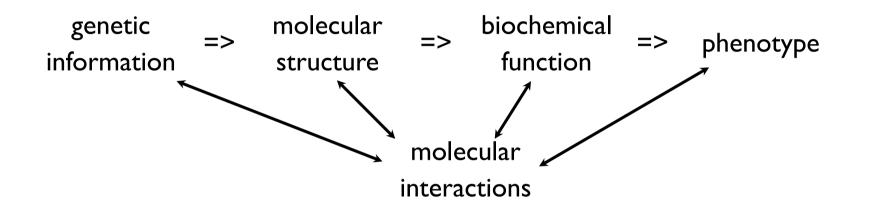
Bioinformatics III: Network View of Cell Biology

Molecular Systems Biology: considers molecules and their interactions



ightarrow highly connected network of various interactions, dependencies

=> study networks

Lecture – Table of contents - Chapters

- I. Introduction Networks in Biological Cells
- 2. Structures of Protein Complexes and Subcellular Structures
- 3. Analysis of protein-protein binding
- 4. Algorithms on mathematical graphs
- 5. Protein-Protein Interaction Networks Pairwise Connectivity
- 6. Protein-Protein Interaction Networks Structural Hierarchies
- 7. Protein-DNA interactions
- 8. Gene Expression and Protein Synthesis
- 9. Gene Regulatory Networks
- 10. Regulatory Noncoding RNA
- 11. Computational Epigenetics
- 12. Metabolic Networks
- 13. Kinetic Modeling of Cellular Processes
- 14. Stochastic processes in biological cells
- 15. Integrated Cellular Networks

Lecture – type of mathematics

Mathematical concept	Object of Investigation	Analysis of Complexity	Time- dependent	Treated in Chapter #
Mathematical graphs	protein-protein networks; protein complexes; gene regulatory networks	Yes	no	5, 6, 9, 10
Stoichiometric analysis; matrix algebra	metabolic networks*	yes (count # of possible paths that connect two metabolites)	no	12
Differential Equations	signal transduction, energy transduction, gene regulatory networks	No	yes	9,13
Equations of motion	individual proteins, protein complexes		yes	14, 15
Correlation functions, Fourier transformation	reconstruction of two- and three-dimensional structures of cellular structures and individual molecules	No	yes, when applied on time- dependent data	2
Statistical tests	Differential expression and methylation; enriched network motifs	No	yes, when applied on time- dependent data	8, 9, 10
Machine learning (linear regression, hidden Markov model)	Predict gene expression, classify chromatin states	No	no	8, 11

Appetizer: A whole-cell model for the life cycle of the human pathogen *Mycoplasma genitalium* (15.2)

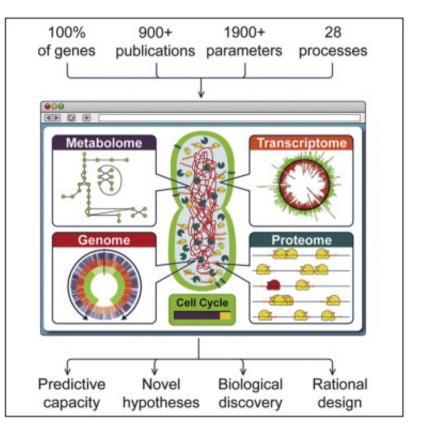
Theory

Cell

A Whole-Cell Computational Model Predicts Phenotype from Genotype

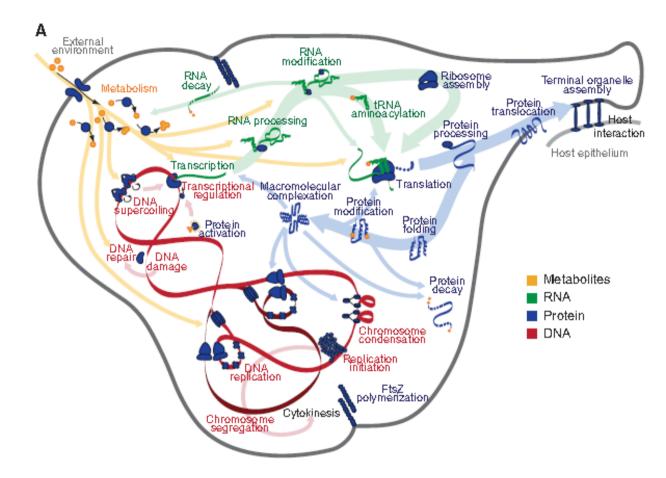
Jonathan R. Karr,^{1,4} Jayodita C. Sanghvi,^{2,4} Derek N. Macklin,² Miriam V. Gutschow,² Jared M. Jacobs,² Benjamin Bolival, Jr.,² Nacyra Assad-Garcia,³ John I. Glass,³ and Markus W. Covert^{2,*}

