
V3 – missing values + batch effect correction

- How can one deal with missing values?

- What are Batch Effects?

- ComBat tool

- BEclear tool applies latent factor model to predict missing values and 

to remove batch effects

- DNA microarray

- DNA methylation

- Functional Normalization (FunNorm) tool

- Some Review of Probability Theory Basics
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In this lecture, we deal with the issue of reconstructing missing values in our
data set and with the problem of batch effects in the data set.

We will discuss the principles of two tools, ComBat and FunNorm that are
widely used for removing batch effects.

Then we will also look at the tool BEclear from our group.

At the end I have summarized some basics from probability theory that are
worth browsing over.
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Process S. aureus microarray data – part II

2

Compute Euclidian distance between samples
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First, we will look again at the microarray data set that we discussed in the
first lecture.
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Ambiguous values
In the S. aureus genotyping test report, individual markers can be  “positive” or 
“negative” and also “ambiguous”.  

Such ambiguous classifications can be caused by:

- poor sample quality, or

- poor signal quality, or 

- by the presence of plasmids in low copy numbers.

3V3 Processing of Biological Data WS 
2021/22

www.alere-technologies.com

The image-reader device generates 3 sorts of output „positive“ (dark circle), 
„negative“ (white field), and „ambiguous“ for fields that cannot be precisely
determined.

There are various possible reasons why about 5% of the microarray tests
yielded ambiguous densities.
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Re-Assign ambiguous values in DNA microarray

Task – predict ambiguous values. 

Simple idea:  baseline prediction using average values

total average sample average gene average

replace small fraction of known

values by (thresholded) baseline 
values -> ~85% correct predictions

Better results are obtained with: 

Latent Factor Model (LFM)

~95% correct predictions
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In the large scale project discussed in the first lecture, ambiguous values are
disturbing the process of data analysis. They need to be cleaned up and
replaced by either „positive“ or „negative“ values.

A simple approach would be to replace them either by the average signal of the
data points for this particular gene probe („gene average“), or by the average
of the data points in this particular sample („sample average“) or by the
average value of the full data matrix. 

One could even compute the average of these 3 averages –> b_prediction.

Because we can only deal with 0 or 1 entries, the computed averages need to
be thresholded by a suitable value, e.g. 0.5. Averages below 0.5 would be set to
0, those above 0.5 to 1.

We tested how well this works for some randomly selected data points. If we
regenerate their entries and compare them to the correct values, this gives an 
agreement of 85% which is much better than random (50%).

We will now introduce a method that uses latent factor models that even
generates predictions that are about 95% correct.
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Latent Factor Models in image reconstruction

5

DMM course by R. Gemulla and P. Miettinen
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Latent Factor Models are very successful in image reconstruction.

If we delete 90% of the data points, the upper row shows that SVD is not 
useful for reconstructing the missing values.

However, a LFM can recover enough contrast so that we can recognize the
face in this picture.
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LFM: mathematical background

L (m× r) and R (r× n) are sought matrices 

of rank r

D (m× n) is the given matrix

Approach is termed regularized least 
squares: regularization limits the size of 
coefficients in the least squares method.

Idea: construct L and R from known data; 

use them to reconstruct the missing data.
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This slide illustrates the principles of LFM. 

The idea is to represent the data matrix Dij as the product of two matrices L 
and R. Once L and R are found, they can be used to compute all missing data
points.

The algorithm iteratively refines guesses for L and R so that the squared
difference of their product from the known data points is minimal.

Since this problem is usually underdetermined, there would be many different 
equally good solutions.

Therefore, one also applies the principle of regularization meaning that the
algorithm constructs L and R in a way so that their norm is minimal.

A parameter lambda controls the balance between the two terms. 
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LFM: solve by stochastic gradient descent
• Pick a random entry;

• Compute approximate gradient;

• Update parameters L and R

• Repeat N times.

We implemented LFM-completion of
missing values in the Bioconductor
package BEclear.

Akulenko, R., Merl, M., Helms, V. (2016) PLoS

ONE, 11:e0159921

Koren, Yehuda, Robert Bell, and Chris Volinsky. 

2009. “Matrix Factorization Techniques for 

Recommender Systems.” Computer 42 (8):30–37.
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BEclear implements a stochastic gradient descent algorithm following a 
classic paper by Koren et al. This paper has been cited more than 9000 times.

It mentions that there are two popular approaches to solve the minimization
task, stochastic gradient descent and alternating least squares (ALS). 

Gradient descent is a well-known algorithm for optimization. An initial guess
is iteratively refined by taking small steps along the direction of steepest
descent which is the direction where the negative of the first derivative of the
objective function is largest.

In stochastic gradient descent, the actual gradient that is calculated from the 
entire data set is replaced by an estimate of the gradient that is calculated from 
a randomly selected subset of the data.
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MA assignment to clonal complexes + LFM predictions
confirmed by WGS

8

154 S. aureus isolates (182 target genes) from Germany-vs-Africa study

Strauss et al. J Clin Microbiol (2016)
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Very few errors due to LFM mis-predictions.

