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V11  –
8.  Function  Annotation  and  Protein  Synthesis

- Gene Ontology: annotate function to gene and gene 
products, e.g. to differentially expressed genes

- Similarity of GO Terms

- Translation of Proteins

Tue, Nov. 26, 2019
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The  Gene  Ontology  (GO)
Ontologies are structured vocabularies.

The Gene Ontology consists of

3 non-redundant areas:

- Biological process (BP)

- molecular function (MF)

- cellular component (localisation).

Shown here is a part of the BP 

vocabulary.

At the top: most general term (root)

Red: tree leafs (very specific GO terms)

Green: common ancestor

Blue: other nodes. 

Arcs: relations between parent and child nodes PhD Dissertation  
Andreas  Schlicker (UdS,  2010)
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Simple  tree  vs.  cyclic  graphs

Rhee  et  al.  (2008)  Nature  
Rev.  Genet.  9:  509

a | An example of a simple tree, 
in which each child has only one 
parent and the edges are 
directed.
That is, there is a source (parent) 
and a destination (child) for each 
edge. 

Boxes represent nodes; 
arrows represent edges.

b | A directed acyclic 
graph (DAG), in which each 
child can have one or more 
parents. 
The red-colored node has 
multiple parents. The 
additional edge is colored 
grey.
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Gene  Ontology  is  a  directed  acyclic  graph

Rhee  et  al.  (2008)  Nature  
Rev.  Genet.  9:  509

An example of the node 
vesicle fusion 
in the BP ontology with 
multiple parentage.

(Arrows point into the wrong direction.) 

Dashed edges : there are other nodes not shown between the nodes and the 
root node. 
Root : node with no incoming edges, and at least one leaf.
Leaf node : a terminal node with no children (vesicle fusion). 
Similar to a simple tree, a DAG has directed edges and does not have cycles. 

Depth of a node : length of the longest path from the root to that node. 
Height of a node: length of the longest path from that node to a leaf.



Bioinformatics 3 – WS 19/20 V 10  – 5

relationships  in  GO is_a� 

is a part_of� 

Gene X      regulates relationship

negatively_regulates � 

positively_regulates

Gaudet,  Škunca,  Hu,  Dessimoz
Primer  on  the  Gene  Ontology,  
https://arxiv.org/abs/1602.01876

{
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Where  do  the  Gene  Ontology  annotations  
come  from?

Rhee  et  al.  Nature  Reviews  Genetics  9,  509-515  (2008)
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IEA:  Inferred  from  Electronic  Annotation
The evidence code IEA is used for all inferences made without 
human supervision, regardless of the method used. 

The IEA evidence code is by far the most abundantly used 
evidence code. 

Guiding idea behind computational function annotation:

genes with similar sequences or structures are likely to be evolutionarily 
related. 

Thus, assuming that they largely kept their ancestral function, they 
might still have similar functional roles today. 

Gaudet,  Škunca,  Hu,  Dessimoz
Primer  on  the  Gene  Ontology,  
https://arxiv.org/abs/1602.01876.

Published in  :  Methods in  Molecular Biology
Vol1446  (2017)  – open  access!



Bioinformatics 3 – WS 19/20 V 10  – 8

Significance  of  GO  annotations
Very general GO terms such as “cellular metabolic process“ are
annotated to many genes in the genome.

Very specific terms belong to a few genes only.

→ One needs to compare how significant the occurrence of a GO term is in a 
given set of genes compared to a randomly selected set of genes of the same size.

This is often done with the hypergeometric test.  

PhD  Dissertation  Andreas  Schlicker  (UdS,  2010)
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Hypergeometric  test

The hypergeometric test is a statistical test.

It can be used to check e.g. whether a biological annotation π is statistically
significant enriched in a given test set of genes compared to the full genome. 

▪ N : number of genes in the genome

▪ n : number of genes in the test set

▪ Kπ : number of genes in the genome with annotation π.

▪ kπ : number of genes in test set with annotation π.

The hypergeometric test provides the likelihood that kπ or more genes that
were randomly selected from the genome also have annotation π. 

http://great.stanford.edu/

p-value  =
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Hypergeometric  test

http://great.stanford.edu/
http://www.schule-bw.de/

p-value  =

number of possibilities for
selecting n elements from a  
set of N elements.

This  correction is applied if the
sequence of drawing the
elements is not  important.

Select  i ≥  kπ genes  with  annotation  
π  from  the  genome.  
There  are  Kπ such  genes.

The  other  n  – i genes  in  the  test  
set  do  NOT  have  annotation  π.  
There  are  N  – Kπ such  genes  in  
the  genome.

The  sum  runs  from    kπ
elements  to  the  maximal  
possible  number  of  elements.

