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INTRODUCTION: During early mammalian de-
velopment, a totipotent embryo undergoes the
first cell fate decision to form a blastocyst that
includes inner cell mass (ICM) and trophecto-
derm. ICM gives rise to epiblast, the origin of
future embryonic lineages, and primitive en-
doderm. Trophectoderm subsequently differ-
entiates to placenta. Pluripotency—the ability
for a cell to give rise to all primary embryonic
lineages—emerges within ICM and transits
through several states: naive, formative, and
primed pluripotency. Pioneer transcription
factors (TFs), such as OCT4 and SOX2, which
can bind and open closed chromatin, are cru-
cial for pluripotency regulation. However,
their regulatory circuitry is largely inferred
from cultured cells. How the master TFs gov-
ern pluripotency progression in vivo remains
challenging to study, largely because of the
limited research materials from mamma-
lian embryos.

RATIONALE: To study TF-gene interactions
in early mammalian embryos, we applied
CUT&RUN to capture the chromatin bind-
ing of SOX2, an early ICM marker, from em-
bryonic day 3.5 (E3.5) to E7.5, which covers
the entire progression of pluripotency in mouse
embryos. Combined with RNA sequencing
(RNA-seq) and assay for transposase-accessible
chromatin sequencing (ATAC-seq) in Sox2
knockout embryos and degron-tagged em-
bryonic stem cells (ESCs), we investigated
the roles of SOX2 in gene regulation and
enhancer opening during pluripotency pro-
gression in vivo and compared this with in
vitro conditions.

RESULTS: Our data revealed that SOX2 in
E3.5 ICM has a regulatory circuitry distinct
from that in all other pluripotent states and
ESCs. Two massive relocalizations of SOX2-
chromatin binding occurred when cells en-

tered naive (E4.5 epiblast) and formative
(E5.5 epiblast) pluripotent states, followed by
a less dynamic transition to E7.5 ectoderm. Tese
changes were accompanied by a critical role of
SOX2 in regulating the ICM-trophectoderm
transcription program and the following naive-
to-formative pluripotency conversion.
Furthermore, we discovered that SOX2man-

ifests much more diverse binding modes at
enhancers, which include “settler binding,”
“pioneer binding,” and “pilot binding,” beyond
a simple “pioneer factor.” SOX2 exhibits settler
binding in E3.5 ICM, where SOX2 binds pre-
accessible enhancers, and its loss does not
substantially affect chromatin opening. These
preaccessible enhancers are in part opened by
early-stage expressing TFs TFAP2C and NR5A2.
Notably, settler binding of SOX2 can still exert
impacts on gene expression, especially at sites
with strong SOX2 motifs. Pioneer binding of
SOX2 becomes widespread in E4.5 epiblast
and naive ESCs (2i ESCs), where SOX2 is re-
quired for opening naive enhancers, and its
binding sites enrich the OCT4-SOX2 motif. Fi-
nally, the pilot binding of SOX2 at many for-
mative enhancers in 2i ESCs is insufficient for
enhancer opening but poises enhancers for
faster opening upon the conversion to forma-
tive pluripotency.

CONCLUSION: In this work, we dissected the
SOX2-governed pluripotency regulatory net-
work in mouse early embryos. These data re-
vealedhighly dynamic regulatory circuitry during
pluripotency progression in vivo, especially
when cells enter naive and formative pluri-
potency. We also foundmultifaceted pioneer
factor–enhancer interactions that underpin the
transition of pluripotency states. Finally, these
results also identified a distinct “prepluripo-
tency” state in E3.5 ICM, between totipotency
and pluripotency. Prepluripotency features the
potency to give rise to both epiblast and primi-
tive endoderm, coexpression of multilineage
TFs, and a primitive pluripotency network that
lacks interdependence of master pluripotency
TFs and their pioneer binding. How these
master TFs acquire chromatin opening ability
to establish a pluripotency networkwhen cells
enter naive pluripotency warrants future in-
vestigations. Hence, these data bridge the
knowledge gap between in vivo development
and in vitro cultured stem cells and pave the
way for future studies to understand pluri-
potency and cell fate decision.▪
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SOX2 regulatory circuitry during pluripotency progression reveals multifaceted master TF–enhancer
interaction. SOX2 regulatory circuitry was dissected during the pluripotency transition in mouse early embryos.
The prepluripotency state in E3.5 ICM is proposed to bridge totipotency to pluripotency. Three SOX2-enhancer
interaction modes are shown: settler, pioneer, and pilot binding.
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Multifaceted SOX2-chromatin interaction underpins
pluripotency progression in early embryos
Lijia Li1,2†, Fangnong Lai1,2†, Xiaoyu Hu1,2†, Bofeng Liu1,2†, Xukun Lu1,2, Zili Lin3, Ling Liu1,2,
Yunlong Xiang4, Tristan Frum5,6, Michael A. Halbisen5, Fengling Chen1,2, Qiang Fan1,2,
Amy Ralston5, Wei Xie1,2*

Pioneer transcription factors (TFs), such as OCT4 and SOX2, play crucial roles in pluripotency
regulation. However, the master TF-governed pluripotency regulatory circuitry was largely inferred
from cultured cells. In this work, we investigated SOX2 binding from embryonic day 3.5 (E3.5)
to E7.5 in the mouse. In E3.5 inner cell mass (ICM), SOX2 regulates the ICM-trophectoderm program
but is dispensable for opening global enhancers. Instead, SOX2 occupies preaccessible enhancers
in part opened by early-stage expressing TFs TFAP2C and NR5A2. SOX2 then widely redistributes
when cells adopt naive and formative pluripotency by opening enhancers or poising them for
rapid future activation. Hence, multifaceted pioneer TF–enhancer interaction underpins
pluripotency progression in embryos, including a distinctive state in E3.5 ICM that bridges
totipotency and pluripotency.