In this comparison that was already shown in the first lecture, we were using
data for 334 probe IDs from 154 isolates.

Out of this data, n = 2,788 or 5.4% of the hybridization signals were assigned 
as ambiguous value.

As just described, ambiguous were replaced by 1 or 0 values according to an 
LFM prediction based on the entries in neighboring fields of the involved 
columns and rows. 

First, the accuracy of this approach was tested by a bootstrap approach as 
follows: 5% of randomly selected entries that were known to be positive or 
negative were removed from the dataset. This fraction corresponds to the 
typical number of targets typed as ambiguous in the microarray experiments. 
Then, these missing entries were predicted using LFM and were compared to 
the original values. As a result, LFM yielded an accuracy of 97% against the 
original values. Thus, the error rate of predicted values can be estimated as 
about 3%. 

By comparison to the WGS data, LFM predictions were actually only wrong in 
33 or about 0.1 % of the cases.
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Batch effects

9

Batch effects are:

Subgroups of measurements that show qualitatively different behavior across

conditions and are unrelated to the biological or scientific variables in a study.

For a microarray experiment, batch effects may occur due to:

• Chip type/lot/platform 

• Different laboratories may have different standard operating procedures

• Sample/preservation protocols (procedures of drawing biological samples may vary from 
center to center and over time within center, relevant to retrospective studies)

• Storage/shipment conditions

• RNA isolation (different laboratories may use different extraction procedures or kits, and 
different lots of reagents may perform differently)

• cRNA/cDNA synthesis

• Amplification/labeling/hybridization protocol (different reagents or lots may be used)

• Wash conditions (temperature, ionic strength, fluidics modules/stations; cleaning schedules)

• Ambient conditions during sample preparation/handling, such as room temperature and 
ozone levels

• Scanner (types, settings, calibration drift over prolonged studies; scheduled maintenance)
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Luo et al. Pharmacogenomics J. (2010) 10: 278–291.

Now we come to the detection of batch effects.

A batch effect describes a case when a subgroup of measurements in the data
set shows a qualitatively different behavior from the rest of the data.

Listed here are possible reasons why batch effects may occur.

This is a link to this paper: https://www.nature.com/articles/tpj201057

Another typical error source is mislabeling of samples either as healthy or as
tumor. But this introduces random noise, not systematic deviations.

9



Example: batch effects in public MA data sets

10

Score plot of the first 2 principal 
components. 

Batches (groups) are indicated by colors. 

(a) MD Anderson breast cancer data set. 
230 samples from stage I–III breast 
cancers were split into training/test 
according to hybridization dates. The 
first 130 samples assayed were used 

as “training” set and the remaining 
100 samples as “test” set.

(b) Hamner lung carcinogen data set. 2
batches in training set hybridized in 
2005 and 2006, and 2 batches in test 

set hybridized in 2007 and 2008.
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Luo et al. Pharmacogenomics J. (2010) 10: 278–291.

(d) UAMS multiple myeloma data set. 
Here, the 3 batches represent 3 generations 
of Affymetrix chips for human genes.

In these examples taken from the literature, significant batch effects can be 
seen by the perfect separation of different batches on the PCA score plots. 

For the Hamner data set (panel B), batch effects exist with overlaps between 
several batches. 
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Batch effects in public MA data sets

11

(e) Cologne neuroblastoma data set. The 
2 batches represent the 2 channels of 
Agilent arrays. Cy3 and Cy5 are two 

different fluorescent dye molecules.

(f) NIEHS data set (cross-platform): the 
two groups represent Affymetrix and 
Agilent microarray platforms. 
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Luo et al. Pharmacogenomics J. (2010) 10: 278–291.

These two plots show batch effects due to using different fluorescent dyes and
due to using different microarray platforms.

11



Example: bladder cancer microarray data

12

Raw data for normal samples taken 
from a bladder cancer microarray data 
set (Affymetrix chip). 

Green and orange represent two 
different processing dates. Box plot of 
raw gene expression data (log2 values)
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Leek et al. Nature Rev. Genet. 11, 733 (2010)

Same data after processing with RMA, a 
widely used preprocessing algorithm for
Affymetrix data. 

RMA applies quantile normalization — a 
technique that forces the distribution of the 
raw signal intensities from the microarray 
data to be the same in all samples.

The left plot shows a box plot of microarray data. Each line represents the
expression of all genes in one sample.

Obviously, the medians are very different. The left sample is highest.

The right plot shows the same data after RMA normalization. This algorithm
uses quantile normalization.

Now, the distributions are very similar to each other.
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Quantile normalisation: adjusts multiple distributions

13V3 Processing of Biological Data WS 
2021/22

Given: 3 measurements of 4 variables A – D. 

Aim: all measurements should get identical distributions of values

A 5 4 3

B 2 1 4

C 3 4 6

D 4 2 8

A iv iii i

B i i ii

C ii iii iii

D iii ii iv

Determine in each column the rank of each valueOriginal data

→

A 2 1 3

B 3 2 4

C 4 4 6

D 5 4 8

Sort columns by magnitude

A 2 Rank i

B 3 Rank ii

C 4.67 Rank iii

D 5.67 Rank iv

Compute mean of each row

→

A 5.67 4.67 2

B 2 2 3

C 3 4.67 4.67

D 4.67 3 5.67

Replace original values by mean values
according to the rank of the data field.

