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8. Function Annotation and Protein Synthesis

- Gene Ontology: annotate function to gene and gene
products, e.g. to differentially expressed genes

- Similarity of GO Terms

- Translation of Proteins
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The Gene Ontology (GO)

Ontologies are structured vocabularies.

The Gene Ontology consists of / \
3 non-redundant areas: B e
- Biological process (BP) /7 [ \

macromolecular cellular "i"°9°"d primary
- molecular function (MF) Lo = . cens
- cellular component (localisation). \f\ \ \/
Shown here is a part of the BP m""m\/ =
vocabulary. ot

s et

At the top: most general term (root) P
Red: tree leafs (very specific GO terms) e

Green: common ancestor

Blue: other nodes.

PhD Dissertation
Andreas Schlicker (UdS, 2010)
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Arcs: relations between parent and child nodes



Simple tree vs. cyclic graphs

a b
Parent

Increasing / \ / \
and/or
granularity

\/

a | An example of a simple tree, b | A directed acyclic

in which each child has only one  graph (DAG), in which each
parent and the edges are child can have one or more
directed. parents.

That is, there is a source (parent) The red-colored node has
and a destination (child) for each  multiple parents.The
edge. additional edge is colored

grey.

Boxes represent nodes;
arrows represent edges.

Rhee et al. (2008) Nature
Rev. Genet. 9: 509
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Gene Ontology is a directed acyclic graph

Parent c

Biological

i An example of the node
;' ‘g vesicle fusion

Increasing Transport e e ogenzzten) - jin the BP ontology with

Spectfcity 1 lis_a multiple parentage.

Brandnty VEeEmedae] [ i

parr_of\ /is_a (Arrows point into the wrong direction.)
C;d Vesicle fusion

Dashed edges : there are other nodes not shown between the nodes and the
root node.

Root : node with no incoming edges, and at least one leaf.
Leaf node :a terminal node with no children (vesicle fusion).
Similar to a simple tree, a DAG has directed edges and does not have cycles.

Depth of a node : length of the longest path from the root to that node.
Height of a node: length of the longest path from that node to a leaf.

Rhee et al. (2008) Nature
Bioinformatics 3 — WS 19/20 Rev. Genet. 9: 509 V10 —4
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Where do the Gene Ontology annotations
come from?

Evidence Evidence code description Source of evidence Manually Current number

code checked of annotations*

IDA Inferred from direct assay Experimental Yes 71,050

IEP Inferred from expression pattern Experimental Yes 4,598

IGI Inferred from genetic interaction Experimental Yes 8,311

IMP Inferred from mutant phenotype Experimental Yes 61,549

IPI Inferred from physical interaction Experimental Yes 17,043

ISS Inferred from sequence or structural similarity  Computational Yes 196,643

RCA Inferred from reviewed computational analysis  Computational Yes 103,792

1GC Inferred from genomic context Computational Yes 4

IEA Inferred from electronic annotation Computational @ 15,687,382

IC Inferred by curator Indirectly derived from experimental or computational  Yes 5,167
evidence made by a curator

TAS Traceable author statement Indirectly derived from experimental or computational  Yes 44,564
evidence made by the author of the published article

NAS Non-traceable author statement No ‘source of evidence' statement given Yes 25,656

ND No biological data available No information available Yes 132,192

NR Not recorded Unknown Yes 1,185

*October 2007 release

Bioinformatics 3 —WS 19/20

Rhee et al. Nature Reviews Genetics 9, 509-515 (2008)
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IEA: Inferred from Electronic Annotation

The evidence code IEA is used for all inferences made without
human supervision, regardless of the method used.

The IEA evidence code is by far the most abundantly used
evidence code.

Guiding idea behind computational function annotation:

genes with similar sequences or structures are likely to be evolutionarily
related.

Thus, assuming that they largely kept their ancestral function, they
might still have similar functional roles today.

Gaudet, Skunca, Hu, Dessimoz

Primer on the Gene Ontology,
https://arxiv.org/abs/1602.01876.