T
he mammalian embryo undergoes sev-
eral rounds of cell cleavage after fertil-
ization to give rise to a blastocyst (1, 2).
In the mouse, blastocyst is specified in-
to trophectoderm (TE), which eventually

contributes to placenta, and inner cell mass
(ICM)which subsequently differentiates into
primitive endoderm (PrE) and epiblast (1–3).
During this process, cells with pluripotency
emerge and transit through several states that
could be captured ex vivo, including the naive,
formative, and primed pluripotency (4). Naive
pluripotency is represented by the pluripotency
state exhibited by naive embryonic stem cells
(2i ESCs) that resemble preimplantation epiblast.
After implantation, the epiblast cells acutely
transit to the formative pluripotency state that
manifests competence for both primordial germ
cell (PGC) and somatic fate induction (4). This
transition can be recapitulated by naive em-
bryonic stem cells differentiating into epiblast-
like cells (EpiLCs) (5). Finally, epiblast stem cells
(EpiSCs), considered to recapitulate primed pluri-
potency, couldbederived fromE5.5 toE8 epiblast
or ectoderm (6). Unlike formative pluripotent

cells, EpiSCs have lost the competence to PGC
induction (5).
Transcription factors (TFs) play central roles

in development bymeans of precise spatiotem-
poral regulation of gene expression through
action at cis-regulatory elements (7, 8). Key
master TFs, such as NANOG, SOX2, and OCT4,
are essential to the pluripotency network (9).
Among them, SOX2 is the earliest and only
pluripotent TF known to be restricted to the
inner cells in the mouse morula (16-cell), the
ICM progenitors (10). Sox2 deficiency in mice
leads to epiblast formation failure and embry-
onic lethality shortly after implantation (11).
Because of the limited researchmaterials from
embryos, the regulatory circuitry governed by
master pluripotency factors has largely been
inferred from cultured cell models (9, 12, 13),
with limited TF regulomes being investigated in
mouse blastocysts (e.g., NANOG) (14, 15). There-
fore, how these TFs regulate pluripotency and
its transition in physiological conditions re-
mains elusive. For example, Sox2-deficient em-
bryos can still form blastocysts containing a
morphologically normal ICM, which, how-
ever, cannot give rise to ESCs. Consistently,
ESCs lose pluripotency when SOX2 is depleted
(11, 16). Furthermore, OCT4 and SOX2 are con-
sidered to be “pioneer factors” that can open
inaccessible chromatin and recruit other TFs
(17, 18). How they potentially drive such pluri-
potency transition in vivo remains unknown.
In this work, we applied CUT&RUN to capture
the SOX2-chromatin binding from E3.5 ICM
to E7.5 ectoderm, which covers the entire pro-
gression of pluripotency. Our results revealed
that SOX2 engages enhancers through stage-
and context-dependent action modes to regu-
late development programs. Furthermore, these

data reveal a distinctive state and regulatory
circuitry in E3.5 ICM that connects totipo-
tency and pluripotency.

Genome-wide mapping of SOX2-chromatin
binding in mouse early embryos during
pluripotency progression

By identifying a SOX2 antibody to allow
CUT&RUN analyses using as few as 200 cells
(fig. S1, A to C), we examined SOX2-chromatin
binding at stages when it is expressed, includ-
ing E3.5 ICM from early andmiddle blastocyst,
epiblast from E4.5 preimplantation embryos,
E5.5 and E6.5 postimplantation embryos, and
ectoderm dissected from E7.5 embryos (fig.
S2, A and B; Fig. 1, A and B; andmaterials and
methods), which represent states from the on-
set to the exit of pluripotency. For comparison,
we also included 2i ESCs and EpiLCs, which
resemble E4.5 epiblast and E5.5 epiblast, re-
spectively (19).
We conducted several analyses to validate

these datasets. (i) The CUT&RUN data were
reproduced between replicates (Fig. 1C and fig.
S2C). (ii) Globally, 82.8 to 92.0% of SOX2 peaks
occupied intergenic and intragenic regions away
from promoters (fig. S2D), consistent with TFs
predominantly binding to enhancers (8). For
convenience, we refer to SOX2-bound distal
regions as putative enhancers or enhancers
hereafter. An examination of known SOX2 tar-
get genes Pou5f1 andNanog (12, 16, 20) revealed
SOX2 binding at their known enhancers (Fig.
1D). (iii) We generated Sox2 maternal and zy-
gotic knockout (mzKO) embryos and found
that SOX2 binding was substantially dimin-
ished in mutant E3.5 ICM (Fig. 1B and fig. S2E).
(iv) Across all stages, SOX2-bound putative en-
hancers were enriched for SOX2 motif and
exhibited distinct motif enrichment compared
with assay for transposase-accessible chroma-
tin sequencing (ATAC-seq) (21) (Fig. 1E), which
suggests that SOX2 binding is not simply de-
pendent on chromatin accessibility. (v) Final-
ly, by acute degradation of SOX2 in 2i ESCs
(22) (fig. S3, A to C), we observed that SOX2-
targeted enhancers near ICM-specific genes
Upp1 and Spic exhibited SOX2-dependent tran-
scriptional regulatory activity (fig. S3D). Taken
together, these analyses suggest that we have
identified bona fide SOX2 binding targets in
early embryos.

SOX2 binding in E3.5 ICM manifests a state
that is distinct from previously defined
pluripotent states and stem cells

Global analysis of SOX2 distal binding sites
showed that SOX2 binding in E3.5 ICM and
E4.5 epiblast was highly divergent from that at
other developmental stages (Fig. 1, C, F, and G),
as confirmed by correlation analyses (fig. S4A).
SOX2 binding in E3.5 ICM was also distinct
from that in 2i ESCs and EpiLCs. An analysis
of gene expression and chromatin accessibility
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(21, 23) independently supported the distinctive
state of E3.5 ICM (fig. S4B). E3.5 SOX2 binding
sites preferentially harbored motifs of NR5A2,
GATA, and TFAP2C, which were also enriched
in accessible chromatin at the earlier stage
[8-cell (8C)] but not the OCT4 and the com-
posite OCT4-SOX2motifs (Fig. 1E). These data
suggest a poised state of E3.5 ICM that coex-
presses not only master pluripotency genes

(Sox2, Oct4, and Nanog) but also PrE genes
(Gata6) and early-stage TFs (Nr5a2 and Tfap2c)
(3, 24, 25) (fig. S4C).
SOX2 then underwent substantial redistri-

bution when cells from E3.5 ICM entered naive
pluripotency (E4.5 epiblast and 2i ESC) and
again when cells entered formative pluripo-
tency (E5.5 epiblast and EpiLC) (Fig. 1, C, F,
and G). By contrast, stages from E5.5 epiblast

onward (E6.5 epiblast and E7.5 ectoderm)
were clustered closely, which suggests a more
gradual formative-to-primed pluripotency tran-
sition. Because the pluripotency transition is
a continuum, E5.5 epiblast may represent the
formative state, whereas E6.5 epiblast may
be transitionary between formative andprimed
pluripotency (4). Given their similarity, we
mainly focused on E5.5 epiblast in subsequent

