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8.1.  Regulation  of  Prokaryotic  Gene  Transcription

Typical promoter region of a prokaryotic 
gene. 

The TTGACA and TATAAT motifs at 
positions -35 and -10 nucleotides are not 
essential. 

The preference for the corresponding 
nucleotide at each position is between 50 
and 80%. 

Transcription consists of initiation, elongation and termination. Here, we will only 
be concerned with initiation and its control by additional proteins. 

Transcription exclusively proceeds in the 5' ® 3' direction. 

In prokaryotes, transcription begins with the binding of RNA polymerase to a 
promoter sequence in the DNA. At the start of initiation, the bacterial core 
enzyme is associated with a sigma factor that aids in finding the appropriate -35 and 
-10 basepairs upstream of promoter sequences.
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8.1.  Regulation  of  Eukaryotic  Gene  Transcription

Eukaryotic genomic region containing 3 genes A, B and C. Shown in the figure is the + strand of DNA, – strand is 
analogous. Not shown in this figure are so-called enhancer regions further upstream of the promoter that play 
crucial roles in transcriptional regulation in higher eukaryotes.

Eukaryotic transcription initiation is far more complex than in prokaryotes as 
eukaryotic polymerases do not recognize directly their core promoter sequences. 

Instead, additional proteins termed transcription factors regulate the binding 
of RNA polymerase to DNA. 

Many eukaryotic promoters, but not all, also contain aTATA box. 
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8.2.  PCR

A PCR sample consists of

- a dilute concentration of template DNA mixed with

- a heat-stable DNA polymerase (e.g. Taq polymerase), 

- with primer sequences for the target DNA sequences, 

- with deoxynucleoside triphosphates (dNTPs), and magnesium. 

In the first step of PCR, the sample is brought to a temperature of 95–98°C. 

As a result, the double-stranded template DNA denatures and splits up into
two single strands. 

The polymerase chain reaction (PCR) is a well-known method
for amplifying a specific target DNA sequence. PCR is used to
isolate, sequence or clone pieces of DNA

PCR was invented in 1983 by
Kary Mullis, who was awarded
the 1993 Nobel Prize in 
chemistry for this.
www.wikipedia.org 
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8.2.  PCR
In the second step, the temperature is lowered to about 55–65°C. 

This enables the primer sequences to bind (or anneal) to complementary
sequence motifs at both ends of the target sequence (piece from template). 

In the third step, the temperature is usually raised to 72°C. 

Then, the DNA polymerase can extend the primer sequences by adding
dNTPs to create a new strand of DNA. Thereby, the amount of DNA is duplicated
in the reaction. 

This series of denaturation, annealing, and extension steps is repeated for many
cycles and yields an exponential amplification of the template DNA. 

At the end of a conventional PCR run, the amount of amplified DNA product is
quantified. 
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8.2.  Experimental  Analysis  of  Gene  Expression:
real-time  PCR

In „real-time“ PCR, one quantifies in real time how the amplification product
accumulates during the reaction. 

Since PCR amplifies DNA stretches, the cellular mRNA is first reverse
transcribed into cDNA by the enzyme reverse transcriptase. 

Detection of multiple PCR products in real time is made possible by adding a 
fluorescent reporter molecule to each reaction well of a parallel chip. 

The detected fluorescence level is proportional to the total quantity of product
DNA. The change in fluorescence over time serves to derive the amount of amplified
DNA made in each cycle. 

A set of multiple internal reference genes (e.g. suitable housekeeping genes 
which exhibit rather constant expression levels in all cell types and experimental 
conditions) is used to normalize the expression of target genes.
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8.2.  Experimental  Analysis  of  Gene  Expression:  
microarrays

Microarrays are a collection of DNA probes that are bound 
in defined positions to a solid surface, such as a glass slide.

The probes are generally oligonucleotides that are ‘ink-jet 
printed’ onto slides (Agilent) or synthesised in situ
(Affymetrix). 

Labelled single-stranded DNA or antisense RNA fragments 
from a sample are hybridised to the DNA microarray. 

The amount of hybridisation detected for a specific probe is 
proportional to the number of nucleic acid fragments in 
the sample.

http://www.ebi.ac.uk/training/online/course/

functional-genomics-ii-common-technologies-and-data-analysis-methods/microarrays
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2-color  microarrays

http://www.ebi.ac.uk/training/online/course/

functional-genomics-ii-common-technologies-and-data-analysis-methods/microarrays

In 2-colour microarrays, 2 biological samples 
are labelled with different fluorescent dyes, 
usually Cyanine 3 (Cy3) and Cyanine 5 (Cy5). 