Now all columns contain the same values
(except of duplicates) so that they can be
easily compared.

This slide reviews the quantile normalization method.

All data points are replaced by row averages so that the distributions become
identical (except of duplicates).
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Methods to correct batch effects

14

Available batch effect removal methods can be classified in 2 main approaches: 
location-scale methods and matrix factorization methods. 

The location-scale methods assume a model for the data distribution within 
batches, and adjust the data within each batch to fit this model. 

This approach is the most straight-forward one and many methods have been 
proposed: ratio-based methods, ComBat, quantile based methods, mean or median 
centering etc.

The matrix factorization based methods assume that the gene-by-sample 
expression matrix can be represented by a small set of rank-one components which 
can be estimated by means of matrix factorization. 

The components that correlate with the batch number are then removed to obtain the 
normalized dataset
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Emilie Renard, P.-A. Absil 2017 IEEE International Conference on 
Bioinformatics and Biomedicine (BIBM), pp. 1511-1518, 2017

This is an overview over existing methods for removing batch effects.
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Global methods to correct batch effects

15

Mean-centering : after the transformation, the mean of each feature across all the 
samples within each batch is set to zero. 

Standardization: Beyond mean-centering, this approach normalizes the standard 
deviation of all features across samples within each batch to unity. 

The combination of these 2 yields the z-score of feature i: 
௫೔ೕିఓ೔

ఙ೔

Ratio-based: All samples are scaled by a reference array. 

This can be the average of multiple reference arrays, such as the measurement of 
universal human reference RNA samples for clinical data and vehicle control samples 

for toxicogenomics data.

Such global normalization methods do not remove batch effects if these affect 
specific subsets of genes so that different genes are affected in different ways.
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Luo et al. Pharmacogenomics J. (2010) 10: 278–291.

Listed here are three global methods that correct all data entries.
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Example: same bladder cancer microarray data

16

10 particular genes that are 
susceptible to batch effects even after 
RMA normalization. 

Hundreds of other genes show similar 
behavior but, for clarity, are not 
shown.
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Leek et al. Nature Rev. Genet. 11, 733 (2010)

Clustering of samples after normalization.

The samples perfectly cluster by 
processing date.

→ clear evidence of batch effect

Processing date is likely a “surrogate” for 
other variations (laboratory temperature, 
quality of reagents etc.).

This is again the microarray data set that was normalized by RMA.

Although the overall distributions of the samples have been homogenized, 
there are hundreds of genes left that show clear batch effects.

Note that this plot shows the expression of individual genes.

If one clusters this normalized data (see right plot), the samples cluster
according to processing date (green and orange represent two different dates).

This indicates that RMA did not manage to remove the batch effect for
these genes.
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Example: sequencing data from 1000 Genomes project

17

Each row is a different sample processed in the same facility with the same 
platform. The samples are ordered by processing date with horizontal lines 
dividing the different dates. Shown is a 3.5 Mb region from chromosome 16. 

Various batch effects of the read coverage can be observed. The largest one 
occurs between days 243 and 251 (the large orange horizontal streak).
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Leek et al. Nature Rev. Genet. 11, 733 (2010)

Coverage data (number of mapped 
reads in 10 kb windows)
were standardized across samples: 

blue represents three standard 
deviations below average and 
orange represents three standard 
deviations above average. 

This is another example for a large-scale batch effect in a famous genomic
project.

For some reason, sequencing in the 1000 genome project generated higher
read coverage during days 243 and 251.
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ComBat

18

A widely used location-scale method is ComBat. 

Here, the expression value of gene i for sample j in batch b is modeled as

where αi is the overall gene expression, and Cj is the vector of known covariates 
representing the sample conditions (such as batch membership). 

The error term bij is assumed to follow a normal distribution N(0,σ2
i ). 

Additive and multiplicative batch effects are represented by parameters γbi and δbi. 

ComBat uses a Bayesian approach to model the different parameters, and then 
removes the batch effects from the data to obtain the clean data:
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Emilie Renard, P.-A. Absil 2017 IEEE International Conference on Bioinformatics and 
Biomedicine (BIBM), pp. 1511-1518, 2017

See also discussion of Combat in Y.Zhang et al. BMC Bioinformatics 19, 262 (2018)
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A widely used tool for removing batch effects is ComBat. It is a location-scale
method. The slide explains the basic principles of ComBat.

Although it is widely used, experience has shown that ComBat also has
caveats. The listed Zhang paper
(https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-
2263-6) discusses some of them. For example, ComBat removes batch effects 
impacting both the means and variances of each gene across the batches. 
However, in some cases, the data might require a less (or more) extreme batch 
adjustment. Also, ComBat suffers from sample ’set bias’, meaning that if 
samples or batches are added to or removed from the set of samples on hand, 
the batch adjustment must be reapplied, and the adjusted values will be 
different–even for the samples that remained in the dataset in all scenarios.
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Workflow to 
identify and 
adjust batch 
effects
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Leek et al. Nature Rev.