Fig. 1. The dynamics of SOX2-
chromatin binding during
pluripotency progression
in vivo. (A) Developmental
stages and related Sox2
expression are shown. Arrows
indicate lineages where SOX2
binding was profiled. FPKM,
fragments per kilobase of
transcript per million mapped
fragments. (B) UCSC browser
view showing SOX2 CUT&RUN
signals in E3.5 ICM; Sox2 mzKO
ICM; E4.5, E5.5, and E6.5
epiblast (Epi); E7.5 ectoderm
(Ect); 2i ESC; and EpiLC
(two biological replicates).
(C) Principal components
analysis (PCA) of global SOX2
binding enrichment in mouse
early lineages and stem
cells. (D) UCSC browser views
and heatmaps showing SOX2
enrichment and gene expression
of representative genes,
respectively. Proximal and distal
binding sites are shaded. (E) TF
motifs identified from distal
ATAC-seq peaks and SOX2
binding peaks. Sizes of circles
indicate levels of −log P value.
Expression levels of TFs are
color coded. (F) Scatter plots
showing global SOX2 binding
correlation between consecutive
stages. (G) Heatmaps showing
the SOX2 binding signals and TF
motif densities at stage-specific
and shared distal SOX2 binding
peaks. C1 to C8, cluster 1
to cluster 8; RPKM, reads
per kilobase per million
mapped reads.
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analyses. SOX2 binding showed a moderate
transition fromE6.5 epiblast to E7.5 ectoderm.
A small number of binding sites were newly
established in E7.5 ectoderm, accompanied
by increased ATAC-seq and H3K27ac signals
(fig. S4D). Only a small subset (8.8%) of SOX2
distal peaks were shared among all seven cell
types (Fig. 1G, “C8”). Genes related to blasto-
cyst and ICM formation were enriched near
SOX2 binding sites in E4.5 epiblast (fig. S4E,
“C2”). Neural tube patterning– and stem cell
maintenance–associated genes were enriched
near enhancers shared in E5.5 epiblast, ecto-
derm, and EpiLCs (fig. S4E, “C6”). These data
demonstrate highly dynamic SOX2 binding
during pluripotency progression.

SOX2 is required for the ICM-TE lineage
program in E3.5 ICM

To investigate whether SOX2 binding in E3.5
ICM is linked to gene expression, we compared
SOX2 binding from E3.5 ICM with that from
E4.5 epiblast. E3.5 ICM–specific SOX2 binding
preferentially resided near E3.5 ICM–specific
genes (e.g.,Gata6), whereas E4.5 epiblast–specific
SOX2binding tended tooccurnearE4.5 epiblast–
activated genes (e.g., Lef1) (Fig. 2A, “RNA”).We
then performed single-cell RNA sequencing
(scRNA-seq) in wild-type (WT) and Sox2mzKO
E3.5 ICM (Fig. 2, B and C). The coexpression
of the epiblast gene Nanog and the PrE gene
Gata6 in most cells (fig. S5A) confirmed that
the epiblast and PrE segregation has not started
in E3.5 ICM (3). The mutant cells were glob-
ally separated from WT cells (Fig. 2B), with
510 genes up-regulated and 623 genes down-
regulated in the mutant cells (fig. S5B). In total,
239 of the up-regulated genes were TE-enriched
genes (such as Gata3, Krt8, Eomes, and Id2),
whereas 99 of the down-regulated genes were
ICM specific (Fig. 2D and fig. S5C). The latter
included not only epiblast-enriched genes,
such as Spic, Fgf4, Utf1, and Upp1, but also
PrE genes, such as Sox17 and Pdgfra (Fig. 2E).
Notably, the expression of Pou5f1 andNanog
was not significantly affected as previously
reported (10) (Fig. 2C and fig. S5A). Therefore,
although the blastocyst morphology appears
unaffected (10, 11), the ICM-TE transcription
program is severely impaired in Sox2 mu-
tant ICM.
The OCT4 and SOX2-OCT4 composite motif

enrichment within SOX2 binding sites was
low in E3.5 ICM (Fig. 1E). They became enriched
in E4.5 epiblast (Fig. 1G), which indicates that
the cooperativity of these two pluripotency
factors may only become mature when cells
enter naive pluripotency. Although altered
ICM-TE expression was also reported inOct4
KO E3.5 ICM (26) (fig. S6A), the gene expres-
sion changes between Oct4 KO and Sox2 KO
E3.5 ICM overall showed a weak correlation
(correlation coefficient r = 0.15) (fig. S6B). Only
96 down-regulated genes (e.g., ICM-specific

genes Fgf4, Spp1, and Spic) and 95 up-regulated
genes (e.g., TE-specific genes Dppa1, Gata3, and
Krt18) were shared in Sox2 and Oct4 KO ICM
(fig. S6C), which indicates that OCT4 and SOX2
have both shared and specific functions at
this stage.

SOX2 binds preaccessible chromatin
and is dispensable for enhancer opening
in E3.5 ICM

We next investigated how enhancers were
affected in Sox2 mzKO E3.5 ICM. However,
ATAC-seq showed few global changes at the
SOX2-bound sites (Fig. 3, A and B). A close
examination revealed that 75.5% of SOX2-
occupied sites in ICM—either E3.5 ICM–specific
or E3.5 to E4.5 shared—were already accessible
(“preaccessible,” or “preaccess”) in 8C embryos
(Fig. 3, A and C, “Fgf4”) when Sox2 expression
was still undetectable (Fig. 1A and fig. S2A).
SOX2 binding was diminished at preaccessi-
ble sites in Sox2 KO ICM, which confirms that
these are bona fide signals (fig. S6D). Although
the remaining SOX2-occupied sites became
accessible after the 8C stage (opened de novo
after Sox2 expression, or “de novo”) (Fig. 3, A
and C), SOX2 was largely dispensable for ac-
cessibility of both preaccessible and de novo en-
hancers (Fig. 3, A and B). In fact, one-third of the
de novo sites already showed deoxyribonuclease
(DNase) I hypersensitive sites sequencing (DNase-
seq) signals (27) inmorula at the 16C stage (fig.
S6E). By contrast, E4.5 epiblast–specific SOX2-
bound enhancers required SOX2 for opening
(Fig. 3C, “Pdgfc,” and Fig. 3D), which displayed
stronger SOX2 motif enrichment compared
with E3.5 ICM–specific enhancers (Fig. 3A).
Hence, SOX2 preferentially resided at preac-
cessible chromatin sites in E3.5 ICM. We re-
ferred to this TF binding mode, in which a TF
binds enhancers that are preaccessible and
its loss does not substantially affect chroma-
tin opening, as “settler binding” (28). SOX2
then adopted an indispensable role in open-
ing E4.5 epiblast–specific enhancers, which
we referred to as “pioneer binding.” We note
that settler and pioneer here refer to different
TF bindingmodes, whichmay come from the
same TF (e.g., SOX2), rather than different
classes of TFs.
We investigated whether such settler bind-