¹Graduate Program in Biophysics ²Department of Bioengineering Stanford University, Stanford, CA 94305, USA ³J. Craig Venter Institute, Rockville, MD 20850, USA ⁴These authors contributed equally to this work *Correspondence: mcovert@stanford.edu http://dx.doi.org/10.1016/j.cell.2012.05.044



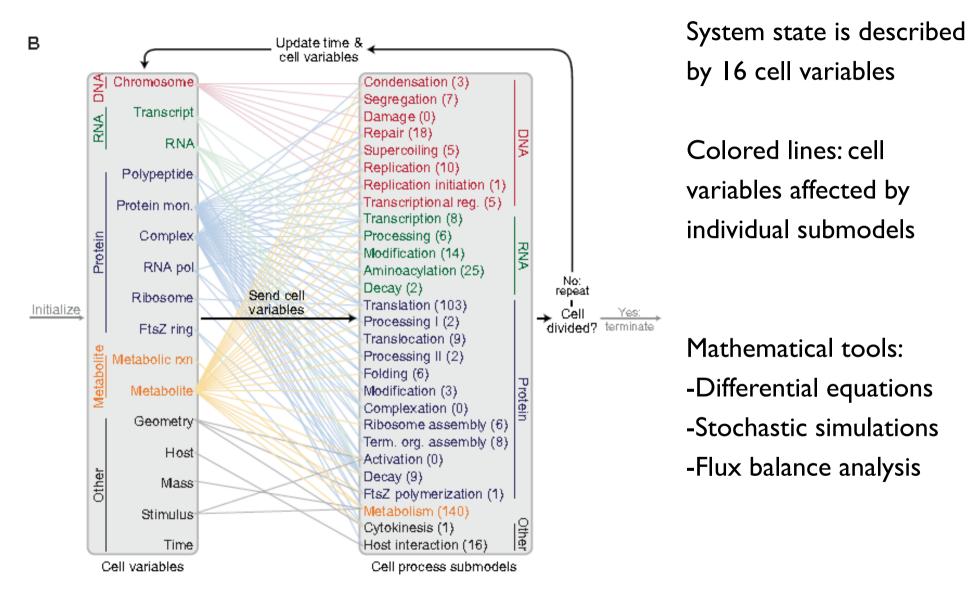
Cell 150, 389-401 (2012)

Divide and conquer approach (Caesar): split whole-cell model into 28 independent submodels



28 submodels are built / parametrized / iterated independently

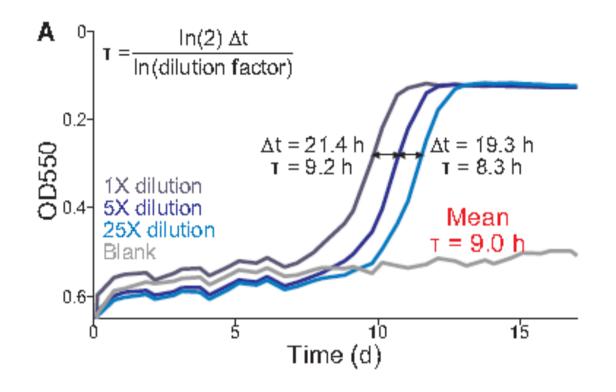
Cell variables



Data source	Content
Bernstein <i>et al.</i> , 2002 ⁸⁰²	mRNA half-lives
BioCyc ⁶	Genome annotation, metabolic reactions
BRENDA ⁵⁷⁰	Reaction kinetics
CMR ¹⁶⁸	Genome annotation
Deuerling <i>et al.</i> , 2003 ³⁸⁸	Chaperone substrates
DrugBank ⁸⁴⁷	Antibiotics
Eisen <i>et al.</i> , 1999 ⁸⁹¹	DNA repair
Endo <i>et al.,</i> 2007 ³⁹¹	Chaperone substrates
Feist <i>et al.</i> , 2007 ⁵⁵⁸	Metabolic reactions
Glass <i>et al.</i> , 2006 ¹⁹³	Gene essentiality
Güell <i>et al.,</i> 2009 ⁴¹⁸	Transcription unit structure
Gupta <i>et al.,</i> 2007 ²⁸⁰	N-terminal methionine cleavage
KEGG ¹¹³	Genome annotation, orthology
Kerner <i>et al.,</i> 2005 ³⁸⁹	Chaperone substrates
Krause <i>et al.</i> , 2004 ⁴⁰⁹	Terminal organelle assembly
Lindahl <i>et al.</i> , 2000 ⁴⁶²	DNA damage
Morowitz <i>et al.,</i> 1962 ⁸⁷⁰	Cell chemical composition
NCBI Gene ^{61,777}	Genome annotation
Neidhardt <i>et al.</i> , 199 0 ³⁹³	Cell chemical composition
Peil, 2009 ¹⁰⁵	RNA modification
PubChem ⁵⁸⁷	Metabolite structures
SABIO-RK ¹⁰⁰	Reaction kinetics
Solabia ^{754_759}	Media chemical composition
Suthers <i>et al.</i> , 2009 ⁶¹⁰	Metabolic reactions
UniProt ⁹⁶	Genome annotation
Weiner <i>et al.</i> , 2000 ⁴¹¹	Promoters
Weiner <i>et al.</i> , 2003 ⁵⁶⁹	mRNA expression

List S1. Primary sources of the *M. genitalium* reconstruction.