Equal amounts of labelled cDNA are then 
simultaneously hybridised to the same 
microarray chip. 

Then, the fluorescence measurements are 
made separately for each dye and represent the 
abundance of each gene in the test sample 
(Cy5) relative to the control sample (Cy3).
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8.2.  Experimental  Analysis  of  Gene  Expression:
RNA-seq

The term RNA-seq describes the sequencing and determination of 
transcription levels of the expressed cellular mRNAome by NGS methods. 

New methods are constantly entering the market every few years. 

Currently, third-generation methods are state-of-the-art. 

RNA-seq provides the complete genomic picture at single-base 
resolution. 

We will focus here on the expression levels of entire genes.
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8.3.  Statistics  primer
Now, we will review some basic statistics measures that are useful, e.g., when 
measuring gene expression using microarrays. 

Given n data points denoted by ai, where i = 1,...,n, 

their arithmetic mean 𝑎" (or µ) is:

The standard deviation σ measures how much variation or "dispersion" exists from 
the average (mean, or expected value). 

For the same n data points a1, a2, ... , an, their standard deviation from the 
mean is:

The variance σ2 is the square of the standard deviation.
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8.3.  Statistics  primer
In probability theory, a continuous probability distribution f has to fulfil 
three properties: 

- the probability is non-negative everywhere, 

- the integral over the full distribution is normalized to one, 

- and the probability that x lies between two points a and b is

𝑝 𝑎 ≤ 𝑥 ≤ 𝑏 = ' 𝑓 𝑥 𝑑𝑥
*

+
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8.3.  Normal  distribution
The normal (or Gaussian) distribution is a continuous probability distribution. 

μ : mean or expectation value (normally a sharp peak) and σ2 is the variance. 

The distribution with μ = 0 and σ2 = 1 

is called the standard normal distribution.

Only 4.6% of the values are at least 2s away from the mean. 

This is why a deviation of at least 2s is often considered a statistically 
meaningful deviation.

If a real-valued random variable clusters around a single mean value, this is typically 
modeled by a normal distribution as a first try.
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8.3.  Null  hypothesis
The null hypothesis of a statistical hypothesis test corresponds to a general or 
default position. 

For example, the null hypothesis might state that there is no relationship between 
two measured phenomena. 

A null hypothesis cannot be formally proven in a mathematical sense. However, a set 
of data can either reject a null hypothesis or fail to reject it. 

A p-value is the probability that the test statistic is at least as extreme as the one
observed under the condition that the null hypothesis is true. 

A small p-value is an indication that the null hypothesis is false.
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8.3.  Standard  error
The standard deviation σ

gives the „standard“ deviation of all measurements.

Often we are more interested in the standard deviation of the average.

This is denoted by the standard error of the mean (SEM):

Whenever we use a random sample as estimate for a population, there is a good
chance that our estimate will contain an error.

SEM provides an estimate for this error.

Typically, we actually need to compute SEM for the difference of the means of two
random samples ® 2-sample t-test.
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8.3.  t-tests
t-value: by how many standard errors does a difference differ from 0?

There are 3 different types of t-tests:

Unpaired t-test

𝑡 =
𝑎𝑣𝑒𝑟𝑎𝑔𝑒	  𝑜𝑓	  𝑟𝑎𝑛𝑑𝑜𝑚	  𝑠𝑎𝑚𝑝𝑙𝑒	  1	   − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒	  𝑜𝑓	  𝑟𝑎𝑛𝑑𝑜𝑚	  𝑠𝑎𝑚𝑝𝑙𝑒	  2

𝑆𝐸𝑀	  𝑜𝑓	  𝑡ℎ𝑒	  𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠	  𝑜𝑓	  𝑏𝑜𝑡ℎ	  𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑠	  

Paired t-test

𝑡 =
𝑎𝑣𝑒𝑟𝑎𝑔𝑒	  𝑜𝑓	  𝑝𝑎𝑖𝑟𝑒𝑑	  𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 − 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	  𝑣𝑎𝑙𝑢𝑒
𝑆𝐸𝑀	  𝑜𝑓	  𝑡ℎ𝑒	  𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠	  𝑜𝑓	  𝑝𝑎𝑖𝑟𝑒𝑑	  𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑠	  

