.

Implement your solution in the function exercise_1b() in main.py.

Questions: What differences can you observe between the degree distributions of the two
scale–free networks? What are the major differences between degree distributions of the
scale–free and the random network?

mailto:markus-hollander@web.de

(c) The degree distribution of a scale–free network follows a power law, which has the form
P (k) ∼ k−γ , where k is the node degree and γ the slope. Try to fit this theoretical distribu-
tion to the degree distribution of a random network using the Kolmogorov–Smirnov distance
as outlined below:

i. Implement the function scale_free_distribution(max, γ) in tools.py that first
computes the power–law histogram hk = k−γ for k ∈ {0, . . . ,max} and then normalises
it by dividing each histogram entry by c =

∑
k hk.

ii. Implement the function cumulative(dist) in tools.py that computes the cumulative
distribution of a given probabilistic distribution dist.

iii. Implement the Kolmogorov–Smirnov distance between two histograms A and B of
length n in the function KS_dist(A, B) in tools.py. The KS distance of two dis-
tributions is the maximal distance between their respective cumulative distributions
F :

D = max
i
|FA(i)− FB(i)|

Thus, first compute the cumulative distributions of the input histograms, then find the
position where the cumulative distributions deviate the most and return this distance.

iv. Use the KS distance to determine a γ between 1.0 and 3.0 (advance in 0.1 steps) that
fits best to the degree distribution of a scale–free network with n = 10, 000 nodes and
m = 2 new edges per iteration. Plot the empirical scale–free distribution and the
theoretical power law distribution with optimal γ, again with logarithmic scale.
Implement your solution in the function exercise_1c() in main.py.

Question: How good is your fit? How could it be improved?

Exercise 2.2: Real Interaction Networks (45 Points)
In this exercise we will implement a BioGRIDReader which will help us process real interaction
data. BioGRID (Biological General Repository for Interaction Datasets) is a protein interaction
database which, in version 3.4.159 (March 2018), contains data of 1,548,143 raw protein and
genetic interactions from major model organism species compiled from 64,826 publications.

The supplement contains this release as a tab–separated file (BIOGRID-ALL-3.4.159.tsv).
The beginning of the file contains some information about the format. Additionally, you can find
a mapping of NCBI taxon IDs to organism names in mapping.txt.

(a) Implement the initialisation method of the BioGRIDReader–class in reader.py. It should
parse the input file and store the necessary data in a data structure that simplifies later
queries. For every organism found in the file as NCBI taxon identifiers, one should be
able to easily retrieve all interactions as pairs of official gene symbols. Skip entries where
the organism is inconsistent or where the interacting proteins are the same. Avoid interaction
duplicates.

(b) Implement the function network_size(id) that returns the number of interactions in the
network of a give NCBI taxon ID.
Question: How big is the human interaction network?

(c) Implement the function most_abundant_taxon_ids(n) that returns the n organism
taxon IDs with the most interactions and the respective number of interactions.
Question: What are the n = 5 most abundant organisms and why is that not surprising?

(d) Implement the GenericNetwork–class in generic_network.py that imports networks
from files and inherits basic network functionality from the AbstractNetwork–class. Then
implement the function export_network(id, file) in the BioGRIDReader–class that
creates an organism–specific network file that can be used by the GenericNetwork–class.

(e) Compute the 10 proteins with the highest degree in the human interaction network. Imple-
ment your solution in the function exericse_2e() in main.py.

Question: What are the names and degress of these proteins? Take one of them as an
example and briefly explain the biology behind the high connectivity.

(f) Build a network for human interaction data, and then determine and plot the corresponding
degree distribution. Discuss if the distribution behaves more like a scale–free or a random
network. Implement your solution in the function exericse_2f() in main.py.

Exercise 2.3: Fourier Transform (10 Points)
As shown in lecture 3 (slides 17+), the convolution (f ~ g) of a high–resolution atomic structure
f and a blurring kernel g can be used to obtain a low–resolution representation of the structure
that can be compared to experimental, low–resolution EM images. The convolution is defined as
follows:

(f ~ g)(x) =

∫
f(y)g(x− y) dy

Fast Fourier transform can speed up the search for the best fit of atomic structure and EM image.
The continuous Fourier transform FT of a function f(x) is defined as:

FT [f(x)] = F (k) =

∫
f(x)e−ikxdx

Prove the convolution theorem given in the lecture (slide 23):

FT [(f ~ g)(x)] = FT [f(x)] · FT [g(x)]

Give a brief explanation of what you are doing in each step of your proof.

Have fun!

	Scale–Free and Interaction Networks, Fourier Transform