This  is  either  the  number  of  
genes  with  annotation  π  in  the  
genome  (Kπ)  or  the  number  of  
genes  in  the  test  set  (n).
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Example

http://great.stanford.edu/

p-value =

Is annotation π  significantly enriched
in  the test set of 3  genes?

Yes!  p  =  0.05  is (just)  significant.  
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Comparing  GO  terms
The hierarchical structure of the GO allows to compare proteins annotated to 
different terms in the ontology, as long as the terms have relationships to each 
other. 

Terms located close together in the ontology graph (i.e., with a few intermediate 
terms between them) tend to be semantically more similar than those 
further apart.

One could simply count the number of edges between 2 nodes as a measure 
of their similarity.

However, this is problematic because not all regions of the GO have the same 
term resolution.

Gaudet,  Škunca,  Hu,  Dessimoz
Primer  on  the  Gene  Ontology,  
https://arxiv.org/abs/1602.01876
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The  likelihood of a  node t can be defined in  2  ways:

How many genes  have annotation t Number of GO  terms in  subtree below t
relative  to the root node? relative  to number of GO  terms in  tree

.

Information  content  of  GO  terms

The  likelihood takes values between 0  and 1  and
increases monotonic from the leaf nodes to the root.

Define information content of a  node from its likelihood:

A  rare  node has high  information content.

PhD  Dissertation  Andreas  Schlicker  (UdS,  2010)
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Common  ancestors  of  GO  terms

The  most informative  
common ancestor (MICA)  
of terms t1 und  t2 is their
common ancestor with
highest information content.

Typically,  this is the closest
common ancestor.

Common  ancestors of
two nodes t1 and t2 :  
all  nodes that are located
on  a  path from t1 to root AND  
on  a  path from t2 to root.

PhD Dissertation  
Andreas  Schlicker (UdS,  2010)
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Measure  functional  similarity  of  GO  terms
Lin  et  al.  defined the similarity of two GO  terms t1 und  t2
based on  the information content of the most informative  common ancestor (MICA)

If MICAs  are close  to  the  two  GO  terms,  they  receive  a  high  similarity  score.

Schlicker et  al.  defined the following variant:

where  the  term  similarity  is  weighted  with  the  counter-probability  of  the  MICA.  

By  this,  shallow  annotations  (low  “depth”  in  the  tree,  slide  #4)  receive  less  
relevance  than  MICAs  further  away  from  the  root.  

PhD Dissertation  Andreas  Schlicker (UdS,  2010)
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Measure  functional  similarity  of  two  genes
Two  genes  or  two  sets  of  genes  A und  B typically  have  more  than  1  GO  
annotation  each.  → Consider  similarity  of  all  terms  i and  j:

and  select  the  maxima  in  all  rows  and  columns:

Compute  funsim-Score  from  scores  for  BP  tree  and  MF  tree:

PhD  Dissertation  Andreas  Schlicker  (UdS,  2010)
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GO  is  inherently  incomplete
The Gene Ontology is a representation of the current state of 
knowledge; thus, it is very dynamic. 

The ontology itself is constantly being improved to more accurately represent 
biology across all organisms. 

The ontology is augmented as new discoveries are made. 

The creation of new annotations occurs at a rapid pace, aiming to keep 
up with published work. 

Despite these efforts, the information contained in the GO database is 
necessarily incomplete. 

Thus, absence of evidence of function does not imply absence 
of function. 

This is referred to as the Open World Assumption

Gaudet,  Dessimoz,
Gene  Ontology:  Pitfalls,  Biases,  Remedies
https://arxiv.org/abs/1602.01876



Bioinformatics 3 – WS 19/20 V 10  – 18

Summary
- The GO is the gold-standard for computational annotation of gene 

function.

- It is continuously updated and refined.

- Hypergeometric test is most often used to compute enrichment of GO 
terms in gene sets

- Semantic similarity concepts allow measuring the functional similarity 
of genes. Selecting an optimal definition for semantic similarity of 2 GO terms 
and for the mixing rule depends on what works best in practice.

- Functional gene annotation based on GO is affected by a number of biases.
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Rates  of  mRNA  transcription  and  protein  translation

Schwanhäuser et al. 
Nature 473, 337 (2011)

Quantification of protein
turnover and levels. Mouse 
fibroblasts were pulse-labelled
with heavy amino acids (SILAC). 
Protein turnover is quantified by
mass spectrometry.

SILAC: „stable isotope labelling by amino acids in cell culture“ means that

cells are cultivated in a medium containing heavy stable-isotope versions

of essential amino acids. 