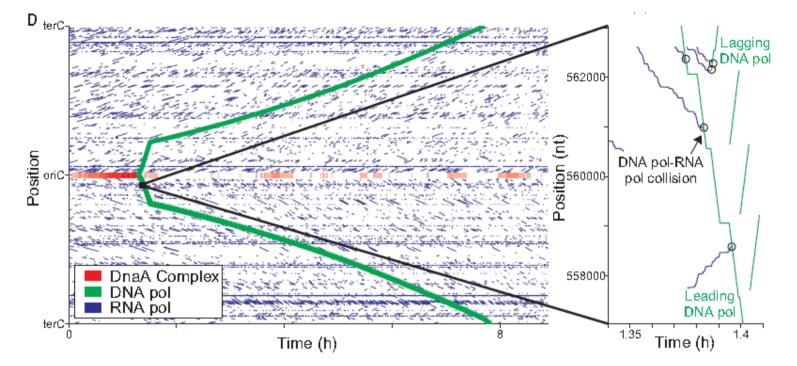
Growth of virtual cell culture



The model calculations were consistent with the observed doubling time!

Growth of three cultures (dilutions indicated by shade of blue) and a blank control measured by OD550 of the pH indicator phenol red. The doubling time, t, was calculated using the equation at the top left from the additional time required by more dilute cultures to reach the same OD550 (black lines).

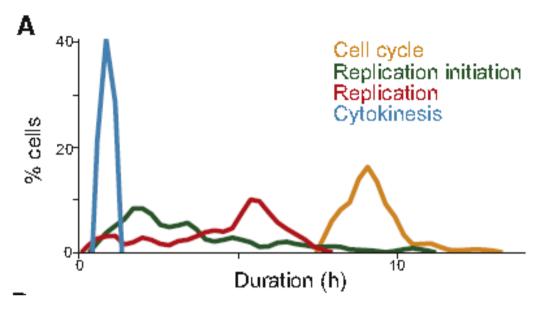
DNA-binding and dissociation dynamics



DNA-binding and dissociation dynamics of the oriC DnaA complex (red) and of RNA (blue) and DNA (green) polymerases for one in silico cell. The oriC DnaA complex recruits DNA polymerase to the oriC to initiate replication, which in turn dissolves the oriC DnaA complex. RNA polymerase traces (blue line segments) indicate individual transcription events. The height, length, and slope of each trace represent the transcript length, transcription duration, and transcript elongation rate, respectively.

Inset : several predicted collisions between DNA and RNA polymerases that lead to the displacement of RNA polymerases and incomplete transcripts.

Predictions for cell-cycle regulation



Distributions of the duration of three cellcycle phases, as well as that of the total cell-cycle length, across 128 simulations.

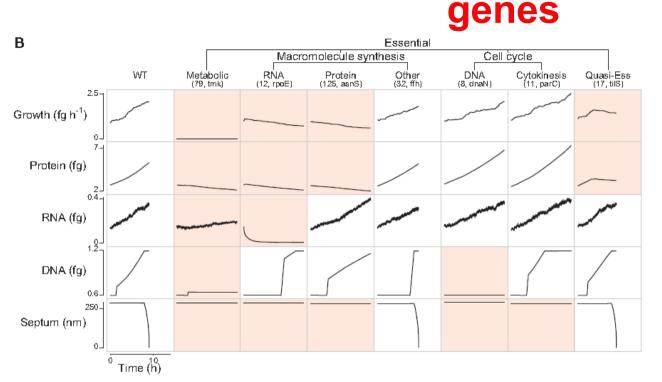
There was relatively more cell-to-cell variation in the durations of the replication initiation (64.3%) and replication (38.5%) stages than in cytokinesis (4.4%) or the overall cell cycle (9.4%).

This data raised two questions:

(1) what is the source of duration variability in the initiation and replication phases; and

(2) why is the overall cell-cycle duration less varied than either of these phases?

Single-gene knockouts : essential vs. non-essential



Single-gene disruption strains grouped into phenotypic classes (columns) according to their capacity to grow, synthesize protein, RNA, and DNA, and divide (indicated by septum length).

Each column depicts the temporal dynamics of one representative in silico cell of each essential disruption strain class.

