
Bioinformatics III

Prof. Dr. Volkhard Helms
Tutor: Markus Hollander

Summer Semester 2021

Saarland University
Chair for Computational Biology

Exercise Sheet 1
Due: April 22, 2021 before 12:00

Submit your solutions via email to markus-hollander@web.de before the deadline, as described below under

’Submission Process and Rules’.

Introduction to Python and Network Properties

The first part of the lecture is about networks and their properties. To keep complexity down for
this assignment, we focus on random networks and provide several hints and code stubs to ease
you into building and analysing networks.

Since the first assignments are based on each other, it is recommended that you visit the tutorials
if there are any problems early on. Otherwise you are likely to encounter difficulties when working
on the following assignment sheets.

Submission Process and Rules

(a) Groups: You are advised to work in groups of two people. If necessary, we will suggest
teammates after the first assignment has been submitted.

(b) Language: You may submit your solutions in English or German.

(c) Format: Your submissions should be should be in PDF format. It should be readable
and contain your names and matriculation numbers. If you include images, make sure that
they are of sufficient quality to be readable as well. In addition to your answers to questions
asked in the assignment, the PDF document should also include your properly formatted
source code. We will not layout your source code and merge it into the PDF for you.

You can use the LATEX–template provided in the supplementary material to format your
submission. If you are new to LATEX, you can get started with overleaf.com. It provides free
tutorials, online storage, a PDF autocompiler, and simultaneous editing by multiple people.

(d) Source Code: Make sure that your code runs properly. Use meaningful variable names and
add comments that describe the gist of what you are trying to do with a certain function,
line, or section of code. Other people, especially the tutor, have to be able to understand
your code.

(e) Submission: Submit your solutions via email to the current tutor as two attachments:

• A1 Lastname1 Lastname2.zip: The ZIP file should contain all your source code files,
potential result files and whatever else is needed to generate your solution.

• A1 Lastname1 Lastname2.pdf: The PDF file should contain your answers and your
properly formatted source code as described above under ’Format’.

Submissions as Word– or simple text files will not be considered.

(f) Deadline: The deadline for submission is given on each assignment sheet. Late submissions
will not be considered.

mailto:markus-hollander@web.de
https://www.overleaf.com

(g) Tutors: Please note that later sheets need to be sent to different teaching assistants. The
respective email address will be given at the top of the exercise sheet below the due date. If
you have questions, you can also use that email address to ask the current tutor.

(h) Plagiarism: Solutions and code should be written by you in your own words. Parts that
were copied from other groups, the internet or submissions of previous years will be marked
with 0 points.

(i) First tutorial: Discussion of this exercise will take place on Thursday, April 22 at 12:15 in
Microsoft Teams.

Python

The programming language Python (version 3.x) is used for the programming tasks of the first
couple of assignments. The goal of this assignment is to learn basic Python concepts and to get
familiar with network properties. Current Python 3 versions can be obtained from python.org or
be installed via macOS and Linux package management systems.

Note that line indentation is crucial in Python! All code templates you are given use 4 spaces
as tabs, so adjust your editor or IDE accordingly to avoid problems. An example of a good, free
Python IDE is PyCharm.

Furthermore, you need to install the popular plotting library “matplotlib”. Linux users are advised
to install the library using their package management system, .e.g for Ubunntu:

sudo apt−get i n s t a l l python3−matp lo t l i b

macOS users can install it as follows on the command line:

pip3 i n s t a l l matp lo t l i b

Windows users might want to take a look at this guide.

Exercise 1.1: Network Construction (50 Points)

We start by building a simple data structure that represents a general network. Therefore we
first implement a Node–class that represents a single node in the network and stores edges to
its neighbouring nodes. Then, we define an abstract super–class that provides basic network
functionality and which can later be used to derive our different network types. Finally, we
implement a sub–class that actually builds a random network.

We provide templates for all classes that you need to implement in the supplementary material.
Most method implementations are very short. Feel free to extend your interface to suit your needs.

(a) Implement the missing methods of the Node–class in node.py.

(b) We need a network class that stores all nodes of a network. Use a Python dictionary to store
all nodes in a key → node fashion within a class variable called self.nodes. Implement all
functions of the AbstractNetwork–class in abstract network.py.

Hint: An example of using Python dictionaries:

i n i t i a l i s e a d i c t i ona ry c a l l e d nodes
nodes = {}

crea te a node with id 0
node = Node (0)

add entry to d i c t i ona ry
nodes [node . id] = node

(c) Next, we want to build random networks. Our RandomNetwork–class inherits basic net-
work functionality from the AbstractNetwork–class. All that is left to do is implement
the initialisation method of RandomNetwork in random network.py.

https://www.python.org
https://www.jetbrains.com/pycharm/
https://solarianprogrammer.com/2017/02/25/install-numpy-scipy-matplotlib-python-3-windows/

Exercise 1.2: Degree Distribution of Random Networks (50 Points)

(a) Implement the DegreeDistribution–class in degree distribution.py that determines the
normalised degree distribution of a given network.

(1) First, determine the largest degree occurring in the network and initialise a list of that
size with zeros, which represents the degree histogram. An example of doing this for
10 entries is:

histogram = [0] ∗ 10

This array then holds the degree distribution.

(2) Next, count how often each degree occurs in the network by looping over the nodes in
the network and increment the histogram cells indexed with the corresponding node
degree.

(3) Finally, normalise the histogram with the number of nodes in the network to obtain a
valid probability distribution.

(b) To visually assess if the degree distribution of a random network obeys the Poisson distri-
bution P (k) with a mean value of λ, you need to implement a few methods in tools.py:

(1) Implement the method poisson(k, λ), which returns P (k) for given λ:

P (k) =
λk

k!
e−λ.

Hint: In case you encounter numerical problems calculating the factorial, consider an

iterative or recursive solution, e.g.

P (0) = e−λ and P (k) =
λ

k
· P (k − 1).

(2) In poisson histogram(n, m, max) you first determine λ from the numbers of nodes
n and number of edges m:

λ =
2m

n
,

and then compute the Poisson distribution for all k ∈ {0, . . . ,max}. The structure of
the output should match the output of (a).

(3) The file also contains the simple function plot distribution comparison that plots
several distributions at once for comparison. To get visually pleasing plots, ensure that
all distributions that are plotted together have the same length. This can be done by
appropriately extending the shorter ones. Furthermore, two important annotations are
still missing there, fill the two empty strings correctly.

Question: Why are some distributions shorter than others and how do you need to
“fill” the shorter distributions?

(c) Run the provided script main.py, which sets up the following networks and plots the Poisson
distributions together with the degree distributions of the random networks. Save the plots
and attach them to your solution.

number of nodes / edges

Plot 1: 50/100 500/1,000 5,000/10,000 50,000/100,000
Plot 2: 20,000/5,000 20,000/17,000 20,000/40,000 20,000/70,000

Describe both plots and explain the difference (or the trend) between the different parameter
sets.

Have fun!