ing of SOX2 is associated with gene expres-
sion. We found that genes down-regulated (but
not the up-regulated genes) in Sox2 KO E3.5
ICM preferentially resided near enhancers
that were bound by SOX2 in both E3.5 ICM
and E4.5 epiblast (Fig. 3B, “RNA,” “shared,”
and “preaccess”). These enhancers harbored
strong SOX2 motif enrichment similar to E4.5
epiblast–specific enhancers (Fig. 3A, “SOX2
motif ”). By contrast, SOX2 settler binding at
E3.5 ICM–specific enhancers, which exhib-
ited much weaker SOX2 motif enrichment,
appeared to have minimal impacts on near-

by genes (Fig. 3B, “E3.5 ICM specific” and “pre-
access”). Therefore, settler binding of SOX2 at
enhancers with strong SOX2 motifs is asso-
ciated with gene activation.

Early-stage expressing TFs are responsible for
opening preaccessible SOX2 binding sites

We next investigated which TFs might be re-
sponsible for opening preaccessible SOX2
binding sites. Both E3.5 ICM–specific and E3.5
ICM–E4.5 epiblast shared SOX2-bound en-
hancers enriched for motifs of TFAP2C, NR5A2,
and GATA (Fig. 4A). Tfap2c and Nr5a2 show
highest expression at the 4C to 8C stages (fig.
S4C), and both are essential for embryogen-
esis (29–31). TFAP2C regulates cell polarity
starting from the 2C stage before being re-
stricted to extraembryonic lineages in the late
blastocyst (32, 33). NR5A2, a pioneer factor
(34), is essential for naive pluripotency (to-
gether with ESRRB) in 2i ESCs (35) and can
regulate the ICM program as early as the 8C
stage (21). KO of Nr5a2 arrested embryos at
the morula stage (36, 37).
We then examined the occupancy of TFAP2C

andNR5A2 (37) in 8CembryosusingCUT&RUN.
TFAP2C and NR5A2 extensively resided at
preaccessible sites but not at E4.5 epiblast–
specific SOX2 binding sites (Fig. 4, A and
B). Among 5578 distal SOX2-bound peaks in
E3.5 ICM, 1571 and 1281 sites were already occu-
pied by TFAP2C and NR5A2, respectively, at
the 8C stage before Sox2 expression (Fig. 4C).
To determine whether these TFs can open these
enhancers, we conducted ATAC-seq in Tfap2c
mzKO 8C embryos. Depletion of TFAP2C pre-
ferentially reduced accessibility of preaccessi-
ble enhancers specifically bound by TFAP2C
(Fig. 4D and fig. S7A). Overall, TFAP2C con-
tributed to opening 35% preaccessible en-
hancers (SOX2-bound in E3.5 ICM) (Fig. 4E).
A similar but less widespread effect was ob-
served for NR5A2 at 8C, as Nr5a2 knockdown
decreased chromatin accessibility of 23% of
preaccessible enhancers (Fig. 4E and fig. S7B).
Together, TFAP2C and NR5A2 accounted for
opening 49% preaccessible enhancers (with
9% regulated by both) (Fig. 4E). The rest of the
preaccessible sites may be opened by other
early-stage TFs (e.g., GATA) (Fig. 4A).
In 8C embryos, NR5A2 was preferentially

required for opening chromatin at the 8C-
specific binding sites but not regions bound
by NR5A2 starting from the 2C stage (fig.
S7C, “8C ATAC”), which suggests that these
2C-specific sites were also preaccessible for
NR5A2. Indeed, Nr5a2 knockdown did not
substantially affect global chromatin acces-
sibility in 2C embryos (fig. S7C, “2C ATAC”),
resembling SOX2’s role in opening enhancers
in E4.5 epiblast but not E3.5 ICM. Therefore,
these data indicate that both SOX2 and NR5A2
tend to initially exhibit settler binding at pre-
accessible enhancers that are likely opened
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Fig. 2. SOX2 regulates ICM-TE lineage gene expression in E3.5 ICM.
(A) (Left) Heatmaps showing enrichment of SOX2 binding signal at E3.5 ICM–
specific (n = 1534), E4.5 epiblast–specific (n = 2848), and shared (n = 2223)
SOX2 binding peaks. (Middle) The cumulative distribution of E3.5 ICM–specific,
E4.5 epiblast–specific, and all genes shows the fraction of genes within
defined distances (x axis) between their transcription start sites (TSSs) to the
nearest distal SOX2 binding peaks. (Right) UCSC browser views show SOX2
binding enrichment of representative genes. Gene expression is shown in
heatmaps. (B) A t-distributed stochastic neighbor embedding (t-SNE) plot for

scRNA-seq of control (blue) and Sox2 mzKO (red) ICM at E3.5. (C) Box plots
showing Sox2, Oct4, and Nanog gene expression in control and Sox2 mzKO ICM
single cells, with P values (t test, one-sided) indicated. (D) (Left) Heatmaps
showing the fold changes between ICM and TE gene expression. (Middle) The
expression in control (Ctrl) and Sox2 mzKO single cells (row z-score normalized)
is mapped. (Right) The aggregated KO/control gene expression ratios (across
all single cells) are shown. (E) Box plots showing expression of representative
epiblast (EPI), PrE, and TE markers in control and Sox2 mzKO ICM single cells,
with P values (t test, one-sided) indicated.
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by other TFs before adopting a more active
role in opening enhancers at later stages.