Dynamics significantly different from wild-type are highlighted in red.

The identity of the representative cell and the number of disruption strains in each category are indicated in parenthesis.

Literature

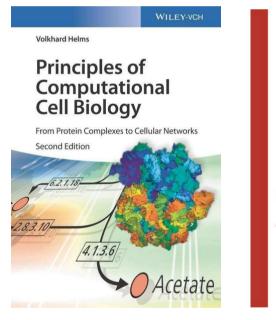
Lecture **slides** — available before the lecture

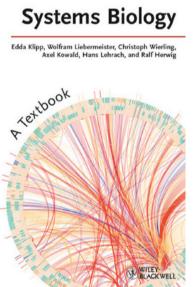
Suggested **reading**

=> check our web page

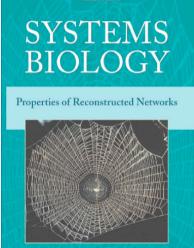
http://gepard.bioinformatik.uni-saarland.de/teaching/...

Textbooks





DESIGN PRINCIPLES OF BIOLOGICAL CIRCUITS



Bernhard Ø. Palsson

 \Rightarrow check computer science library. For Helms book:

https://ebookcentral.proquest.com/lib/sulb/detail.action?docID=5613486

How to pass this course

Schein = you need to qualify for the **final exam** and pass it

Final exam:

written test of 180 min length about selected parts of the lecture (slides will be defined 2 weeks before exam) AND about selected assignments

requirements for participation in final exam:

- 50% of the points from the **assignments**
- one assignment task presented @ blackboard in tutorial

Final exam will take place at the end of the semester.

In case you are sick (final exam) you should submit a medical certificate

to take the written re-exam (then this will be counted as first exam).

Re-exam: will take place in first week of the summer term 2020. Everybody can take the re-exam (first exam failed or passed).

Assignments

Tutors: Andreas Denger, Markus Hollander, Nicolas Künzel, Pratiti Bhadra, Thorsten Will

Tutorial: Mon, 12:15-13:45, E2 1, room 007

10 assignments with 100 points each

Assignments are part of the course material (not everything is covered in lecture)

=> **one** solution for **two** students (or one)

- => hand-written or one **printable** PDF/PS file per email
- => content: data analysis + interpretation **think!**
- => no 100% solutions required!!!
- => attach the source code of the programs for checking (no suppl. data)
- => present one task at the **blackboard**

Hand in at the following Fri electronically until 13:15 or

printed at the start of the lecture.

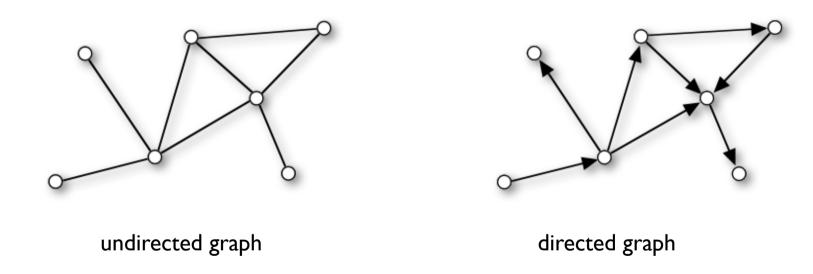
Some Graph Basics

Network <=> Graph

Formal **definition**:

A graph G is an ordered pair (V, E) of a set V of vertices and a set E of edges.

G = (V, E)



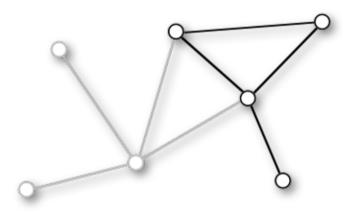
If $E = V^{(2)} =$ fully connected graph

Graph Basics II

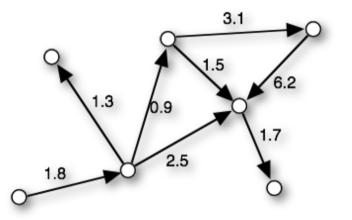
Subgraph:

Weighted graph:

G' = (V', E') is a subset of G = (V, E)



Practical question: how to define useful subgraphs?



Weights assigned to the edges

Note: no weights for vertices

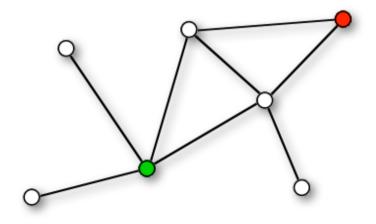
Walk the Graph

Path = sequence of connected vertices start vertex => internal vertices => end vertex
Two paths are independent (internally vertex-disjoint), if they have no internal vertices in common.
Vertices u and v are connected, if there exists a path from u to v.

otherwise: disconnected

Trail = path, in which all edges are distinct

Length of a path = number of vertices || sum of the edge weights



How many paths connect the green to the red vertex?