Genet. 11, 733 (2010)

After a high-throughput study has been performed, the statistical approach for 
dealing with batch effects consists of two key steps. 

Exploratory analyses must be carried out to identify the existence of batch 
effects and quantify their effect, as well as the effect of other technical 
artefacts in the data. 

Downstream statistical analyses must then be adjusted to account for these 
unwanted effects.
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Correcting batch effects in DNA methylation data

20

Infinium
HumanMethylation27, 
RevB BeadChip Kits
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BEclear: Akulenko, Merl, Helms (2016) 
PLOS ONE, v11, e0159921.

Breast cancer DNA methylation data:
Akulenko and Helms (2013) Human 
Molecular Genetics, 22, 3016-3022

In late 2011, we started working with DNA methylation data from the TCGA 
breast cancer study.

Soon we detected a severe batch effect that only affected segments on the
Illumina chips.

In our 2013 publication, we omitted all affected genes (ca. 25% of the data).

Later, we developed a method termed BEclear (stands for clearing of batch
effects) and published that tool in 2016.
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Original DNA methylation data for breast cancer (TCGA)

21

: fraction of methylated cytosines in CpG

Clear batch effect in batch 136

Left: box-plot

Right/top: hierarchical clustering

Right/middle: PCA

Right/bottom: density distribution
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This is an example of exploratory analysis. The top left panel shows a boxplot
of the DNA methylation data in different batches of the TCGA data set.

The top right panel shows hierarchical clustering of the same data. The middle
right panel shows a PCA of the same data. The bottom right panel shows a 
density distribution plot.

All plots illustrate clearly that, in batch 136, the distribution of β-values of 
genes is shifted to larger values than in the other batches. 

The per sample plot (top left) shows that the difference in batch 136 is not due 
to only one sample but exists in all but two samples from this batch. 
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Beclear: Identify batch effected genes

22

(1) Compare the distribution of every gene in one batch to its distribution in all

other batches using the nonparametric Kolmogorov-Smirnov (KS) test.

P-values are corrected by False Discovery Rate.

(2) To consider only biologically relevant differences in methylation levels, identify

the absolute difference between the median of all β-values within a batch for a

specific gene and the respective median of the same gene in all other

batches.

Beta-values range between 0 and 1. The exp. error was estimated as 5%.

-> Smaller variations are not considered meaningful.

Therefore, only those genes that have a FDR-corrected significance p-value

below 0.01 (KS-test) AND a median difference larger than 0.05 are considered as

batch effected (BE) genes in a specific batch or sample.
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We suspected that the batch effect of the analyzed data affected various genes 
on the chip in different ways.

Therefore, we first had to identify which genes contain data points that differ
largely from the remaining data points.
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Beclear: score the severeness of batch effect for each batch 

23

N : total number of genes in a current batch, 

mdifcat : category of median differences  [0,1]

NBEgenes_i : # BE-genes in mdif category i

wi : weight of mdif category i

Weight categories:

if mdif < 0.05, then weight = 0;

if 0.05 ≤ mdif < 0.1 weight = 1;

if mdif  [m  0.1 ≤ mdif < (m+1)  0.1] , m  N, m ≤ 9

weight = 2  m
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(3) Score severeness of batch effect in single batches by a heuristic weighting-scheme :

Scoring scheme considers number of BE-genes in the batch and magnitude of 
deviation of the medians of BE-genes in one batch compared to all other batches.

Based on the BE-scores of all batches, identify using the Dixon test which batches 

have BE-scores that deviate significantly from the BE-scores of the other batches.

All BE-gene entries in these affected batches are replaced by LFM predictions 
(see p.6 in V3).

Each batch is assigned a BEscore value that considers the number of BE genes 
in that batch and the magnitude of their batch effects.

The question was now which values should be replaced: only the individual 
data points of BE genes in this batch or all of them?

We reasoned that if a sample (or batch) has a BEscore that is significantly
larger than the other BEscore values, all values of that sample (or batch) 
should be replaced by LFM predictions.

Comparison of BEscores is done using the tabulated Dixon test. This test
considers the absolute difference (gap) between the outlier in question and the 
closest value to it relative to the range of values (max – min).
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TCGA data for breast cancer – batch affected entries 
predicted by LFM/BEclear

24

Batch 136 has still slightly larger values

than other batches,

but the deviation is no longer statistically

significant.
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This figure shows the outcome of BEclear for the tumor data.
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TCGA data for breast cancer – data corrected by FunNorm

25

A. Per sample boxplot 

B. Density plot. 

Functional normalization was 

able to adjust the batch effect 
equally well as BEclear
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This figure shows the normalization result by the tool FunNorm, another tool.
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Functional Normalization

26

Functional normalization uses information from 848 control probes on 450k array.

The method extends the idea of quantile normalization by adjusting for known 

covariates measuring unwanted variation.

Consider Y1,…,Yn high-dimensional vectors each associated
with a set of scalar covariates Zi,j whereby i = 1,…,n is the index of the samples
and j = 1,…,m is the index of the covariates. 