SOX2 mediates global enhancer opening
in naive pluripotent cells

Although SOX2 was required to open E4.5
epiblast–specific enhancers, the failure to open
these enhancers in Sox2 mzKO mutants could
also be indirectly caused by earlier defective
development (Fig. 2D). Therefore, we investi-
gated the dependence of SOX2 for opening

enhancers in 2i ESCs, which resemble E4.5 epi-
blast (4, 38). We confirmed that E4.5 epiblast–
specific, but not E3.5 ICM–specific, enhancers
were preferentially bound by SOX2 in 2i ESCs
(Fig. 2A). About 67.3% of SOX2 binding sites
in E4.5 epiblast were recaptured in 2i ESCs.
We then focused on SOX2 binding sites that
were shared between 2i ESCs and E4.5 epiblast
(Fig. 5A). RNA-seq showed that transcriptome
defects were minimal at 12 hours upon SOX2
degradation but became apparent after 24 hours

(fig. S8A). Differentially expressed genes (DEGs)
within 48 hours (521 down-regulated and 462
up-regulated) upon SOX2 degradation were
identified (fig. S8A). Compared with DEGs in
Sox2KOE3.5 ICM, only 52down-regulated genes
were shared, including 12 epiblast-specific genes
(e.g., Klf2, Fgf4, and Etv5). E3.5 ICM–specific
down-regulated genes containedmorePrEgenes
(e.g., Gata4, Pdgfra, and Sox17), whereas ESC-
specific down-regulated genes included more
epiblast markers (e.g., Esrrb, Klf4, and Nanog)
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Fig. 3. SOX2 is dispensable for global enhancer accessibility in E3.5 ICM.
(A) (Left) Heatmaps showing enrichment of SOX2 binding signal, ATAC-seq signals,
and SOX2 motif density (number of motifs per base pair) at SOX2 binding peaks.
The E3.5 ICM–specific peaks are further clustered into preaccessible (n = 1177) and
de novo (n = 357) peaks on the basis of their accessibility states in 8C embryos.
The shared peaks are also clustered into preaccessible (n = 1658) and de novo
(n = 565) peaks. (B) (Left) Heatmaps and average plots showing enrichment

of ATAC-seq signals in control and Sox2 mzKO E3.5 ICM at SOX2 binding peaks.
(Right) The cumulative distributions of down-regulated, up-regulated, and all genes
in Sox2 mzKO E3.5 ICM show the fraction of genes within defined distances (x axis)
from their TSSs to the nearest SOX2 binding peaks. (C) UCSC browser views
showing SOX2 binding (dashed boxes) and ATAC-seq enrichment of representative
genes. (D) Heatmaps and average plots showing enrichment of SOX2 binding and
ATAC-seq signals in control and Sox2 mzKO E4.5 ICM at SOX2 binding peaks.
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(Fig. 5B and fig. S8B). Hence, SOX2 is required
forbroadexpressionofpluripotencymarkergenes
in 2i ESCs but not in E3.5 ICM. On the other
hand, several key TEmarkerswere up-regulated
in both cell types (e.g., Gata2, Id2, and Krt8/18)
(>Fig. 5B). These results support a distinct state of
E3.5 ICM from naive ESCs, in part reflected by
its primitive pluripotency network and broader
potency toward both epiblast and PrE.

We then performed ATAC-seq andH3K27ac
chromatin immunoprecipitation followed by
sequencing (ChIP-seq) at day 0.5 (D0.5, or
12 hours) after SOX2 degradation, when tran-
scription perturbation was still small (fig.
S8A), to minimize secondary effects. About
59.8% of SOX2-bound ATAC peaks were al-
ready lost compared with only 36.8% of SOX2-
unbound enhancers (Fig. 5C and fig. S9A;

see Fig. 5D for example). SOX2-dependent
enhancers showed relatively stronger SOX2
binding and SOX2motif enrichment (Fig. 5,
E and F). Enhancers with both SOX2 and
OCT4 motifs showed the highest SOX2 binding
and SOX2 dependency (fig. S9B). Moreover, the
putative target genes of the SOX2-dependent
enhancers (materials and methods) were down-
regulated at an earlier time point (D0.5) upon

Fig. 4. Early-stage express-
ing TFs are responsible
for opening the preaccessi-
ble SOX2 binding sites.
(A) Heatmaps showing
enrichment of SOX2 binding
signals in E3.5 ICM and
E4.5 epiblast, motif densities,
and TFAP2C and NR5A2
binding signals in 8C embryos
at SOX2 binding peaks.
(B) UCSC browser views
showing ATAC-seq enrichment
and TFAP2C, NR5A2, and
SOX2 binding signals of
representative regions. Preac-
cessible binding sites are
shaded. (C) Venn diagrams
showing the overlap between
distal TFAP2C (top) or NR5A2
(bottom) binding peaks in
8C embryos and SOX2
binding peaks in E3.5 ICM.
(D) Heatmaps showing SOX2
binding in E3.5 ICM, TFAP2C
binding signals in 8C embryos,
ATAC-seq enrichment in
control and Tfap2c mzKO 8C
embryos, and the ratios
between Tfap2c mzKO and
control 8C embryos at the
preaccessible E3.5 ICM
SOX2 binding peaks. Average
plots of ATAC-seq signals
are shown. (E) Pie chart
showing the percentages of
Tfap2c KO affected, Nr5a2
knockdown (KD) affected,
and both affected ATAC-seq
signal at the preaccessible
SOX2 binding peaks.
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SOX2 loss compared with targets of SOX2-
independent enhancers, which were down-
regulated around day 2 (Fig. 5G), supporting
more direct SOX2 impacts. SOX2-independent
enhancers showed comparable ATAC-seq and
even strongerH3K27ac signals comparedwith
SOX2-dependent enhancers in WT cells (Fig.
5E), which suggests that theymay be opened by

other TFs, although the motif analysis did not
reveal obvious candidates (fig. S9C). In sum,
these data suggest that in the naive pluripotent
state, SOX2 opens enhancers—preferentially
thosewith SOX2 orOCT4motifs—in a pioneer
binding mode. Together with the dispensabil-
ity of SOX2 for opening global enhancers in
E3.5 ICM, this result is in line with the finding

that Sox2-null embryos can give rise to ICM but
not to ESCs (11).

The second acute global binding transition
underlies the essential role of SOX2 for
formative pluripotency induction

Sox2-null embryos die shortly after implan-
tation (11). Coincidently, SOX2 binding sites

