Bioinformatics III

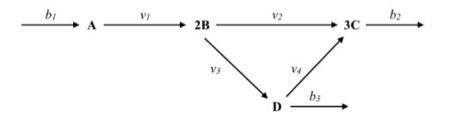
Prof. Dr. Volkhard Helms Dr. Pratiti Bhadra Winter Semester 2019-2020 Chair for Computational Biology Saarland University Tutor

Exercise Sheet 9 Graph and Pathways of Metabolic Networks Due: January 16, 2020 14:15

Submit your solutions on paper, hand-written or printed at the beginning of the lecture or in building E2.1, Room 3.01. Alternatively, you can send an email with a single PDF attachment to pratiti.bhadra@bioinformatik.uni-saarland.de and pratiti.bhadra@gmail.com. Subject of the email should be in the following format: Assignment9-"your name".

Please feel free to contact me for any clarifications either via email or you can reach me in building E2.1, Room 3.01 (preferably between 3 pm and 4 pm).

Q1 Stoichiometric Matrix and Extreme Pathways (50 points)

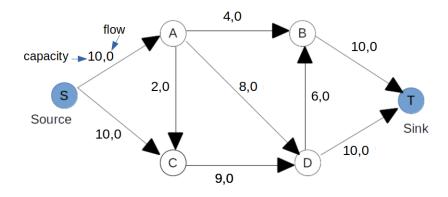


Metabolites are A,B,C and D. There are four internal flux reactions v_1 - v_4 and three unconstrained external fluxes b_1 , b_2 and b_3 .

- (a) Determine the stoichiometric Matrix (10 points)
- (b) Calculate the extreme pathways of the above network. Show step wise calculation. Give the extreme pathways as a sum of the individual reactions, and sketch them with a layout similar to the given network. (25 points)
- (c) Determine the pathway length matrix. Which information does it provide? (5 points)
- (d) Determine the reaction participation matrix. Which reaction(s) contribute(s) to the most pathways. (5 points)
- (e) Now assume that reaction b_2 is essential for the organism, i.e. it dies if there is no output via b_2 . Determine from the extreme pathways which (combinations of) internal reactions are essential, i.e. if they are blocked, then the output via b_2 is blocked, too. (5 points)

Q2 Max-flow-min-cut (40 points)

(a) Find the minimum capacity over all S-T cuts of the given graph. (*hint: Ford Fulkerson algorithm*) (20 points)



(b) The counts of supply and demand of four different kinds of food are given in the following table (20 points)

	Food type	Vegan	Vegetarian Type A	Vegetarian Type B	Non-Vegetarian
	Supply	50	36	11	8
	Demand	45	42	8	3

'Vegetarian Type A' can only have 'Vegetarian Type A' or 'Vegan' food; 'Vegetarian Type B' can eat only 'Vegetarian Type B' or 'Vegan'; 'Vegan' can have only 'Vegan' food; and 'Non-vegetarian' can eat any of the four types.

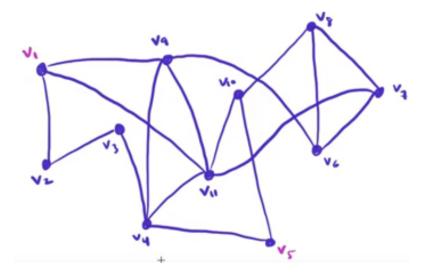
Model the problem as a flow network problem. Draw the corresponding network. (*hint: In the network, there will be one source node, one sink node, 4 nodes for the supply of each food type and 4 nodes for the demand of each food type.*)

Is it possible to meet the full demand? Explain why or why not, using an argument based on a min cut. If it is not possible to meet the full demand, the output of your algorithm still is meaningful. What does it tell you?

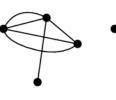
(c) Graph connectivity (10 points)

(a) How many internally disjoint V_1 - V_5 paths are in the following graph G? How can you explain this? (3 points)

internally disjoint path (edge-independent path): Paths are internally disjoint if they have no common internal vertex.



- (b) Let G be a 3-regular graph. The vertex-connectivity of G is equal to 3, k_v(G) = 3. Find out the edge-connectivity of the graph G, k_e(G) = ?. (3 points) A graph is **r-regular** if every vertex has degree **r**.
- (c) "There exists a connected n-vertex simple graph with n+1 edges". If the above statement is true give an example or if it is false explain why (4 points).
 simple graph: An unweighted, undirected graph containing no graph loops or multiple edges. A simple graph may be either connected or disconnected.



simple graph

nonsimple graph non with multiple edges

nonsimple graph with loops