Ideally these known covariates are associated with unwanted variation and
unassociated with biological variation.

Functional normalization attempts to remove their influence. 
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Fortin et al. Genome Biol. 15, 503 (2014) 

FunNorm builds on the idea of quantile normalization. This is a link to the
paper: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-
0503-2

It is particularly tailored to the Illumina 450k chip that detects methylation
levels for 450.000 CpG sites in the human genome.

It also contains close to 1000 control probes that do not measure CpG
methylation of the sample, but are used to test the correctness of the
biochemical processing steps carried out.
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Functional Normalization
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For each high-dimensional observation Yi, we form the empirical quantile function
r ∈ [0,1] for its marginal distribution, and denote it by qi

emp .

What is a quantile function?

The k-th percentile of a set of values divides them so that k % of the values lie below 
and (100−k)% of the values lie above. 
• The 25th percentile is known as the lower quartile. 
• The 50th percentile is known as the median. 

• The 75th percentile is known as the upper quartile. 

It is more common in statistics to refer to quantiles. 
These are the same as percentiles, but are indexed by sample fractions rather than 
by sample percentages.
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The data sets Y to be analyzed are transformed into their quantile functions.

Here, we review what quantiles of a data set are.
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Functional Normalization

28

The quantile function, associated with a 
probability distribution F of a random variable, 
specifies the value of the random variable such 

that the probability of the variable being less 
than or equal to that value equals the given 
probability. 

It is also called the percent-point function or 
inverse cumulative distribution function. 

for a probability 0 < p < 1.
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www.wikipedia.org quantile function of the 
normal distribution.

normal distribution.
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Let us look at the quantile function of the standard normal distribution (blue
curve in the upper plot).

Its quantile function is shown below.

For p=0.5, the variable has a 50% chance to be smaller than 0 in the normal 
distribution. Thus 0 is plotted on the y-axis for p = 0.5.

For p=0.1, the variable has a 10% chance to be smaller than (about) -1.3 in the
normal distribution. Thus -1.3 is plotted on the y-axis for p = 0.1

For p=0.05 (the normal significance threshold), the value is -1.7. It is not -2 as
we are used to (deviations of at least two standard deviations yield a p-value of
0.05) because we are only looking at one tail of the distribution.
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Functional Normalization
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We assume the following model for the quantile function over the interval r ∈ [0,1]

α : mean of the quantile functions across all samples i, 

βj : coefficient functions associated with the covariates j and 

i : error functions, which are assumed to be independent and centered around 0.

In this model, the term

represents variation in the quantile functions explained by the covariates. 

Functional normalization removes unwanted variation by regressing out this term.
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FunNorm considers the quantile functions of the methylation value in all 
samples and takes its mean. This is termed alpha.

Then FunNorm assumes that the quantile function of a particlular sample i 
shows variation due to the covariates and some error term.
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Functional Normalization
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1, …., m

are estimated using regression from the values observed for the control probes.

Assuming we have obtained estimates for j = 1, . . . ,m, we form the functional 
normalized quantiles by

We then transform Yi into the functional normalized quantity          using the 

formula 

This ensures that the marginal distribution of h      has 

as its quantile function. 
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The aim is to subtract the variation due to the covariates Z. The coefficients
are estimated based on the values observed for the control probes.

The control probes are explained in the supplementary material of the
FunNorm paper: “For “Bisulfite Conversion I” probes, 3 probes (C1,C2,C3) 
are expected to have high signal in the green channel in case the bisulfite 
conversion reaction was successful, and similarly 3 additional probes 
(C4,C5,C6) are expected to have high signal in the red channel. We therefore 
consider these 6 intensities and take the mean as a single summary value.“

So these probes do not detect methylation levels of CpG sites in the sample, 
but rather are a quality measure for the performed experiments.
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Benchmarking BEclear

31

Funnorm, 

ComBat and

SVA scale all 

values

-> large total

deviation

BEclear

corrects only

affected entries
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Here, we generated synthetic data sets with “known” batch effects. 

First, we determined the standard deviation of the methylation value of each 
promoter probe in level 1 adjacent normal samples (samples belonging to 
batch 136 were excluded due to the existing batch effect).

Then we randomly selected 8000 promoter probes (approximately 10% of all 
promoter probes present on the chip) and increased the methylation values of 
4000 of these promoter probes by a specified multiple of their specific 
standard deviation plus a noise term. The original probe values before 
introducing the synthetic batch effect were considered as our gold standard. 

Because the methods Funnorm, ComBat and SVA adjust all values, the
summed deviation of the corrected values from the original values (y-axis) is
quite large.

In contrast, BEclear modifies only the values that are affected by batch effects. 
Therefore, the summed deviations are much smaller.
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Effect on corrected entries only

32

Even for affected

entries, 

BEclear predicts

smallest changes for

batch effects

up to 2 stand.dev.

which is a typical

magnitude of batch

effects.
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Maybe the previous analysis was a bit unfair to the other methods.

Therefore, we now only inspect the deviation of the batch effected data points.