Fig. 5. Distinct roles of SOX2
in gene expression and
enhancer regulation in E3.5
ICM and 2i ESCs. (A) Heat-
maps showing enrichment
of SOX2 binding signals and TF
motif densities at E3.5 ICM–
specific, 2i ESC–specific (also
E4.5 epiblast FPKM > 1), and
shared (also E4.5 epiblast
FPKM > 1) distal SOX2 binding
peaks, with the average plots
of TF motif densities shown
below. (B) Venn diagrams
showing the overlap of down-
and up-regulated genes between
Sox2 KO (versus control) E3.5
ICM and dTAG [versus dimethyl
sulfoxide (DMSO)–treated] 2i
ESCs. Gene ontology results
and example genes are shown.
P values (hypergeometric
distribution) are shown.
(C) Heatmaps showing enrich-
ment of ATAC-seq signals
in control and Sox2 mzKO E3.5
ICM and in DMSO- and dTAG-
treated (for 12 hours) 2i ESCs.
The average plots of ATAC-seq
signal are shown. (D) UCSC
browser views showing enrich-
ment of SOX2 binding, ATAC-seq,
and H3K27ac signals in DMSO-
and dTAG-treated 2i ESCs of
representative genes. The lost
and retained ATAC-seq peaks are
shaded. (E) Heatmaps showing
enrichment of ATAC-seq,
H3K27ac, SOX2 binding signals,
and TF motif densities at lost and
retained ATAC-seq peaks in
DMSO- or dTAG-treated 2i ESCs.
The average enrichment is
shown below. (F) Pie charts
showing the percentages of peaks
with SOX2 motifs only, both SOX2
and OCT4-SOX2/OCT4 motifs,
OCT4-SOX2/OCT4 motifs,
and neither motif at the peaks.
(G) The relative expression of
predicted target genes (row
z-score normalized) of the
ATAC-seq peaks and all genes
(control), with P values (t test,
two-sided) indicated on top. The arrows indicate the time when a significant decrease of gene expression is detected.
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showed a second major relocalization from
E4.5 epiblast to E5.5 epiblast (fig. S10A), which
suggests an involvement of SOX2 during the
naive-to-formative pluripotency transition.
In this process, whereas pluripotency genes
Sox2 and Oct4 continue to be expressed, naive
pluripotency genes (e.g., Nanog, Tbx3, and
Tbx20) are repressed, and postimplantation
epiblast genes (e.g., Sall2, Fgf5, and Fgf15) are
activated (5). Accordingly, the motifs of SOX2
and OCT4 were enriched at both E4.5 epiblast–
and E5.5 epiblast–specific SOX2-bound en-
hancers. By contrast, E5.5 epiblast–specific
sites were enriched for motifs of ZIC3 and
OTX2 (fig. S10A)—two TFs up-regulated dur-
ing formative pluripotency induction, which
mediate the naive-to-formative transition
(39–42).
Because early lethality precludes the study

of SOX2’s role during the naive-to-formative
pluripotency transition in vivo, we used the
2i ESC–to–EpiLC conversion ex vivo model
(5, 43). SOX2 binding in EpiLCs recapitu-
lated that in E5.5 epiblast, with its binding
sites enriched for the motifs of OTX2 and
ZIC3 (fig. S10A). In fact, the co-occupancy of
SOX2 with OCT4, ZIC3, and OTX2 was ob-
served in EpiLCs (fig. S10B). After SOX2 de-
pletion, global gene expression transition
from naive-to-formative pluripotency was se-
verely impaired (Fig. 6, A and B). About 57.3%
(425 of 742) naive genes failed to be properly
repressed (fig. S11A, left, “Down dependent”),
and 78.2% (453 of 579) formative genes showed
defective activation, including marker genes
Pou3f1, Fgf15, Dnmt3a/b, Zic3, and Otx2 (fig.
S11A, left, “Up dependent,” and fig. S11, B
and C). The differentiation defects are likely
a result of a systematic failure of the tran-
scription program because they cannot be
rescued by reintroducing Otx2 or Zic3 alone
(fig. S11D). Supporting a direct role in gene
activation, SOX2 in EpiLCs preferentially
occupied enhancers near SOX2-dependent
formative genes (fig. S11A, right). To probe
how enhancers were globally affected upon
the loss of SOX2, we performed ATAC-seq
and H3K27ac ChIP-seq during the ESC-to-
EpiLC transition. The decommissioning of
ESC-specific enhancers (indicated by the loss
of ATAC-seq peaks) upon differentiation was
largely unaffected by SOX2 depletion (fig.
S12A). However, 85% of SOX2-bound, newly
established EpiLC-specific enhancers (com-
pared with 61% of SOX2-unbound enhancers)
failed to be properly established (Fig. 6C).
To further validate the direct function of SOX2
at these enhancers, we tested SOX2-bound
enhancers near Otx2 and Zic3—two SOX2-
dependent formative genes in EpiLCs (fig.
S12B). All five enhancers that we tested drove
strong reporter activities, with four being
SOX2 dependent (fig. S12B). In sum, SOX2 is
essential for the naive-to-formative pluripo-

tency conversion and is required for the ac-
tivation of formative enhancers.

Prebinding of SOX2 is insufficient
to open enhancers but correlates
with faster future enhancer opening

Wehypothesized that SOX2-dependent formative-
specific enhancers were activated by SOX2
through pioneer binding. However, we found
that 54% of these enhancers were already pre-
bound by SOX2 in 2i ESCs, despite still being
inaccessible when assayed by ATAC-seq (Fig.
6D, “Dnmt3b,” and Fig. 6E, “prebinding”). SOX2
binding at these sites further increased upon
differentiation to EpiLCs. Prebinding of SOX2
at these enhancers was also observed in E4.5
epiblast in vivo (fig. S13A, “SOX2 in vivo”). The
remaining 46%acquired SOX2 binding during
differentiation, consistent with pioneer binding
(Fig. 6D, “Fgf15,” andFig. 6E, “pioneer binding”).
We investigatedwhether these enhancerswith
SOX2 prebinding and pioneer binding exhibit
functional differences. Predicted target genes
of both groups were activated with similar
kinetics upon 2i ESC–to–EpiLC differentiation,
in a SOX2-dependent manner (Fig. 6D, “Lost”).
Thus, both SOX2 prebinding and pioneer bind-
ing were required for gene activation. By con-
trast, SOX2 was not essential to activate targets
of SOX2-independent formative enhancers
(Fig. 6D, “Retained”).
We then sought to identify features that dis-

tinguish prebinding and pioneer binding en-
hancers. Both classesweredepletedofH3K4me1
in ESCs, which indicates that they were not
the classic “poised” enhancers (44) (fig. S13A).
However, pioneer binding sites were enriched
for both the SOX2 motif and the OTX2 motif,
suggesting cooperative binding upon forma-
tive pluripotency induction (Fig. 6, F and G).
Prebinding sites were more enriched for the
SOX2 motif, which raises the possibility that
such a strongmotif is sufficient to recruit SOX2
in 2i ESCs, which may lower the threshold of
enhancer activation to compensate for the
weak OTX2motif. We found that prebinding
enhancers became accessible faster than pioneer
binding enhancers during formative induction
(Fig. 6E and fig. S13B), an observation also re-
producedwhen analyzingH3K27ac (fig. S13C).
Finally, OTX2 binding showed comparable in-
creases in the two groups (fig. S13A, “OTX2”).
We speculate that the increased binding of
OTX2 in the prebinding enhancer group lacking
itsmotif could be facilitated by other factors, such
as SOX2. These data indicate that although pre-
binding of SOX2 is insufficient to open forma-
tive enhancers, it may poise those with weak
formative TF motifs for faster future opening.