How long are the shortest paths?

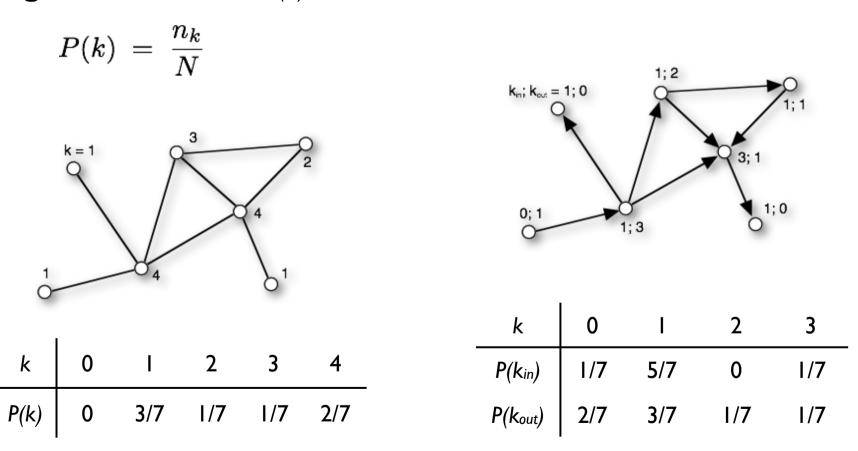
Find the four trails from the green to the red vertex.

How many of them are independent?

Local Connectivity: Degree/Degree Distribution

Degree k of a vertex = number of edges at this vertex Directed graph => distinguish k_{in} and k_{out}

Degree distribution P(k) = fraction of nodes with k connections



Graph Representation e.g. by adjacency matrix

Adjacency matrix is a N x N matrix

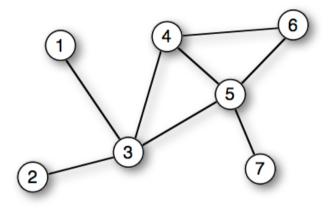
with entries M_{uv}

 M_{uv} = weight when edge between u and v exists, 0 otherwise

- \rightarrow symmetric for undirected graphs
- + fast O(I) lookup of edges
- large memory requirements
- adding or removing nodes is expensive

Note: very convenient in programming languages that support sparse multidimensional arrays

=> Perl



	1	2	3	4	5	6	7
1	_	0	1	0	0	0	0
2	0	—	1	0	0	0	0
3	1	1	_	1	1	0	0
4	0	0	1	—	1	1	0
5	0	0	1	1	—	1	1
6	0	0	0	1	1	—	0
7	- 0 1 0 0 0 0	0	0	0	1	0	_

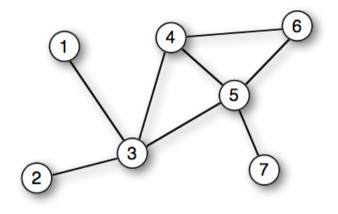
Applications of the adjacency matrix

Finding paths between nodes

if a path of length I exists from one vertex to another (ie. the 2 vertices are adjacent), there must be an entry of I in the corresponding position in the matrix.

e.g. from vertex 5, one can reach vertices 3, 4, 6 and 7 via a path of length 1.

How about paths of length 2?



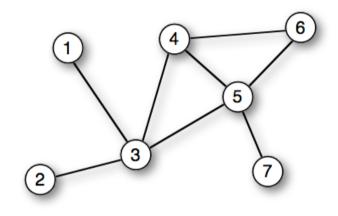
	1	2	3	4	5	6	7
1	-	0	1	0	0	0	0
2	0	_	1	0	0	0	0
3	1	1	_	1	1	0	0
4	0	0	1	—	1	1	0
5	0	0	1	1	_	1	1
6	0	0	0	1	1	—	0
7	0	0	0	0 0 1 - 1 1 0	1	0	

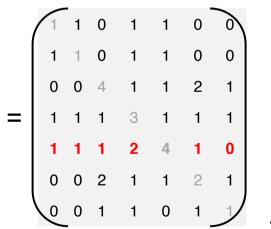
Applications of the adjacency matrix

Fill up the diagonal with 0 values

and multiply the matrix with itself

0	0	1	0	0	0	0		0	0	1	0	0	0	0
0	0	1	0	0	0	0		0	0	1	0	0	0	0
1	1	0	1	1	0	0		1	1	0	1	1	0	0
0	0	1	0	1	1	0	•	0	0	1	0	1	1	0
0	0	1	1	0	1	1		0	0	1	1	0	1	1
0	0	0	1	1	0	0		0	0	0	1	1	0	0
Q	0	0	0	1	0	١		Q	0	0	0	1	0	١





From the matrix product, you can read off whether 2 nodes are connected by a **path of length 2.**

E.g. from node 5, one can reach all other nodes except node 7.