1-sample t-test

𝑡 =
𝑎𝑣𝑒𝑟𝑎𝑔𝑒	  𝑜𝑓	  𝑟𝑎𝑛𝑑𝑜𝑚	  𝑠𝑎𝑚𝑝𝑙𝑒	  	   − 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	  𝑣𝑎𝑙𝑢𝑒

𝑆𝐸𝑀	  𝑜𝑓	  𝑡ℎ𝑒	  𝑟𝑎𝑛𝑑𝑜𝑚	  𝑠𝑎𝑚𝑝𝑙𝑒

https://matheguru.com/stochastik/t-test.html
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8.3.  t  distribution
The form of the t-distribution is very similar to a standard normal distribution – at 
least for large random samples.

For small random samples, the t-distribution is flatter than a normal distribution.

Therefore, the t-distribution needs another parameter that adjusts its variance (and
thus its shape). 

This parameter is called the degrees-of-freedom; abbreviated as df.

https://matheguru.com/stochastik/t-test.html
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8.3.  1-sample  t-test
A t-test is a parametric statistical hypothesis test that can be used when the 
population conforms to a normal distribution. 

A frequently used t-test is the one-sample location t-test that tests whether the 
mean of a normally distributed population has a particular value µ0,

where �̅� : sample mean, 

s : standard deviation of the sample, 

n : sample size. 

The critical value of the t-statistic t0 is tabulated in t-distribution tables. 

The hypothesis (H0) is that the population mean equals µ0.

If the p-value is below a threshold, e.g. 0.05, the null hypothesis is rejected.

𝑡 = B̅CDE
F G�⁄

= 	   B̅CDE
JKL
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8.3.  2-sample  t-test
The 2-sample t-tests measures 

Assumptions: both random samples have close to normal distribution and they have
the same standard deviation.

𝑡 =
𝑎𝑣𝑒𝑟𝑎𝑔𝑒	  𝑜𝑓	  𝑟𝑎𝑛𝑑𝑜𝑚	  𝑠𝑎𝑚𝑝𝑙𝑒	  1	   − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒	  𝑜𝑓	  𝑟𝑎𝑛𝑑𝑜𝑚	  𝑠𝑎𝑚𝑝𝑙𝑒	  2

𝑆𝐸𝑀	  𝑜𝑓	  𝑡ℎ𝑒	  𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒	  𝑜𝑓	  𝑏𝑜𝑡ℎ	  𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑠	  
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If 2 random variables X and Y are
independent, the variance of their sum
is the sum of the individual variances

V(X+Y)=V(X)+V(Y)
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8.3.  t-test
Another popular t-test is the two sample location test. 

It tests the null hypothesis that the mean values of two normally distributed 
populations are equal. 

Strictly speaking, the name student's t-test refers to cases when the variances of the 
two populations are assumed to be equal. 

When this assumption is dropped, a modified test may be used that is called 
Welch's t-test.
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8.3.  Contingency  tables
A contingency table is a table in matrix format that lists the (multivariate) 
frequency distribution of the variables.

For example, a hypothetical sample of teenagers might be grouped either by their 
gender (male and female) or by whether the individuals are regularly doing some 
sports or not. The data might look like this:

Obviously, there is an imbalance of men and women doing sports.

Is the observed imbalance in proportions statistically significant? 

Such questions can be answered e.g. by Fisher‘s exact test.

Men Women Row total
Doing sports 1 9 10

Not doing sports 11 1 12

Column total 12 10 22
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8.3.  Fisher’s  exact  test

The Fisher's exact test of independence is used if there are 2 nominal variables and
we want to check whether the proportions of one variable are different depending
on the value of the other variable. 

The test belongs to the class of exact tests. 

For such tests, one can compute the significance of deviating from a null 
hypothesis in an exact way. 

For many other statistical tests, one has to rely on an approximation for the 
significance that becomes exact only in the limiting case of assuming an infinite 
sample size.

Fisher's exact test (named after its inventor, R. A. Fisher) is a 
statistical significance test that is typically used to analyze 
contingency tables. 

It is valid for all sample sizes, although it is mostly used in 
practice when sample sizes are small. 

www.wikipedia.org
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8.3.  Fisher’s  exact  test
We will now look at the example just discussed:

Is the observed imbalance in proportions statistically significant? 

What is the chance probability that these 10 individuals doing sports would be so 
unevenly distributed between the women and the men as in this table? 