SOX2 prebinds germ layer enhancers
in E5.5 epiblast

The fact that SOX2 can prebind and possibly
poise enhancers for future activation prompted

us to explore whether this observation can
be extended to other developmental processes.
During gastrulation, SOX2 is required to drive
neural ectoderm differentiation (45). Many
enhancers in ectoderm are already primed
in mouse epiblast (23, 46), consistent with the
model that ectoderm is a default differentia-
tion lineage from epiblast (47). By identifying
the putative enhancers specific to epiblast and
three germ layers using ATAC-seq data (23), we
found that SOX2 occupied not only epiblast-
specific but also 45% of ectoderm-specific en-
hancers in E5.5 epiblast (fig. S14, A and B).
Moreover, SOX2 preferentially resided near
both epiblast-specific and ectoderm-specific
genes in E5.5 epiblast (fig. S14C). Upon the tran-
sition to ectoderm, SOX2 binding at ectoderm-
specific enhancers was strengthened, whereas
SOX2 binding at epiblast-specific enhancers
was lost (fig. S14A). Hence, SOX2 prebinds a
subset of developmentally regulated enhancers,
which supports the notion that SOX2 func-
tions as a lineage specifier toward ectoderm
during gastrulation, and that formative pluri-
potence installs competence for somatic lin-
eage specification (4). The prebinding of SOX2
resembles the reported binding of pioneer TFs
and nonpioneer “bookmarking” TFs to regula-
tory elements before gene activation (48), but
this binding does not immediately create open
chromatin before receiving further differen-
tiation cues. Therefore, we referred to such
prebinding as “pilot binding,” which further
demonstrates the flexibility and versatility of
pioneer factors in different cellular contexts.
In fact, a quantitative analysis of enhancers for
their SOX2 binding and chromatin accessibil-
ity across developmental stages revealed that
different modes of SOX2-chromatin interac-
tions are under constant transition (Fig. 7A).
These distinct binding actions likely depend
on cell type–specific cooperative TFs aswell as
genetic and epigenetic contexts.

Discussion

Tremendous progress has been achieved to
understand the molecular circuitry underly-
ing pluripotency regulation using stem cell
models. How master TFs guide pluripotency
progression in vivo remains poorly under-
stood. In this work, by profiling the chroma-
tin binding of SOX2 in mouse early embryos,
we found a chromatin state and transcrip-
tion circuitry for E3.5 ICM that differs from
all other pluripotent states. The potency of
E3.5 ICM exceeds pluripotency because it can
give rise to epiblast and PrE. Moreover, E3.5
ICM shows distinct transcriptome and chro-
matin accessibility (fig. S4B), which likely
reflect the coexpression of pluripotency factors,
early-stage TFs, and extraembryonic lineage
TFs. The pluripotency master TF–mediated
regulatory network appears still at a primitive
stage in E3.5 ICM, as supported by multiple
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pieces of evidence. (i) SOX2’s binding peaks
are less enriched for motifs of SOX2, OCT4,
and OCT4-SOX2 but are more enriched for
the motifs of early-stage TFs (such as NR5A2,
TFAP2C, and GATA) (Fig. 1E). SOX2 binds pre-
accessible chromatin in part opened by these
early-stage TFs (Fig. 4E). (ii) The OCT4-SOX2
motif enrichment in SOX2-bound sites is strong
in 2i ESCs and E4.5 epiblast but not in E3.5

ICM, which raises the possibility that the co-
operative function of OCT4 and SOX2 may
only become dominant after entering naive
pluripotency. Accordingly, although both OCT4
and SOX2 promote ICM-specific genes and re-
press TE-specific genes in E3.5 ICM (26, 49, 50),
their targets appear to differ (fig. S6B). More-
over, the transcriptional interdependence of
master pluripotency TFs OCT4, SOX2, and

NANOG in ESCs (12, 16, 51, 52) was also not
observed in E3.5 ICM. Unlike that in ESCs (10),
Sox2 KO in E3.5 ICM did not affect expression
of Oct4 or Nanog (Fig. 2C), and Oct4 KO did
not affect Nanog expression and only partially
down-regulates Sox2 (26, 53, 54) (fig. S6A). (iii)
SOX2 is globally dispensable for enhancer open-
ing in E3.5 ICM, whereas it is essential for open-
ing enhancers genome-wide in 2i ESCs and E4.5

Fig. 6. Depletion of SOX2
impedes the naive-to-formative
pluripotency transition.
(A) Schematic showing differ-
entiation of SOX2-dTAG 2i ESCs
to EpiLCs with DMSO or dTAG
treatment. (B) PCA showing
RNA-seq of cells from 2i ESCs
to EpiLCs at day 0 to day 3 with
DMSO (blue) or dTAG (red)
treatment. (C) Pie charts
showing the percentages of lost
and retained peaks at EpiLC-
specific distal ATAC-seq peaks
with or without SOX2 binding.
(D) (Top) UCSC browser views
and heatmaps showing SOX2
binding signals, ATAC-seq,
H3K27ac enrichment, and gene
expression of representative
genes in 2i ESCs (D0) and
DMSO- and dTAG-treated EpiLCs
(D3). Arrows and dashed boxes
indicate lost or retained ATAC-
seq peaks. (Bottom) Box plots
show the relative expression
(row z-score normalized) of
predicted target genes of peaks
during the EpiLC transition,
with P values (t test, two-sided)
indicated on top. (E) (Left)
Heatmaps showing enrichment
of SOX2 binding and ATAC-seq
signals at the lost and retained
EpiLC-specific ATAC-seq peaks
during the EpiLC transition
with DMSO or dTAG treatment.
The lost peaks are further
clustered into SOX2 prebinding
and pioneer binding sites in 2i
ESCs. (Right) Line charts show
the average ATAC-seq enrichment
at the SOX2 prebinding or
pioneer binding EpiLC-specific
ATAC-seq peaks. (F) TF motifs
identified from EpiLC-specific
ATAC-seq peaks with SOX2
prebinding or pioneer binding.
Sizes of circles indicate levels
of −log P values. (G) Density
plots showing corresponding TF
motif density at SOX2 prebind-
ing or pioneer binding EpiLC-
specific ATAC-seq peaks.
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epiblast. A larger role of pluripotency factors
in ESCs is consistent with them being required
for mouse ESC derivation (50, 55) and mainte-
nance (16). Hence, the E3.5 ICM exhibits a dis-
tinct, “prepluripotency” state, featuring the
potential to give rise to both epiblast and PrE,
coexpression of multilineage TFs, and a pri-
mitive pluripotency network.
Pioneer TFs are believed to bind and open

inaccessible chromatin, leading to the subse-
quent recruitment of additional TFs (17). We
found that SOX2 manifests more diverse roles
at enhancers beyond a simple pioneer factor,
which include settler binding, pioneer bind-
ing, and pilot binding. SOX2 exhibits settler
binding in E3.5 ICM, where SOX2 binds pre-
accessible enhancers, and its loss does not
substantially affect chromatin opening (Fig.
7B). We speculate that the relatively short ex-
pression period and lack of cooperation with

