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Network Communities and Bayesian Classification
In this assignment you will implement a naive Bayes classifier in bayes.py and the the algorithm
of Radicchi et al. in network_communities.py to identify the communities of a given network.

Exercise 3.1: Network communities (50 points)

(a) Edge-clustering coefficient (5 points)

The edge–clustering coefficient C̃(3)
i,j of an edge between nodes i and j is defined as the ratio

of the number of triangles z(3)i,j to which the edge between i and j contributes and the number
of possible triangles, determined by the minimum of the degrees ki and kj of the two nodes
i and j:

C̃
(3)
i,j =

z
(3)
i,j + 1

min[ki − 1, kj − 1]

If one of the nodes has a degree of 1, then C̃
(3)
i,j is infinite. What is the maximal finite value

that the edge–clustering coefficient can take and why? For which configuration does this
occur? Give an example!

(b) Network Decomposition (15 points)

(1) Implement the function triangles(i, j) that computes the number of triangles to which
the edge between i and j contributes.

(2) Implement the function edge_clustering_coefficient(i, j) that computes C̃
(3)
i,j for

the edge between i and j.

(3) Implement the function decomposition(network) that decomposes the input network
as follows:

i. Calculate the edge–clustering coefficient C̃(3)
i,j for each edge.

ii. Find the edge with the smallest C̃(3)
i,j , store it in a list and then delete it from the

network. Print the step, name of the two nodes and their current C̃(3)
i,j .

iii. Repeat i. and ii. until no edges are left in the network.
iv. Return the list of deleted edges.

(4) Read in the network from ’network.tsv’ and decompose it. Do not forget to include the
print outs from the decomposition in your PDF.
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(c) Building Communities (15 points)

(1) Implement the function classify(community) that uses the following criteria (see
Radicchi et al., 2004 ) to classify a community:

i. In a community in a strong sense, every single member of the subgraph V has more
links to the inside of the community (kin) than to the outside (kout):

kin
i (V ) > kout

i (V ) ∀i ∈ V

ii. In a community in a weak sense, the total number of links inside the subgraph V
is bigger than to the outside: ∑

i∈V

kin
i >

∑
i∈V

kout
i

(2) Implement the function rebuild(edges) that iterates over the list of deleted edges
from a network decomposition in reverse order to construct the communities. In each
iteration:

i. If the edge is not connected to an existing community, create a new one.
ii. If the edge has a single node in common with an existing community, then add the

other node to the community as well.
iii. If both nodes of the edge are already part of the same community, there is nothing

to do. If they are, however, part of two different communities, merge the two
communities into one. Print all current communities with their classification.

(3) Rebuild the network you decomposed in (b). Do not forget to include the print outs in
your PDF.

(d) Visualising Communities (15 points)
Draw the network from (b) and then the corresponding dendrogram of the community struc-
ture from the results in (c), similar to the example given on slide 25 in lecture 5. To do so,
whenever two communities are merged (case iii.), connect them with a bridge. If a single
node is merged into a community (case ii.), it is added on the same level (see the rightmost
sub–tree on the lecture slide).



Exercise 3.2: Naive Bayes Classifier (50 points)
A naive Bayes classifier is a simple classifier based on the application of Bayes’ theorem and the
(naive) assumption of independence among all features. This exercise is about implementing and
evaluating such a classifier on the basis of two artificial data sets that relate 100 discrete features
(for simplicity) to a boolean outcome.

Let’s imagine that there are certain nucleotide positions in the genome that are associated with
some disease. Each such position is a feature in our classifier and can be one of four variants: A,
C, G, T. Let D denote an individual with the disease and H a healthy individual. Vi is the variant
at position 1 ≤ i ≤ 100 and V = {V1, . . . , V100} is the collection of all variants. Given V , the goal
is to infer if an individual likely has the disease with the commonly used log–likelihood:

L = log
P (D | V )

P (H | V )

(a) Briefly explain what P (D | V ) and P (H | V ) are and how the value of L is used for
classification.

(b) Before implementing the classifier, you need to rearrange the log–likelihood formula to derive
an equivalent term that uses observable probabilities such as P (Vi | D). State what you are
doing in each step.

(c) Briefly explain two advantages of using the log–likelihood ratio for the classifier and two
reasons why it may perform poorly on a real world data set.

(d) Next, implement the binary naive Bayes classifier in bayes.py.

(1) Implement the initialisation function that builds the classifier model from a tab–separated
training data file. That means determining all necessary priors and observed proba-
bilities from (b) and storing them in some manner. Each row of the training data file
represents a sample and contains the group (healthy or diseased) in the first column
and the variants (features) in the remaining 100 columns.

(2) Implement the function report(n) that prints the observed prior probabilities P (D)
and P (H), as well as the n variants Vi with the highest absolute log–ratios:

log
P (Vi | D)

P (Vi | H)

(3) Implement the function classify(variants) that returns ’healthy’ or ’disease’ given a
list of variants V based on the formula derived in (b).

(4) Implement the function evaluate(test_data_path) that classifies the health status
for each sample in the test data file, compares the classification to the ground truth
and reports the overall accuracy of the model, as well as the frequency of ’healthy’ and
’diseased’ in the test data.

(e) Build the model for ’traning_set_1.tsv’ and note the results of the report function for n = 10.
Which features seem the most useful? Evaluate the model with the data in ’test_set_1.tsv’
and report the accuracy of the classifier.

(f) Repeat (e) for ’traning_set_2.tsv’ and ’test_set_2.tsv’. Why is the performance inferior?
Could this have been expected?

Have fun!