When non-labelled (i.e. light) cells are transferred to heavy SILAC growth

medium, newly synthesized proteins incorporate the heavy label while

pre-existing proteins remain in the light form.
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Rates  of  mRNA  transcription  and  protein  translation

Schwanhäuser et al. Nature 473, 337 (2011)

The 4sU-labeled RNA fraction is thiol-specifically biotinylated 
generating a disulfide bond between biotin and the newly 
transcribed RNA. 

'Total cellular RNA' can then be quantitatively separated into 
labeled ('newly transcribed') and unlabeled ('pre-existing') RNA 
with high purity using streptavidin-coated magnetic beads. 

Finally, labeled RNA is recovered from the beads by simply 
adding a reducing agent (e.g. dithiothreitol) cleaving the disulfide 
bond and releasing the newly transcribed RNA from the beads.
Rädle, J Vis Exp. 2013; (78): 50195. 

Quantification of mRNA turnover and levels. 
Mouse fibroblasts were pulse-labelled with the
nucleoside 4-thiouridine (4sU). mRNA
turnover is quantified by next-generation 
sequencing.
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Schwanhäuser et al. Nature 473, 337 (2011)

Mass spectra of peptides
for two proteins (x-axis: 
mass over charge ratio).

Over time, the heavy to
light (H/L) ratios
increase.

You should understand
these spectra!

84,676 peptide sequences were identified by MS and assigned to 6,445 unique
proteins. 

5,279 of these proteins were quantified by at least 3 heavy to light (H/L) peptide
ratios belonging to these proteins.

Rates  of  mRNA  transcription  and  protein  translation

Top: high-turnover protein

Bottom: low-turnover
protein, slow synthesis, long half-
life
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The same is done to compute

mRNA half-lives (not shown).

Consider ratio r of protein with heavy amino

acids (PH) and light amino acids (PL):

Assume that proteins labelled with light amino

acids decay exponentially with degradation rate 

constant kdp :

Express (PH) as difference between total number

of a specific protein Ptotal and PL:

Assume that Ptotal doubles during duration of one

cell cycle (which lasts t¥ ):

Consider m intermediate time points:

Protein half-lifes
and decay rates

because this gives

From kdp we get the desired half-life:

take ln on both sides
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(right) mRNA and protein levels showed
reasonable correlation (R2 = 0.41)
(left) However, there was practically no
correlation of protein and mRNA half-lives.

a, b, Histograms of mRNA
(blue) and protein (red) half-
lives (a) and levels (b).

Proteins were on average 5 
times more stable (46h vs. 9h) 
and 900 times more abundant 
than mRNAs. 

mRNA  and  protein  levels  and  half-lives
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A widely used minimal description of 

the dynamics of transcription and 

translation includes the synthesis and 

degradation of mRNA and protein, 

respectively

Schwanhäuser et al. Nature 473, 337 (2011)

Mathematical model of transcription and 
translation

The mRNA (R) is synthesized with a constant rate vsr and
degraded proportional to their numbers with rate constant kdr. 

The protein level (P) depends on the number of mRNAs, 
which are translated with rate constant ksp.

Protein degradation is characterized by the rate constant kdp. 

The synthesis rates of mRNA and protein are calculated
from their measured half lives and levels.
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Top
Average cellular transcription rates predicted
by the model span two orders of magnitude.

The median is about 2 mRNA molecules per hour
(very slow!). 

An extreme example is the protein Mdm2 of which
more than 500 
mRNAs per hour are transcribed.

Bottom
The median translation rate constant
is about 40 proteins per mRNA
per hour

Schwanhäuser et al. Nature 473, 337 (2011)
Calculated translation rate 

constants are not uniform

Computed transcription and translation rates
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Schwanhäuser et al. Nature 473, 337 (2011)

Abundant proteins are translated about 100 times
more efficiently than those of low abundance

Translation rate constants of abundant proteins
saturate between approximately 120 and 240 
proteins per mRNA per hour.

The maximal translation rate constant in 
mammals is not known.

The estimated maximal translation rate constant
in sea urchin embryos is 140 copies per mRNA
per hour, which is surprisingly close to the
prediction of this model.

Maximal  translation  constant
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Elongation cycle of a ribosome (gray dome) 
translating an mRNA.
Aminoacyl-tRNA (small gray, green, purple, or orange
sphere) is delivered to the ribosome in a ternary complex 
with the elongation factor EF-Tu (larger blue sphere) and 
GTP (not shown). 
In addition to the initial binding site, the ribosome has 3 
tRNA binding sites, the A, P, and E sites. 

Ribosomal  mRNA  translation

Rudorf et al. (2014) 
PLoS Comput Biol 10: e1003909.

The elongation cycle of translation starts when the A site of the ribosome has arrived at a new codon (green) of 
the mRNA. The ribosome then binds a ternary complex with a tRNA that may be cognate (sequence matches), 
near-cognate, or non-cognate to this codon. 