OCT4 or other cofactors may disable its pio-
neering binding function. Notably, such
settler binding can still exert impacts on gene
expression, especially at sites with SOX2 mo-
tifs (Fig. 3B). It is possible that the SOX2motif
may increase the residence time of SOX2, which
in turn promotes gene expression, for exam-
ple by increasing promoter-enhancer interac-
tions (8, 56). It also remains to be investigated
whether some settler binding may help se-
quester excess SOX2 from other binding sites
to prevent premature activation of later-stage
genes. Widespread pioneer binding is then
observed in E4.5 epiblast and 2i ESCs, where
SOX2 is required for naive enhancers opening
(Fig. 3D and Fig. 5C). Finally, the pilot binding
of SOX2atmany formative enhancers in 2i ESCs
is insufficient for enhancer opening but likely
helps enhancers with weak formative TF motifs
achieve faster opening upon differentiation (Fig.

6E). We propose that such multifaceted—rather
than a universal pioneering—chromatin inter-
acting modes may also hold true for other
pioneer TFs to allow precise yet adaptable re-
sponses to developmental cues beyond pluri-
potency regulation.

Materials and methods summary

A detailed materials and methods section is
provided in the supplementary materials.
All animals were cared for according to the
guidelines of the Institutional Animal Care
and Use Committee of Tsinghua University.
Embryos were collected from superovulated
females crossed with males. To generate Sox2
mzKO embryos, Sox2flox/flox, Zp3-Cre females
and Sox2flox/flox, Stra8-Cre males were used for
breeding. Immunosurgery was performed as
reported previously (57) to remove TE and iso-
late ICM. ICMs were then incubated in TrypLE

Fig. 7. SOX2-chromatin binding
in early development and its
multifaceted interaction modes
with enhancers. (A) Alluvial
diagrams showing the dynamics
states of enhancers for their SOX2
binding and accessibility (based
on ATAC-seq) in embryos. The
percentages of each class of
SOX2-chromatin interactions
(combination of SOX2 occupancy
and chromatin accessibility) within
all enhancers (pooled from all
stages examined) are shown for
each stage. (B) A model illustrating
the multifaceted SOX2 interaction
modes with enhancers during the
pluripotency transition. Three SOX2
binding modes are proposed:
settler, pioneer, and pilot binding.
The settler binding refers to SOX2
binding preaccessible enhancers,
and its depletion does not substan-
tially affect chromatin opening, as
exemplified by most SOX2 binding
in E3.5 ICM. The pioneer binding
occurs in E4.5 epiblast or 2i mESCs,
where SOX2 is required to establish
or maintain the enhancer accessi-
bility. The pilot binding of SOX2 at
many formative enhancers in 2i
mESCs is insufficient for enhancer
opening but may help poise
enhancers for faster opening upon
conversion to formative pluripo-
tency. E3.5 ICM is in a prepluri-
potency state to bridge totipotency
to pluripotency, featured by coex-
pression of multilineage markers
(epiblast, PrE, and early-stage TFs),
expanded potency toward epiblast
and PrE, and a primitive pluripo-
tency network.
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and dissociated by repetitive pipetting using
a Pasteur pipette. For scRNA-seq, individual
E3.5 ICM cells were transferred into single-cell
lysis buffer following the Smart-seq2 protocol,
as described previously (58). E4.5 blastocysts
were flushed from the uterus after human
chorionic gonadotropin (hCG) injection at 114
to 116 hours. Given that SOX2 was present
only in epiblast but not in PrE at E4.5 (10), we
profiled SOX2 binding using the entire ICM
because the signals were expected to arise ex-
clusively from epiblast cells. E5.5 to E7.5 embryo
tissues were collected as previously described
(23, 59, 60).
CUT&RUN was conducted following the

published protocol (61) with some modifica-
tions. The fresh samples were resuspended and
bound with concanavalin-coated magnetic
beads. After incubation with SOX2 antibody
for 2 to 3 hours at 4°C, the samples were in-
cubated with protein A–micrococcal nuclease
(pA-MNase) for 1 hour. The STAR ChIP-seq for
H3K27ac and miniATAC-seq were performed
as previously described (62, 63).
To construct SOX2-dTAG ESCs, the sequence

encoding FKBPF36V-GFP was fused to the C
terminus of the endogenous Sox2 locus. SOX2-
FKBP proteins were depleted by adding dTAGv-1
into the medium. Time-course experiments
were performed by inducing protein degrada-
tion and collecting the samples at different
time points. NaivemESCs (2i mESCs) were cul-
tured in theN2B27medium supplementedwith
PD0325901, Chir99021, andLIF.To induceEpiLC
differentiation, 2i ESC cells were plated on tis-
sue culture dishes pretreated with matrigel in
N2B27-based medium supplemented with 1%
knockout serum replacement (KSR), basic fibro-
blast growth factor (bFGF), and activin A.
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Multifaceted SOX2-chromatin interaction underpins pluripotency progression in
early embryos
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Editor’s summary
Pluripotency transiently appears in early development and is controlled by pioneer transcription factors (TFs) such as
OCT4 and SOX2. However, how these master TFs drive pluripotency progression in early embryos remains poorly
understood. Li et al. investigated spatiotemporal chromatin occupancy of SOX2 in mouse early embryos across 4
days. In early blastocysts, SOX2 regulates the pluripotency program not just by opening global enhancers, but also
by occupying preaccessible enhancers opened by early-stage-expressing TFs. SOX2 then redistributes and opens
enhancers or primes enhancers for future activation when cells acquire naive and formative pluripotency. These data
revealed flexible pioneer TF-chromatin interactions and a transitionary “prepluripotency” state that connects totipotency
and pluripotency. —Di Jiang
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