The entries give the multiplicity. E.g. there are two alternative paths to reach node 4 from node 5.

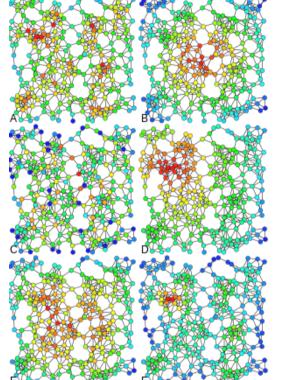
Measures and Metrics

"Which are the most important or central vertices in a network?"

Examples of A) Degree centrality,

C) Betweenness centrality,

E) Katz centrality,

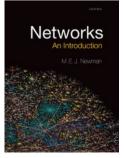


B) Closeness centrality,

D) Eigenvector centrality,

F) Alpha centrality of the same graph.

www.wikipedia.org



book by Mark Newman / Oxford Univ Press

- Chapter 7: measures and metrics
- Chapter II: matrix algorithms and graph partitioning

Degree centrality

Perhaps the simplest centrality measure in a network is the **degree centrality** that is simply equal to the **degree** of each vertex.

E.g. in a **social network**, individuals that have many connections to others might have

- more influence,
- more access to information,
- or more **prestige** than those individuals who have fewer connections.

Towards Eigenvector Centrality

Let us start by defining the **centrality** of vertex x_i as the sum of the centralities of all its neighbors:

$$x_i' = \sum_j A_{ij} x_j$$

where A_{ij} is an element of the adjacency matrix. (This equation system must be solved recursively until convergence.)

Remember the multiplication of a matrix with a vector below ...

$$\mathbf{A} = egin{pmatrix} a & b & c \ p & q & r \ u & v & w \end{pmatrix}, \quad \mathbf{B} = egin{pmatrix} x \ y \ z \end{pmatrix}, \ \mathbf{AB} = egin{pmatrix} a & b & c \ p & q & r \ u & v & w \end{pmatrix} egin{pmatrix} x \ y \ z \end{pmatrix} = egin{pmatrix} ax + by + cz \ px + qy + rz \ ux + vy + wz \end{pmatrix},$$

en.wikipedia.org

Bioinformatics 3 – WS 19/20

Towards Eigenvector Centrality

Let us start by defining the **centrality** of vertex x_i as the sum of the centralities of all its neighbors:

$$x_i' = \sum_j A_{ij} x_j$$

where A_{ij} is an element of the adjacency matrix.

We can also write this expression in matrix notation as

 $\mathbf{x}^{\prime} = \mathbf{A} \mathbf{x}$ where \mathbf{x} is the vector with elements x_i .

Repeating this process to make better estimates gives after *t* steps the following vector of centralities:

 $\mathbf{x}(t) = \mathbf{A}^t \mathbf{x}(0)$

Eigenvector Centrality

Now let us write $\mathbf{x}(0)$ as a linear combination of the eigenvectors \mathbf{v}_i of the (quadratic) adjacency matrix¹

 $\mathbf{x}(0) = \sum_{i} c_i \mathbf{v}_i$ with suitable constants c_i

Then $\mathbf{x}(t) = A^t \sum_i c_i \mathbf{v}_i$

Because \mathbf{v}_i are eigenvectors of A, A $\mathbf{v}_i = k_i \mathbf{v}_i$ with the eigenvalue k_i .

Here, we divide by the first
(and largest) eigenvector k₁
– and multiply by k₁ in the front.

Since $k_i / k_i < 1$ for all $i \neq j$, all terms in the sum decay exponentially as t becomes large. Only the term with i = j remains unchanged.

In the limit $t \to \infty$, we get for the centrality vector $\mathbf{x}(t) = c_1 k_1^{t} \mathbf{v}_1$

¹ Remember from linear algebra that a quadratic matrix with full rank can be diagonalized.

Eigenvector Centrality

The limiting vector of the eigenvector centralities is simply proportional to the leading eigenvector of the adjacency matrix.

Equivalently, we could say that the centrality \mathbf{x} satisfies

 $\mathbf{A} \mathbf{x} = k_{\parallel} \mathbf{x}$

This is the **eigenvector centrality** first proposed by Bonacich (1987).

The centrality x_i of vertex *i* is proportional to the sum of the centralities of its neighbors:

 $x_i = k_1^{-1} \sum_j A_{ij} x_j$ Divide above eq. by k_1

This has the nice property that the centrality can be large either because a vertex has many neighbors or because it has important neighbors with high centralities (or both).

Problems of the Eigenvector Centrality

The eigenvector centrality works best for undirected networks.

For directed networks, certain complications can arise.

