
Bioinformatics III

Prof. Dr. Volkhard Helms
Nicolas Künzel
Winter Semester 2019/2020

Saarland University
Chair for Computational Biology

Exercise Sheet 4
Due: Nov 14, 2019 14:15

Submit your solutions on paper, hand-written or printed at the beginning of the lecture or in build-

ing E2.1, Room 3.01. Alternatively, you can send an email with a single PDF attachment to

nicolas.kuenzel@bioinformatik.uni-saarland.de. Either way, please hand in your source code or pro-

gramming problems can not be graded. The source code should be sent in a .zip file via email.

Dijkstra, force directed layouts and modular decomposition

We continue to look at networks. The assignment of this week deals with edge weights in Dijkstra’s
algorithm, energies and forces applied to layout networks, as well as modular decomposition.

Exercise 4.1: Dijkstra’s algorithm for finding shortest paths (30 points)

Lecture 6 introduced Dijkstra’s algorithm that finds the shortest paths between a given start node
and all other nodes in a graph if the weight of each edge is non–negative.

(a) Draw a directed or undirected graph with at least one negative edge weight for which Dijk-
stra’s algorithm does not find the shortest path from some node s to another node t. Use
your example to explain why Dijkstra’s algorithm only works on graphs with non–negative
edge weights.

(b) To run Dijkstra’s algorithm on graphs with negative edge weights, someone proposes the
following modification:

(1) If there are edges with negative weights in the graph, find the edge with the smallest
(most negative) weight ws.

(2) Increase the weight of all edges by |ws| so that all edges have weights ≥ 0.

(3) Run Dijkstra’s algorithm on the modified graph.

Is this modified algorithm guaranteed to find the shortest paths (= smallest sum of weights
in the original graph), even when some edges possess negative weights? Explain your answer.

(c) Dijkstra’s algorithm is very similar to simple breadth–first search (BFS). BFS has a worst
case performance of O(n+m), which is faster than Dijkstra’s worst case runtime of O(n2),
with n nodes and m edges. Could BFS be used to find the shortest paths between nodes?
If so, what would the edge weights have to look like for BFS to be guaranteed to find the
shortest paths between nodes? Why (not)?

If you need a reminder how BFS works, you can find pseudocode and an animated example
on Wikipedia.

Exercise 4.2: Force directed layout of networks (60 points)

In this exercise you implement a layout algorithm for networks in the Layout-class by using energy
functions that mimic repulsive and attractive molecular forces. Subsequently, you read networks
from files and visualise the final layouts and the energy trajectories.

General remarks:

• The small arrow over a variable indicates that it is a vector, e.g. ~x.

mailto:nicolas.kuenzel@bioinformatik.uni-saarland.de
https://en.wikipedia.org/wiki/Breadth-first_search

• The gradient describes the direction and rate of change of a function f , the so called slope,
and is denoted by the gradient (Nabla) operator ∇. In 1D, the gradient is the simple
derivative ∇f(x) = d

dxf . In n dimensions, the gradient is a vector of the partial derivatives

∇f(x1, ..., xn) =

∂
∂x1

f
∂
∂x2

f

...
∂
∂xn

f

that can be understood as a multidimensional slope.

• The force F equals the negative gradient of the energy E. In other words, the force is a
measure for how much the energy changes with an infinitesimal displacement. Given an
n–dimensional vector ~x = (x1, ..., xn), the force is an n-dimensional vector

~F (~x) = −∇E(~x).

• The Coulomb energy between two point charges q1 and q2 with distance ‖~r‖ is

Ec(~r) =
1

4πε0

q1q2
‖~r‖

where ke = 1
4πε0

is the Coulomb constant. The harmonic energy with spring constant k is

Eh(~r) =
k

2
‖~r‖2.

(a) Implementation preparation: Use the general definitions above to write down the force

field ~Fc(~r) for the Coulomb energy Ec(~r) and the force field ~Fh(~r) for the harmonic energy
Eh(~r) in 3D Cartesian coordinates.

Note that in 3D ~r = (x, y, z) with length ‖~r‖ =
√
x2 + y2 + z2. Consequently, ~Fc(~r) and

~Fh(~r) are vectors in terms of x, y and z. Simplify the equations as much as possible and
write down all steps needed to reach your solution.