For small batch effects of 2 standard deviations or less (which is a typical
magnitude), BEclear still produces the smallest deviations.

Only for larger deviations, BEclear-adjusted values differ more strongly from
the original data that with the other methods.
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Accuracy of differential methylation analysis

33

Identify differentially methylated CpG probes (tumor vs. normal) in original data

Then introduce synthetic batch effect (n x st.dev.) + noise term

Identify differentially methylated CpG probes again + compare to reference

V3 Processing of Biological Data WS 
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Then, we considered the identities of differentially methylated genes in breast 
tumor samples vs. normal samples.

As gold standard reference, we used the list of differentially methylated 
probes identified in the unaffected data using the limma package. 

Then, we designed a synthetic batch effect in a similar fashion as before and 
applied BEclear, RUVm, FunNorm, ComBat, and SVA to this data. 

Then, again we identified differentially methylated genes in this BE-adjusted 
data with limma and compared the results to the original data. 

Shown here is the accuracy defined as (TP + TN) / (TP + TN + FP + FN) for 
the different BE-adjustment methods. 

BEclear yielded a similar accuracy as the RUVm method that is not explained.

Both methods were more accurate compared to all other methods. 
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Conclusions

34

Predicting missing values or batch-effected values by Latent Factor Model

(BEClear software):

- Accuracy of MA hybridization prediction confirmed by WGS (97%),

low LFM error

- Superior accuracy of predicting DNA methylation levels by LFM confirmed in

benchmark against SVA, Combat, FunNorm tools.
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Today, we started the lecture by discussing various approaches to reconstruct
missing data points.

Then, we met the important problem of batch effects in the raw data. If one
does not care about batch effects, the downstream analysis may be heavily
corrupted.

Therefore, as a bioinformatician, it is your job to check for possible batch
effects.

We discussed different approaches that are implemented in software tools for
removing unwanted batch effects. In our view, there is no „best“ tool. 

Certain approaches will offer advantages in certain situations and will give
mediocre results in other cases. Identifying the best suited tool depends on the
data to be analyzed.
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Review: Foundations of Probability Theory

„Probability“ : degree of confidence that an event of an uncertain nature will occur.

„Events“ : we will assume that there is

an agreed upon space  of possible outcomes („events“).

E.g. a normal die (dt. Würfel) has a space   1,2,3,4,5,6

Also we assume that there is a set of measurable events S

to which we are willing to assign probabilities.

In the die example, the event 6 is the case where the die shows 6.

The event 1,3,5 represents the case of an odd outcome.

35
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Here, I have compiled some basics from probability theory. Some of this will 
be considered as known to you in the following lectures.

Probably you know most of this already.

Quickly browsing over these slides will help you fresh up these things. 
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Foundations of Probability Theory

Probability theory requires that the event space satisfies 3 basic properties:

- It contains the empty event  and the trivial event .

- It is closed under union → if ,   S, then so is     S, 

- It is closed under complementation → if   S, then so is     S

The requirement that the event space is closed under union

and complementation implies that it is also closed under other

Boolean operations, such as intersection and set difference.
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These are the 3 basic properties that every event space needs to fulfill.
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Probability distributions

A probability distribution P over (, S) is a mapping from events in S 

to real values. The mapping must satisfy the following conditions:

(1)  P(  0 for all  S → Probabilities are never negative

(2)  P() = 1 → The probability of the trivial event which allows all 

possible outcomes has the maximal possible probability of 1.

(3)  If ,   S and    = 0 then P(  ) = P() + P()

37
V3 Processing of Biological Data WS 2021/22

These are the 3 basic conditions that any probability distribution must obey.
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Conditional probability

The conditional probability of  given  is defined as

𝑃 𝛽|𝛼 =
𝑃 𝛼 ∩ 𝛽

𝑃 𝛼

In other words: The probability that  is true given that we know  is the relative 

proportion of outcomes satisfying  among those that satisfy .

From this we see that

𝑃 𝛼 ∩ 𝛽 = 𝑃 𝛼 𝑃 𝛽|𝛼

This equality is know as the chain rule of conditional probabilities.

More generally, if 1, 2, … k are events, we can write

𝑃 𝛼ଵ ∩ 𝛼ଶ ∩ ⋯ ∩ 𝛼௞ = 𝑃 𝛼ଵ 𝑃 𝛼ଶห𝛼ଵ … 𝑃 𝛼௞ห𝛼ଵ ∩ ⋯ ∩ 𝛼௞ିଵ
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Bayes rule

Another immediate consequence of the definition of conditional probability is

Bayes‘ rule. 

Due to symmetry, we can swap the 2 variables  and  in the definition

𝑃 𝛽|𝛼 =
௉ ఈ∩ఉ

௉ ఈ
and get the equivalent expression 𝑃 𝛼|𝛽 =

௉ ఉ∩ఈ

௉ ఉ

If we rearrange, we get Bayes‘ rule 𝑃 𝛽|𝛼 𝑃 𝛼 = 𝑃 𝛼|𝛽 𝑃 𝛽    or

𝑃 𝛼|𝛽 =
𝑃 𝛽|𝛼 𝑃 𝛼

𝑃 𝛽

A more general conditional version of Bayes‘ rule where all probabilities are

conditioned on some background event  also holds:

𝑃 𝛼|𝛽 ∩ 𝛾 =
𝑃 𝛽|𝛼 ∩ 𝛾 𝑃 𝛼|𝛾

𝑃 𝛽|𝛾
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Example 1 for Bayes rule

Consider a student population.