In the figure on the right, vertex A will have eigenvector centrality zero.

Hence, vertex B will also have centrality zero (because A is the only neighbor that points at it).

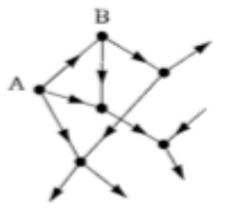


Figure 7.1: A portion of a directed network. Vertex A in this network has only outgoing edges and hence will have eigenvector centrality zero. Vertex B has outgoing edges and one ingoing edge, but the ingoing one originates at A, and hence vertex B will also have centrality zero.

Katz Centrality

One solution to the issues of the Eigenvector Centrality is the following:

We simply give each vertex a small amount of centrality "for free", regardless of its position in the network or the centrality of its neighbors.

 \rightarrow we define $x_i = \alpha \sum_j A_{ij} x_j + \beta$ where α and β are positive constants.

In matrix terms, this can be written as $\mathbf{x} = \alpha \mathbf{A}\mathbf{x} + \beta \mathbf{I}$

where \mathbf{I} is the vector $(\mathbf{I}, \mathbf{I}, \mathbf{I}, ...)^{\top}$. By rearranging for \mathbf{x} we find

 $\begin{aligned} \mathbf{x} - \alpha \mathbf{A} \mathbf{x} &= \beta \mathbf{I} & \text{(where we used } \mathbf{I} \mathbf{x} &= \mathbf{x} \text{)} \\ (\mathbf{I} - \alpha \mathbf{A}) \mathbf{x} &= \beta \mathbf{I} \\ (\mathbf{I} - \alpha \mathbf{A})^{-1} (\mathbf{I} - \alpha \mathbf{A}) \mathbf{x} &= (\mathbf{I} - \alpha \mathbf{A})^{-1} \beta \mathbf{I} & \text{(multiply both sides with } (\mathbf{I} - \alpha \mathbf{A})^{-1} \text{)} \\ \mathbf{x} &= \beta (\mathbf{I} - \alpha \mathbf{A})^{-1} \mathbf{I} \end{aligned}$

When setting $\beta = 1$, we get the **Katz centrality** (1953) $\mathbf{x} = (\mathbf{I} - \alpha \mathbf{A})^{-1} \mathbf{I}$

Computing the Katz Centrality

The Katz centrality differs from the ordinary eigenvector centrality by having a **free parameter** α , which governs the balance between the eigenvector term and the constant term.

However, inverting a matrix on a computer has a complexity of $O(n^3)$ for a graph with *n* vertices.

This becomes prohibitively expensive for networks with more than 1000 nodes or so.

It is more efficient to make an initial guess of x and then repeat

$$\mathbf{x}' = \alpha \mathbf{A} \mathbf{x} + \beta \mathbf{I}$$

many times. This will converge to a value close to the correct centrality.

A good test for convergence is to make two different initial guesses and run this until the resulting centrality vectors agree within some small threshold.

Towards PageRank

The Katz centrality also has one feature that can be **undesirable**.

If a vertex with high Katz centrality has edges pointing to many other vertices, then all those vertices also get high centrality.

E.g. if a Wikipedia page points to my webpage, my webpage will get a centrality comparable to Wikipedia!

But Wikipedia of course also points to many other websites, so that its contribution to my webpage "should" be relatively small because my page is only one of millions of others.

-> we will define a variation of the Katz centrality in which the centrality I derive from my network neighbors is proportional to their centrality divided by their out-degree.

PageRank

This weighted centrality is defined by

$$x_i = \alpha \sum_j A_{ij} \frac{x_j}{k_j^{out}} + \beta$$

If the network contains vertices with zero outdegree, this can be fixed by setting $k_j^{out} = 1$ for all such vertices.

In matrix terms, this equation becomes

 $\mathbf{x} = \alpha \mathbf{A} \mathbf{D}^{-1} \mathbf{x} + \beta \mathbf{I}$

where **I** is the vector $(\mathbf{I}, \mathbf{I}, \mathbf{I}, ...)^{\mathsf{T}}$ and **D** the diagonal matrix with $D_{ii} = max(k_i^{out}, \mathbf{I})$

By rearranging we find that

Because β plays the same unimportant role as before, we will set $\beta = 1$.

Then we get
$$\mathbf{x} = (\mathbf{I} - \alpha \mathbf{A} \mathbf{D}^{-1})^{-1} \mathbf{I} = \mathbf{D} (\mathbf{D} - \alpha \mathbf{A})^{-1} \mathbf{I}$$
 expand with D

This centrality measure is commonly known as **PageRank**, using the term used by Google.

PageRank is one of the ingredients used by Google to determine the ranking of the answers to your queries.

 α is a free parameter and should be chosen less than 1. (Google uses 0.85).