(b) Adapting the energy equations for networks: Since the network layout is in 2D, two
nodes i and j have coordinates (xi, yi) and (xj , yj), respectively. Thus, the distance between
the two nodes is

‖~rij‖ =
√

(xi − xj)2 + (yi − yj)2 with ~rij =

(
xi − xj
yi − yj

)
.

Additionally, the charge q is replaced by the node degree k and the Coulomb and spring
constants are dropped. That gives the adjusted Coulomb energy

Ec(~rij) =
kikj
‖~rij‖

and the adjusted harmonic energy

Eh(~rij) =
1

2
‖~rij‖2.

Adjust your solutions for ~Fc(~rij) and ~Fh(~rij) from exercise part (a) accordingly and write
them down. These are the energy and force equations you are going to need for your
implementation.

(c) Understanding the Coulomb and harmonic energy: The force directed layout algo-
rithm attempts to find a good layout by finding the lowest energy conformation of the nodes
in the network. Look at the adjusted Coulomb energy ~Ec(~rij) and harmonic energy ~Eh(~rij)
from part (b) and answer the following questions:

How does the Coulomb energy and harmonic energy change if the degree of both nodes is
increased or decreased? What happens if the distance between two nodes is increased or
decreased?

(d) Understanding the forces: To find the lowest energy conformation, the Coulomb and
harmonic energy are used to compute the pairwise force between two nodes. The interaction
between two nodes i and j is defined as

Wij =

{
1, if edge i→ j exists

0, otherwise
.

The pairwise force between two nodes i and j is then

~Fij = ~Fc(~rij) +Wij · ~Fh(~rij).

The total force on node i is the sum of pairwise forces between i and all other nodes j:

~Fi =
∑
j

~Fij i 6= j.

The total force ~Fi determines the direction in which node i should be moved, as well as how
far it should be moved in that direction. The larger the total force, the further it is moved
from its current position in the network.

Look at the equation of the pairwise force ~Fij between two nodes, as well as the equations for
~Fc(~rij) and ~Fh(~rij) that you obtained in part (b). Why is the Coulomb force the repulsive
force and the harmonic force the attractive force?

(e) Implementing the force directed layout algorithm: You are going to implement the
force directed layout algorithm in the layout– class in Layout.py. The basic outline of the
layout algorithm is as follows:

(1) init positions(): Assign random x and y positions to all nodes in the network. Set
the initial force in the x and y coordinate for each node to the correct value. Set the
charge of each node. The provided Node–class has already been extended with the
required fields.

(2) layout(iterations): In each iteration

i. calculate forces(): Calculate the pairwise forces ~Fij between all pairs of nodes

and then compute the total force ~Fi for all nodes. Note that the forces between
two nodes are symmetric, meaning Fij = −Fji. Remember not to count pairs of
nodes twice!

ii. displace nodes(): Use the forces computed in the previous step to update the
position of each node (

xi
yi

)
:=

(
xi
yi

)
+ α · ~Fi

A reasonable value is α = 0.03. Do not forget to reset all the forces after this step!

iii. compute energy(): Calculate the total energy, which is the sum of all individual
interaction energies

Etot =
∑
i<j

Ec(~rij) +Wij · Eh(~rij)

The energy of each iteration is stored and returned.

(f) Simulated annealing: The Layout–class contains an alternative layout function that adds
a random thermal contribution as an additional force on each node in each iteration. This
thermal contribution should decrease in each step, which you have to implement in the func-
tion simulated annealing layout(iterations). Choose a sensible starting ”temperature”.

Explain why simulated annealing is a worthwhile optimisation principle in practice.

(g) Applying the layout algorithms: The supplement contains the test files “star_net.txt”,
“square_net.txt”, “star++_net.txt” and “dog_net.txt”. Write a simple Python script
that uses the Layout–class to read the test files and do 1000 iterations with both imple-
mentations of the algorithm. Report the final energies and plot the layouts. For one of the
networks also plot the energies per step for the basic and the simulated annealing method
and compare the results.

You can use the plotting methods provided in tools.py.

Exercise 4.3: Graph Modular Decomposition (10 points)

A cell contains the 4 variants of a protein complex shown below:

Draw the tree for the modular decomposition of this set of protein complexes and indicate the
“prime”, “parallel” and “serial” symbols.