As a consequence, the elongation cycle exhibits 3 different branches corresponding to 3 different reaction 
pathways: 
(left) A non-cognate ternary complex is again released from the initial binding site of the ribosome; 
(top) A near-cognate ternary complex is usually rejected but is very rarely used to elongate the peptide chain; and 
(bottom) A cognate ternary complex may also be rejected but is typically used for elongation of the peptide chain. 
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From the model, one can deduce
codon-specific translation
rates:
(A) In-vitro values for high-fidelity 
buffer at 37°C.

To derive in vivo rates from this, one 
adjusts the diffusion constant and uses 
exp. measured tRNA concentrations. 
This gave
(B) in-vivo values for E. coli at growth 
conditions of 0.7 dbl/h.

mRNA  translation  modelled  as  Markov  process

Rudorf et al. (2014)  PLoS Comput Biol 10: e1003909.

(Left) All transition rates of this Markov 
model could be measured for E.coli in 
vitro. wrec : recognition rate, wcon : 
conformational rate
What are the in vivo rates?
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Optimization  of  elongation  rates

Trösemeier et al. Sci. Rep. 9, 7511 (2019)

Sequences with 
alternative, synonymous 
codons are proposed 
from the original 
sequence and selected 
to maximize the protein 
expression score. 

Das Bild kann derzeit nicht angezeigt werden.

COSEM current: translation rate per mRNA transcript

mRNA secondary structure:  mRNA folding energy in the first 30 codons of the 
5ʹ′-end, 

GC3 content: fraction of guanine and cytosine in the third nucleotide positions of 
all codons
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Derive  codon-specific  elongation  rates

Trösemeier et al. Sci. Rep. 9, 7511 (2019)

Protein expression of 
synthetic ovalbumin
(main constituent of egg 
white) in S. Typhimurium
(after artificial gene 
transfer).

Measured protein 
abundance (Western blot) 
relative to wildtype
compared to protein 
expression score relative to 
wildtype for ova variants. 

Das Bild kann derzeit nicht angezeigt werden.

Geneart (GeneOptimizer) from ThermoFisher is 
another tool to optimize codon usage.
This tool did not lead to increased Ova levels.

COSEM gave 3-4 fold increase.
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Codon-specific  elongation  rates  in  human

Trösemeier et al. Sci. Rep. 9, 7511 (2019)

UAA, UAG and UGA are 
stop codons.

The elongation rates for
other codons are of
similar magnitude
(between 1 and 30 per 
second) as in E.coli.
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Transcriptome  /  Proteome

Wang et al. Mol. Syst. Biol. 15, e8503 (2019)

FINDINGS:

• hundreds of proteins, particularly in 
testis, could not be detected

• even for highly expressed mRNAs, 
few proteins show tissue specific
expression, 

• there exist strong differences 
between mRNA and protein 
quantities within and across tissues 

• Protein expression is often more 
stable across tissues than that of 
transcripts.
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Transcriptome  /  Proteome

Wang et al. Mol. Syst. Biol. 15, e8503 (2019)

A large fraction of all represented 
genes was expressed in all tissues: 
37% (6,725) at the transcript level 
and 39% (5,400) at the protein level. 

However, 43% of all transcripts and 
53% of all proteins showed elevated 
expression in one or more tissues.
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Transcriptome  /  Proteome

Wang et al. Mol. Syst. Biol. 15, e8503 (2019)

Grey:
Abundance distribution of all 
transcripts detected in all tissues 

Blue: fraction of detected proteins 

Orange: fraction of transcripts for 
which no protein was detected.
Ca. 1/3 of these transcripts were
found in testis.

Interpretation: the mRNA of not detected proteins shows - on average - smaller
levels of mRNA expression.
However, even some highly expressed mRNAs were missing as proteins.
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Transcriptome  /  Proteome

Wang et al. Mol. Syst. Biol. 15, e8503 (2019)

The tissue distribution of expression 
of disease-associated
genes followed that of all genes, 

However, the expression of drug 
targets in general and GPCRs in 
particular was much more tissue 
restricted.

This suggests that proteins may make 
for better drug targets if they are not 
ubiquitously expressed.
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Transcription and translation are tightly regulated processes in cells because the
cells need
(a) to make sure that the right mRNAs and proteins are being synthesized
which are needed for the particular cell state or cell fate, and
(b) to make sure that no unnecessary molecules are synthesized which
would be costly in terms of resources. 

How transcription and translation processes are regulated is still subject of
intense research. 

Recently, the SILAC method and the ribosome profiling method (where
processing ribosomes are stalled by application of small-molecule inhibitors, and
the mRNA sequences the ribosomes bind to get sequenced) have enabled
researchers to pinpoint the precise kinetics of expressing individual genes and of
translating individual mRNAs.

Summary