We will use a symbolic table: 

Men Women Row total
Doing sports 1 9 10

Not doing sports 11 1 12

Column total 12 10 22

Men Women Total
Doing sports a b a + b

Not doing sports c d c + d

Totals a + c b + d a + b + c + d (=n)
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8.3.  Fisher’s  exact  test

The probability for any such set of values is given by the hypergeometric distribution:

This formula yields the exact probability of observing the specific distribution of the 
data assuming the given marginal totals, on the null hypothesis that men and women 
are equally likely to do sports. 

The significance of any assignment of the 22 teenagers to the 4 cells of the table is 
obtained by considering all those cases where the marginal totals are equally or 
more extreme as those in the observed table. 
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8.3.  Fisher’s  exact  test
In the case study, there is only one case that is more extreme in the same direction 
as the given data; it is shown here:

Hence, we need to compute the values of p for both these tables (0.000185 and
0.00000154), and add them together (ca. 0.000187). 

This corresponds to a one-tailed test. 

For a two-tailed test, we must also take into account data arrangements that are 
equally extreme in the opposite direction.

Men Women Row total
Doing sports 0 10 10

Not doing sports 12 0 12

Column total 12 10 22
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8.3.  Mann  Whitney  rank  sum  test
The Mann–Whitney U test is also called the Mann–Whitney–Wilcoxon (MWW) 
or Wilcoxon rank-sum test. 

It belongs to the most used statistical tests among non-parametric statistical 
hypothesis testing methods. 

Given a set of independent observations, this test can be used to estimate 
whether one sample of observations has larger values than the rest. 

If the two distributions have a different shape, the Mann-Whitney U test is
used to determine whether there are significant differences between the
distributions of the two groups. 

If the two distributions have the same shape, the Mann-Whitney U test is used
to determine whether there are differences in the medians of the two groups.
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8.3.  Mann  Whitney  rank  sum  test
Let us assume we are given two distributions of eight values:

The values could be average grades of the pupils in two classes of a high-school or 
expression levels of genes A and B in several individuals. 

From this, we form a joint ranked list (from lowest to highest value): 

It looks like there are more values from class A on the left side, but it is in fact 
impossible to judge by visual inspection of the data whether there is a significant 
difference between the two classes. 

Thus, we will test by a rank sum test whether ranks are equally distributed in the 
joint rank list or not. 

Class A 2,0 1,7 1,6 2,1 2,0 1,4 2,6 2,2
Class B 2,5 2,3 1,8 1,5 2,7 1,9 2,1 2,4

Grade 1,4 1,5 1,6 1,7 1,8 1,9 2,0 2,1 2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7
Class A B A A B B A B A A A B B B A B
Joint
rank

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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8.3.  Mann  Whitney  rank  sum  test

The sum of all the ranks equals N(N + 1)/2 where N is the total number of
observations.

In this example, samples of class A have the ranks 1, 3, 4, 7, 9, 10, 11, and 15. The sum 
of these ranks is T1 = 60. 

Samples of class B have the ranks 2, 5, 6, 8, 12, 13, 14 and 16. The sum of these ranks 
is T2 = 76. 

This shows that the class B values have higher ranks on average. 

Grade 1,4 1,5 1,6 1,7 1,8 1,9 2,0 2,1 2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7
Class A B A A B B A B A A A B B B A B
Joint
rank

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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8.3.  Mann  Whitney  rank  sum  test
From these rank sums we compute two sums of ranking imbalances U, 𝑈N =

𝑛N O 𝑛P +
GRO GRSN

P
− 𝑇N	   and 𝑈P = 𝑛N O 𝑛P +

GUO GUSN
P

− 𝑇P

nk : number of samples in sample k. Here, n1 = n2 = 8. 

For the example above, we get U1 = 40 and U2 = 24. 

The correctness of these calculations can be checked by noting that the two 
following conditions always hold, 𝑈N + 𝑈P = 𝑛N O 𝑛P	  and

𝑇N + 𝑇P = 𝑛N + 𝑛P
GRSGUSN

P
. 

The question is how often such an imbalance in ranks can be due to chance. For this, 
we compare the smaller U value (24) with the critical value of the theoretical U
distribution. 

In this case, we get from the Mann-Whitney U-table using n1 = n2 = 8 and a 
significance threshold of α = 0.05 (two-sided) a critical value of 13. Hence, the values 
show a significant difference between the two classes.
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8.3.  Kolmogorov  Smirnov  test
The Kolmogorov–Smirnov test (abbreviated as K–S test) is also a nonparametric
test. 