Closeness centrality

An entirely different measure of centrality is provided by the **closeness centrality.**

Suppose d_{ij} is the length of a geodesic path (i.e. the shortest path) from a vertex *i* to another vertex *j*. Here, length means the number of edges along the path.

Then, the mean **geodesic distance** from *i*, averaged over all vertices *j* in the network is

$$l_i = \frac{1}{n} \sum_j d_{ij}$$

The mean distance l_i is not a centrality measure in the same sense as the other centrality measures.

It gives *low* values for more central vertices and *high* values for less central ones.

Closeness centrality

The inverse of l_i is called the **closeness centrality** C_i

$$C_i = \frac{1}{l_i} = \frac{n}{\sum_j d_{ij}}$$

It has become popular in recent years to rank **film actors** according to their closeness centrality in the network of who has appeared in films with who else.

Using data from www.imdb.com the largest component of the network includes more than 98 % of about half a million actors.

Closeness centrality

The highest closeness centrality of any actor is 0.4143 for Christopher Lee.

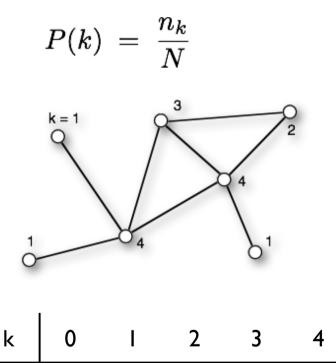
The second highest centrality has Donald Pleasence (0.4138).

Pictures from wikipedia

Random Graphs

A graph G is an ordered pair (V, E) of a set V of vertices and a set E of edges.

Degree distribution *P*(*k*)



3/7

1/7

1/7

2/7

Random network:

also called the "Erdös-Renyi model":

- start with set of given nodes
- then add links randomly

P(k) = "Poisson" (will show this in V2)

$$P(k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

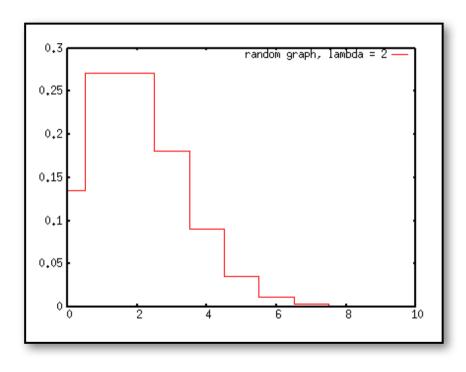
0

P(k)

Degree Distribution of Random Network *P(k)*

Many independently placed edges => **Poisson statistics**

$$P(k) = \frac{\lambda^k}{k!} e^{-\lambda}$$



=> Small probability for $k >> \lambda$

$P(k \mid \lambda = 2)$
0.14
0.27
0.27
0.18
0.090
0.036
0.012
0.0034
0.00086
0.00019
3.82e-05

Connectivity of the Neighborhood

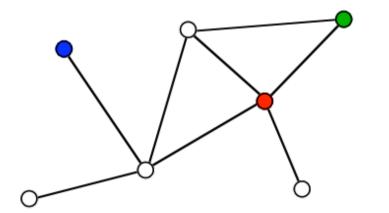
How many of the neighboring vertices are themselves neighbors? => this is measured by the **clustering coefficient** C(k)

Number of possible undirected edges between k nodes:

$$n_{max} ~=~ rac{k\,(k-1)}{2}$$

 n_k is the actual number of edges between the neighbor nodes.

Fraction of actual edges \cong clustering coefficient $C(k, n_k) = \frac{2n_k}{k(k-1)}$



green:
$$k = 2$$
, $n_k = 1 \rightarrow C = 1$
red: $k = 4$, $n_k = 2 \rightarrow C = 1/3$
blue: $k = 1$, $n_k = ? \rightarrow C$ is not defined

Note: clustering coeff. is sometimes also defined via fraction of possible triangles

Clustering Coefficient of a Graph

Data: C_i for each node $i \rightarrow N$ values

Statistics:

average at **fixed k**

$$\rightarrow C(k) = \frac{1}{n_k} \sum_{k_i=k} C_i$$

average over **all nodes**

$$\rightarrow \langle C \rangle = \frac{1}{N} \sum C_i$$

Note: it is also possible to average the C(k) \Rightarrow This yields a different value for $\langle C \rangle$!!! because no weighting is done for different occupancy of k's.

Summary

What you learned **today**:

=> **networks** are everywhere

- \Rightarrow how to get the "**Schein**" for BI3
- \Rightarrow What is the lecture content
- \Rightarrow Adjacency matrix
- \Rightarrow How to characterize the centrality of nodes
- \Rightarrow How to construct a random graph

Next lectures:

- Random graphs vs. scale-free networks (assignments 1 + 2)
- Structures of protein complexes