Let Smart denote smart students and GradeA denote students who got grade A.

Assume we believe that P(GradeA|Smart) = 0.6, and that we get to know

that a particular student received grade A.

Suppose that P(Smart) = 0.3 and P(GradeA) = 0.2

Then we have P(Smart|GradeA) = 0.6  0.3 / 0.2 = 0.9

In this model, an A grade strongly suggests that the student is smart.

On the other hand, if the test was easier and high grades were more common, 

e.g. P(GradeA) = 0.4, then we would get

P(Smart|GradeA) = 0.6  0.3 / 0.4 = 0.45 which is much less conclusive.
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Example 2 for Bayes rule

Suppose that a tuberculosis skin test is 95% percent accurate.

That is, if the patient is TB-infected, then the test will be positive with probability 0.95

and if the patient is not infected, the test will be negative with probability 0.95.

Now suppose that a person gets a positive test result.

What is the probability that the person is infected?

Naive reasoning suggests that if the test result is wrong 5% of the time, then the

probability that the subject is infected is 0.95. 

That would mean that 95% of subjects with positive results have TB.
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Example 2 for Bayes rule

If we consider the problem by applying Bayes‘ rule, we need to consider the prior

probability of TB infection, and the probability of getting a positive test result.

Suppose that 1 in 1000 of the subjects who get tested is infected → P(TB) = 0.001

We see that 0.001  0.95 infected subjects get a positive result

and 0.999  0.05 uninfected subjects get a positive result.

Thus P(Positive) = 0.001  0.95 + 0.999  0.05 = 0.0509

Applying Bayes‘ rule, we get P(TB|Positive) = P(TB)  P(Positive|TB) / P(Positive)

= 0.001  0.95 / 0.0509  0.0187

Thus, although a subject with a positive test is much more probable to be TB-infected

than a random subject, fewer than 2% of these subjects are TB-infected.
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Random Variables

A random variable is defined by a function

that associates a value with each outcome in .

For students in a class, this could be a function 𝑓௚௥௔ௗ௘ that maps

each student in the class (in ) to his or her grade (1, …, 5).

The event grade = A is a shorthand for the event 𝜔 ∈ Ω: 𝑓௚௥௔ௗ௘ 𝜔 = 𝐴 .

There exist categorical (or discrete) random values that take on 

one of a few values, e.g. intelligence could be „high“ or „low“.

There also exist integer or real random variable that can take on 

an infinite number of continuous values, e.g. the height of students.

By Val(X) we denote the set of values that a random variable X can take.

43
V3 Processing of Biological Data WS 2021/22

43



Random Variables

In the following, we will either consider categorical random variables 

or random variables that take real values.

We will use capital letters X, Y, Z to denote random variables.

Lowercase values will refer to the values of random variables.

E.g. 𝑃 𝑋 = 𝑥 ≥ 0 for all 𝑥 ∈ 𝑉𝑎𝑙 𝑋

When we discuss categorical random numbers, we will denote the i-th value as xi.

Bold capital letters are used for sets of random variables: X, Y, Z.
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Marginal Distributions

Once we define a random variable X, we can consider the

marginal distribution P(X) over events that can be described using X.

E.g. let us take the two random variables Intelligence and Grade

and their marginal distributions P(Intelligence) and P(Grade)

Let us suppose that

𝑃 Intelligence=high = 0.3

𝑃 Intelligence=low = 0.7

𝑃 Grade=A = 0.25

𝑃 Grade=B = 0.37

𝑃 Grade=C = 0.38

These marginal distributions are probability distributions satisfying the 3 properties.
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Joint Distributions
Often we are interested in questions that

involve the values of several random variables.

E.g. we might be interested in the event „Intelligence = high and Grade = A“.

In that case we need to consider the joint distribution 𝑃 𝑋ଵ, … , 𝑋௡

over these two random variables.

The joint distribution of 2 random variables has to be consistent

with the marginal distribution in that 𝑃 𝑥 = ∑ 𝑃 𝑥, 𝑦 .௬
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Intelligence

low high 

A 0.07 0.18 0.25

Grade B 0.28 0.09 0.37

C 0.35 0.03 0.38

 0.7 0.3 1
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Conditional Probability

The notion of conditional probability extends to

induced distributions over random variables.

𝑃 Intelligence|Grade=A denotes the conditional distribution over the events

describable by Intelligence given the knowledge that the student‘s grade is A.

Note that the conditional probability 𝑃 Intelligence=high|Grade=A =
଴.ଵ଼

଴.ଶହ
= 0.72 

is quite different from the marginal distribution 𝑃 Intelligence=high = 0.3.