Given continuous, one-dimensional probability distributions, a one-sample K-S test 
compares a sample against a reference probability distribution, whereas a two-
sample K-S test compares two samples to each other. 

The K-S statistic determines a distance between the empirical distribution function 
of the sample and the cumulative distribution function of the reference distribution, 
or between the empirical distribution functions of two samples. 

The two-sample KS test is one of the most useful and general nonparametric 
methods, as it is sensitive to differences in both location and shape of the 
empirical cumulative distribution functions of the two samples.
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Estimate significance of differential  expression (DE)
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8.3  Multiple  testing  problem
In hypothesis-generating studies it is a priori not clear, which terms should be 
tested. 

Therefore, one typically performs not only one hypothesis with a single term but 
many tests with many, often all terms that the Gene Ontology provides and 
to which at least one gene is annotated. 

Result of the analysis:  a list of terms that were found to be significant. 

Given the large number of tests performed, this list will contain a large number 
of false-positive terms.

http://great.stanford.edu/

Sebastian Bauer, Gene Category Analysis
Methods in Molecular Biology 1446, 175-188 
(2017)
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8.3  Multiple  testing  problem
For example, if one statistical test is performed at the 5% level 
and the corresponding null hypothesis is true, there is only a 
5% chance of incorrectly rejecting the null hypothesis

→ one expects 0.05 incorrect rejections.

However, if 100 tests are conducted and all corresponding null 
hypotheses are true, the expected number of incorrect 
rejections (also known as false positives) is 5. 

If the tests are statistically independent from each other, the 
probability of at least one incorrect rejection is 99.4%.

http://great.stanford.edu/

www.wikipedia.org
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8.3  Bonferroni correction
Therefore, the result of a term enrichment analysis must be subjected to a 
multiple testing correction. 

The most simple one is the Bonferroni correction. Here, each p-value is 
simply multiplied by the number of tests saturated at a value of 1.0. 

The Bonferroni correction controls the so-called family-wise error rate, 
which is the probability of making one or more false discoveries. 

It is a very conservative approach because it handles all p-values as 
independent. 

Note that this is not a typical case of gene-category analysis. 

So this approach often goes along with a reduced statistical power.

http://great.stanford.edu/
Sebastian Bauer, Gene Category Analysis
Methods in Molecular Biology 1446, 175-188 
(2017)
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8.3  Benjamini Hochberg:  
expected  false  discovery  rate

The Benjamini–Hochberg approach controls the expected false discovery 
rate (FDR), which is the proportion of false discoveries among all rejected 
null hypotheses. 

This has a positive effect on the statistical power at the expense of having less 
strict control over false discoveries.

Controlling the FDR is considered by the American Physiological Society as “the 
best practical solution to the problem of multiple comparisons”. 

Note that less conservative corrections usually yield a higher amount of 
significant terms, which may be not desirable after all.

http://great.stanford.edu/

Sebastian Bauer, Gene Category Analysis
Methods in Molecular Biology 1446, 175-188 
(2017)
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8.4  Preprocessing  of  data:
Quality  control  (QC)

http://www.ebi.ac.uk/training/online/course/

functional-genomics-ii-common-technologies-and-data-analysis-methods/microarrays

QC of microarray data begins with a visual inspection of the scanned 
microarray images for obvious splotches, scratches or blank areas.

Data analysis software packages then produce different sorts of diagnostic 
plots, e.g. of background signal, average intensity values and percentage of genes 
above background to help identify problematic arrays, reporters or samples.

Box plot PCA Density plot
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8.4  Preprocessing  of  data:  Outliers
Analysis of expression data sets starts with identification and omission of 
outlier genes and outlier samples. 

Outliers are experimental data points that deviate “too much” from the 
typical behaviour observed in other samples or genes. 

The reason for such outliers could be either 

- technical problems with the measurement, 

- mislabelling of samples, or 

- that this sample represents a truly unique case. 

Keeping such outlier data points in the data set would obscure the 
downstream analysis. 

Typical techniques to identify outliers are hierarchical clustering, boxplots, and 
computing the Median Absolute Deviation (MAD) or the Generalized Extreme 
Studentized Deviate test (GESD). 
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Effect  of  2  outliers  on  auto-correlation  of  a  
gene

Effect of 2 introduced outlier points on co-expression analysis of a gene with itself 

(4 datasets from TCGA for COAD; GBM; HCC, OV tumor with hundreds of samples each).

X-axis : magnitude of perturbations applied as multiples of standard deviations (SD).

For the smallest sample (COAD), two 2SD outliers reduce the correlation to 
0.75!
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8.4  Detect  outliers  with  GESD
GESD (Rosner 1983) is meant to identify one or more outliers in a dataset assuming that the

majority of its data points are normally distributed. 

For every data point i, the algorithm calculates its deviation from the mean µ relative to the

standard deviation s:

𝑅W =
𝑚𝑎𝑥W 𝑥W − 𝜇

𝜎

At each iteration, the algorithm deletes the point with largest deviation. 

This process is continued until all outliers fulfilling Ri>λi have been removed.

λi : critical values calculated for all outliers according to the t-distribution. 

GESD always labels at least one outlier even when there is no outlier. 

Therefore, GESD is supplied with a minimum threshold so that a certain number of outliers

must be detected before any gene is marked as an outlier.
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8.4  Detect  outliers  with  MAD
In contrast to GESD, the MAD algorithm (Rousseeuw and Croux 1993) is not 
based on the variance or standard deviation and thus makes no particular
assumption on the statistical distribution of the data. 

At first, the raw median 𝑚𝑒𝑑𝑖𝑎𝑛 𝑋 is computed over all data points. 

From this, MAD obtains the median absolute deviation (MAD) of single data points
Xi from the raw median as:

𝑀𝐴𝐷 = 𝑏 O 𝑚𝑒𝑑𝑖𝑎𝑛 𝑋W − 𝑚𝑒𝑑𝑖𝑎𝑛 𝑋

b is a scaling constant. For normally distributed data, one uses b = 1.4826. 

As rejection criterion of outliers, one uses

𝑋W − 𝑚𝑒𝑑𝑖𝑎𝑛 𝑋
𝑀𝐴𝐷 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

Suitable thresholds could be 3 (very conservative), 2.5 (moderately conservative) 
or 2 (poorly conservative). 
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8.4  Detect  outliers  with  MAD
𝑀𝐴𝐷 = 𝑏 O 𝑚𝑒𝑑𝑖𝑎𝑛 𝑋W − 𝑚𝑒𝑑𝑖𝑎𝑛 𝑋

Consider the data (1, 3, 4, 5, 6, 6, 7, 7, 8, 9, 100). 

It has a (raw) median value of 6. 

The absolute deviations from 6 are (5, 3, 2, 1, 0, 0, 1, 1, 2, 3, 94). 

Sorting this list into (0, 0, 1, 1, 1, 2, 2, 3, 3, 5, 94) shows that the deviations have
a median value of 2. 

When scaled by b = 1.4826, the median absolute deviation (MAD) for this data is
roughly 3. 

Possible outliers above a rejection threshold would need to differ from the
median by 6 to 9 or more. 

For this example, only the extreme data point (100) deviates that much.
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Normalization

http://www.ebi.ac.uk/training/online/course/

functional-genomics-ii-common-technologies-and-data-analysis-methods/microarrays

Normalization is used to control for technical variation between assays, 
while preserving the biological variation. 

There are many ways to normalize the data. The methods used depend on:
- the type of array;
- the design of the experiment;
- assumptions made about the data;
- and the package being used to analyze the data.

For the Expression Atlas at EBI, Affymetrix microarray data is normalised using 
the 'Robust Multi-Array Average' (RMA) method within the 'oligo' package.

Agilent microarray data is normalized using the 'limma' package: 
'quantile normalization' for one-color microarray data; 
'Loess normalization' for two color microarray data.
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Quantile Normalisation
Given are:  3  measurements of 4  variables  A  – D.  
Aim:  all  measurements should have an  identical distribution of values.

A 5 4 3
B 2 1 4
C 3 4 6
D 4 2 8

A iv iii i
B i i ii
C ii iii iii
D iii ii iv

Determine in  each column the ranks of data points.Original  data

→

A 2 1 3
B 3 2 4
C 4 4 6
D 5 4 8
Sort every column by magnitude

A 2 Rank  i
B 3 Rank  ii
C 4.67 Rank  iii
D 5.67 Rank  iv

Compute row averages.

→

A 5.67 4.67 2
B 2 2 3
C 3 4.67 4.67
D 4.67 3 5.67

Replace the original  values by the averages
according to the ranks of the fields.

Afterwards,  all  columns contain the same  
values (except for duplicates)  and can be
easily compared.
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Differential  expression  analysis:  Fold  change

Cui & Churchill, Genome Biol. 2003; 4(4): 210. 