We will use the notation 𝑃 𝑋|𝑌 to present a set of conditional probability distributions.

Bayes‘ rule in terms of conditional probability distributions reads

𝑃 𝑋|𝑌 =
𝑃 𝑋 𝑃 𝑌|𝑋

𝑃 𝑌
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Probability Density Functions

A function 𝑝: ℝ → ℝ

is a probability density function (PDF) for X 

if it is a nonnegative integrable function so that ∫ 𝑝 𝑥 𝑑𝑥 = 1
௏௔ ௑

The function P 𝑋 ≤ 𝑎 = ∫ 𝑝 𝑥 𝑑𝑥
௔

ିஶ
is the cumulative distribution for X.

By using the density function we can evaluate the probability of other events. E.g.

P 𝑎 ≤ 𝑋 ≤ 𝑏 = න 𝑝 𝑥 𝑑𝑥

௕

௔
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Uniform distribution

The simplest PDF is the uniform distribution

Definition: A variable X has a uniform distribution over [a,b] denoted X  Unif[a,b] 

if it has the PDF

𝑝 𝑥 = ቐ
1

𝑏 − 𝑎
𝑏 ≥ 𝑥 ≥ 𝑎

0 otherwise

Thus the probability of any subinterval of [a,b] is proportional 

to its size relative to the size of [a,b].

If b – a < 1, the density can be greater than 1. 

We only have to satisfy the constraint that the total area under the PDF is 1.
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Gaussian distribution

A random variable X has a Gaussian distribution with mean  and variance 2 ,

denoted X  N(;2) if it has the PDF

𝑝 𝑥 =
1

2𝜋𝜎
𝑒

ି
௫ିఓ మ

ଶఙమ

A standard Gaussian has mean 0 and variance 1.

Fig. 2.2.
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Expectation

Let X be a discrete random variable that takes numerical values.

Then, the expectation of X under the distribution P is

𝐄௉ 𝑋 = ෍ 𝑥 ȉ 𝑃 𝑥

௫

If X is a continuous variable,

then we use the density function

𝐄௉ 𝑋 = න 𝑥 ȉ 𝑝 𝑥 𝑑𝑥

E.g. if we consider X to be the outcome of rolling a good die with probability 1/6 for

each outcome, then E[X] = 1  1/6 + 2  1/6 + … + 6  1/6 = 3.5
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Properties of the expectation of a random variable

E[a  X + b] = a E[X ] + b

Let X and Y be two random variables

E[X + Y] = E[X] + E[Y]

Here, it does not matter whether X and Y are independent or not. 

What can be say about the expectation value of a product of two random variables?

In the general case, we can say very little.

Consider 2 variables X and Y that each take on the values +1 and -1 with

probabilities 0.5. 

If X and Y are independent, then E[X  Y] = 0.

If they always take on the same value (they are correlated), then E[X  Y] = 1.
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Properties of the expectation of a random variable

If X and Y are independent then

E[X  Y] = E[X]   E[Y]

The conditional expectation of X given y is

𝐸௉ 𝑋|𝑦 = ෍ 𝑥 ȉ 𝑃 𝑥|𝑦

௫
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Variance

The expectation of X tells us the mean value of X. However, it does not indicate how

much X deviates from this value. A measure of this deviation is the variance of X:

𝑉𝑎𝑟௉ 𝑋 = 𝐄௉ 𝑋 − 𝐄௉ 𝑋 ଶ

The variance is the expectation of the squared difference between X and its

expected value. An alternative formulation of the variance is

𝑉𝑎𝑟 𝑋 = 𝐄 𝑋ଶ − 𝐄 𝑋 ଶ

If X and Y are independent, then 𝑉𝑎𝑟 𝑋 + 𝑌 = 𝑉𝑎𝑟 𝑋 + 𝑉𝑎𝑟 𝑌

𝑉𝑎𝑟 𝑎 ȉ 𝑋 + 𝑏 = 𝑎ଶ𝑉𝑎𝑟 𝑋

For this reason, we are often interested in the square root of the variance, which is

called the standard deviation of the random variable. We define

𝜎௑ = 𝑉𝑎𝑟 𝑋
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Variance

Let X be a random variable with Gaussian distribution N(;2).

Then E[X] =  and Var[X] = 2.

Thus, the parameters of the Gaussian distribution specify the expectation and the

variance of the distribution.

The form of the Gaussian distribution implies that the density of values of X drops

exponentially fast in the distance (x - ) / .

Not all distributions show such a rapid decline in the probability of outcomes that are

distant from the expectation.

However, even for arbitrary distributions, one can show that there is a decline.

The Chebyshev inequality states 𝑃 𝑋 − 𝐄௉ 𝑋 ≥ 𝑡 ≤
௏௔௥ು ௑

௧మ

or in terms of  𝑃 𝑋 − 𝐄௉ 𝑋 ≥ 𝑘𝜎௑ ≤
ଵ

௞మ
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Resources

Nice online resources on statistics:

https://www.khanacademy.org/math/statistics-probability

http://tutorials.istudy.psu.edu/basicstatistics/

https://stattrek.com/statistics/problems.aspx
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