The simplest method to identify DE genes is to evaluate the log ratio between 
two conditions (or the average of ratios when there are replicates) 
and consider all genes that differ by more than an arbitrary cut-off value to be 
differentially expressed. 

E.g. the cut-off value could be chosen as a two-fold difference. 

Then, all genes are taken to be differentially expressed if the expression under one 
condition is over two-fold greater or less than that under the other condition. 

This test, sometimes called 'fold' change, is not a statistical test.

→ there is no associated value that can indicate the level of confidence in the 
designation of genes as differentially expressed or not differentially expressed.
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DE  analysis:  global  t-test

Cui & Churchill, Genome Biol. 2003; 4(4): 210;

www.wikipedia.org (M.M. Thoews)

The t test is a simple, statistical method e.g. for detecting DE genes. 

Rg : mean log ratio of the expression levels of gene g = “the effect”
SE : standard error by combining data across all genes = “the variation in the data”

Global t-test statistics : 𝑡 = ^_
JK

Standard error: standard deviation of the sampling distribution of a statistic.

For a value that is sampled with an 
unbiased normally distributed 
error, the figure depicts the 
proportion of samples that would 
fall between 0, 1, 2, and 3 standard 
deviations above and below the 
actual value.
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DE  analysis:  gene-specific  t-test

Cui & Churchill, Genome Biol. 2003; 4(4): 210. 

SEg : standard error of gene g (from replicate experiments)

Gene-specific t-test statistics: 𝑡 = ^_
JK_

In replicated experiments, SEg can be estimated for each gene from the log ratios, 
and a standard t test can be conducted for each gene.

The resulting gene-specific t statistic can be used to determine which genes are 
significantly differentially expressed.

This gene-specific t test is not affected by heterogeneity in variance across genes 
because it only uses information from one gene at a time. 

It may, however, have low power because the sample size - the number of RNA 
samples measured for each condition - is typically small. 
In addition, the variances estimated from each gene are not stable: e.g. if the 
estimated variance for one gene is small, by chance, the t value can be large even 
when the corresponding fold change is small.
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Differential  expression  analysis:  SAM

Cui & Churchill, Genome Biol. 2003; 4(4): 210. 

As just noted, the error variance of the gene-specific t statistic is hard to estimate 
and subject to erratic fluctuations when sample sizes are small. 

Since the square root of the variance gives the denominator of the t tests, 
this affects the reliability of the t-test for gene-specific tests.

In the 'significance analysis of microarrays' (SAM) version of the t test 
(known as the S test), a small positive constant c is added to the denominator of 
the gene-specific t test. 

Significance analysis of microarrays (SAM): 𝑆 = ^_
`SJK_

With this modification, genes with small fold changes will not be selected as 
significant; this removes the problem of stability mentioned above. 
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Limma Package:  Volcano  plot

Rapaport et al. (2013) Genome Biol. 14: R95
Cui & Churchill, Genome Biol. 2003; 4(4): 210

The 'volcano plot' is an easy-to-interpret 
graph that summarizes both fold-change
and t-test criteria. 

It is a scatter-plot of the negative log10-
transformed p-values from the gene-specific t 
test against the log2 fold change. 

Genes with statistically significant differential expression according to the gene-
specific t test will lie above a horizontal threshold line. 
Genes with large fold-change values will lie outside a pair of vertical threshold 
lines. 
The significant genes will be located in the upper left or upper right parts of the 
plot.
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DE  detection  based  on  RNAseq data

Rapaport et al. (2013) Genome Biol. 14: R95

If sequencing experiments are considered as random samplings of reads from a fixed 
pool of genes,
then a natural representation of gene read counts is the Poisson distribution of 
the form 

where n : number of read counts 
l : expected number of reads from transcript fragments.

An important property of the Poisson distribution 
is that variance AND mean are both equal to l,  𝜎P = 𝜇 = �

However, in reality the variance of gene expression across multiple biological 
replicates is found to be larger than its mean expression values. 
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DE  detection  in  RNAseq data
To address this “over-dispersion problem”, methods such as edgeR and 
DESeq use the related negative binomial distribution (NB) 
where variance 𝜎P and mean μ is are related to each other by

𝜎P = 𝜇 + 𝛼𝜇P

where a is the “dispersion factor”.

Different software packages (e.g. edgeR and DESeq, both by the Huber group) use 
different ways to estimate this dispersion factor.
Q: why do we need to estimate this factor?

𝑝 =
𝜇
𝜎P

𝑟 =
𝜇P

𝜎P − 𝜇𝑃𝑟 𝐾 = 𝑘 = 𝑘 + 𝑟 − 1
𝑟 − 1 𝑝e 1 − 𝑝 f

For k + r Bernoulli trials with success probability p, the negative binomial 
distribution gives the probability of k successes and r failures, with a failure on the 
last trial. The values of an integer-valued random variable K obey to a negative 
binomial distribution with parameters p Î (0, 1) and r Î (0,¥) if,

Q: what is a success in our case? r is equal to 1/a (see above).
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DESeq:  detect  DE  genes  in  RNAseq data

Rapaport et al. (2013) Genome Biol. 14: R95

To find the set of differentially expressed genes from RNA-Seq data modelled by a 
NB distribution, 
mean and variance need to be estimated for each gene.

The data should be arranged as an n ´ m table of counts kij , 
whereby i = 1, . . . , n refers to the genes, and j = 1, . . . ,m to the samples. 

In DESeq, the number of reads Kij in sample j that are assigned to gene i is modeled
as a negative binomial distribution Kij that is proportional to
NB(μij, s2

ij) with mean μij and variance s2
ij . 
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DESeq:  detect  DE  genes  in  RNAseq data

Rapaport et al. (2013) Genome Biol. 14: R95

The mean μij is taken as μij = qi,r(j) sj

qi,r(j) : expectation value of the true concentration of fragments from gene i
under condition r(j) 

sj : size factor. It stands for the coverage or sampling depth of library j.

To estimate 𝑞W,i j , DESeq uses the average counts from the samples j measured in 
condition r, after normalizing them to a common scale:

mr : number of samples in condition r. The sum runs over these samples.

𝑞kWi =
1
𝑚i

l
𝑘Wj
�̂�j

�

j:i j oi
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DESeq:  detect  DE  genes  in  RNAseq data
If gene i is not differentially expressed or if samples j and j’ are replicates, 
the ratio of the expected counts for this gene in different samples j and j’ should
match the size ratio sj/sj’. 

Can one use the total number of reads, Σi kij, as a suitable measure of sequencing
depth and set sj equal to this number? 

Based on their experience with real data, the DESeq developers argued that a few
strongly and differentially expressed genes often strongly contribute to the total 
read count. 

Hence, DESeq takes the median of the ratios of observed counts in             m
samples as estimate for the size factors,

�̂�j = 𝑚𝑒𝑑𝑖𝑎𝑛 W
𝑘Wj

∏ 𝑘Wqr
qoN

N
r
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DESeq:  detect  DE  genes  in  RNAseq data
The variance is modeled as

with the raw variance nir.

If one only uses the data for a single gene i, its variance can usually not be reliably
estimated due to the small number of replicates. 

Therefore, DESeq assumes that the per-gene raw variance parameter
	  nW,i j = ni 𝑞W,i j is a smooth function of qi and r and
obtains nir from a fit to the data.

𝜎WjP = 𝜇Wj + 𝑠jPnW,i j
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DESeq:  detect  DE  genes  in  RNAseq data
For the identification of differentially expressed genes, DESeq uses a test statistics
similar to Fisher‘s exact test. 

Let us assume a situation where we have mA replicate samples measured in 
biological condition A and mB samples measured in condition B. 

The null hypothesis is that a particular gene i is expressed to the same extent in 
both samples, that is qiA = qiB,

qiA : expression strength parameter for the samples from condition A 
qiB : expression strength in samples from condition B. 
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DESeq:  detect  DE  genes  in  RNAseq data
The total counts belonging to gene i in each condition r are defined as

𝐾Ws = ∑ 𝐾Wj�
j: j os ,

	  𝐾Wu = ∑ 𝐾Wj�
j: j ou

and their overall sum as KiS = KiA +KiB. 

Then DESeq uses any possible pairs (a, b) and their probabilities according to the
modeled NB distribution, where KiA = a and KiB = b and a + b = KiS to calculate the
p-value. 

The p-value for two observed count sums (KiA, KiB) is obtained by adding all 
probabilities less or equal to p(KiA, KiB), under the condition that the overall sum is
KiS,

.

𝑝W =
∑ 𝑝 𝑎, 𝑏�
+S*ovwx,y +,* zy vw{,vw|

∑ 𝑝 𝑎, 𝑏�
+S*ovwx