Published in : Methods in Molecular Biology

Bioinformatics 3 —WS 19/20 Vol1446 (2017) — open access! VI0 -7



Significance of GO annotations

Very general GO terms such as “cellular metabolic process®are

annotated to many genes in the genome.
Very specific terms belong to a few genes only.

— One needs to compare how significant the occurrence of a GO term is in a

given set of genes compared to a randomly selected set of genes of the same size.

This is often done with the hypergeometric test.

PhD Dissertation Andreas Schlicker (UdS, 2010)
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Hypergeometric test
min(n,K ) (KW) (N—KW)

p-value = E ! n—t

= ()

The hypergeometric test is a statistical test.

It can be used to check e.g. whether a biological annotation 1t is statistically
significant enriched in a given test set of genes compared to the full genome.

N : number of genes in the genome

n : number of genes in the test set

K. : number of genes in the genome with annotation 1t
k. : number of genes in test set with annotation Tt.

The hypergeometric test provides the likelihood that k_or more genes that
were randomly selected from the genome also have annotation 1.

Bioinformatics 3 —WS 19/20 http://great.stanford.edu/ VIO -9



Hypergeometric test

Select i 2 k; genes with annotation

The other n — i genes in the test
1 from the genome.

h K h set do NOT have annotation .
Ore are Ry sUc gines. There are N — K such genes in
the genome.

min(n,K ) (KW) (N_K”) P

p-value = Z

(2)
’i: kﬂ- n \
number of possibilities for
The sum runs from k selecting n elements from a
elements to the maximal set of N elements.

possible number of elements.
This correction is applied if the

This is either the number of sequence of drawing the
genes with annotation 1T in the elements is not important.
genome (K,) or the number of

genes in the test set (n).

http://great.stanford.edu/
Bioinformatics 3 —WS 19/20 http://www.schule-bw.de/ v 1o _ |0



Example
min(n,K;) (Kﬂ) (N—KW)

) n—1i
p-value = E

= ()

r Gene transcription start site

+—==—1 Curated/inferred gene regulatory domain
T Ontology annotation (e.g. “actin cytoskeleton")

V¥ Genomic region (e.g. ChiP-seq peak)

I It It
9 9 Y[ v vyvy v vDlyvy
Hypergeometric test over genes
:  NAifi : N = 6 total genes

|s annotation 11 significantly enriched ¥ _ 3 genes annotated with x

in the test set of 3 genes? n = 3 genes with an associated genomic region
“n = 3 genes annotated and with a genomic region
P-value = 0.05

Yes! p = 0.05 is (just) significant.

http://great.stanford.edu/

Bioinformatics 3 —WS 19/20 VIO —-11



Comparing GO terms

The hierarchical structure of the GO allows to compare proteins annotated to
different terms in the ontology, as long as the terms have relationships to each
other.

Terms located close together in the ontology graph (i.e., with a few intermediate
terms between them) tend to be semantically more similar than those
further apart.

One could simply count the number of edges between 2 nodes as a measure
of their similarity.

However, this is problematic because not all regions of the GO have the same
term resolution.

Gaudet, Skunca, Hu, Dessimoz
Primer on the Gene Ontology,

Bioinformatics 3 —= WS 19/20 https://arxiv.org/abs/1 602.01876 VIo =12



Information content of GO terms

The likelihood of a node t can be defined in 2 ways:

How many genes have annotationt  Number of GO terms in subtree below ¢

relative to the root node? relative to number of GO terms in tree
. occur(t) . D(1)
Panno(?) occur(root ) Pgrap () D(root)

The likelihood takes values between 0 and 1 and

increases monotonic from the leaf nodes to the root.

Define information content of a node from its likelihood:
IC(t) = —logpl(t)
A rare node has high information content.

PhD Dissertation Andreas Schlicker (UdS, 2010)

Bioinformatics 3 —WS 19/20 VIO -13



Common ancestors of GO terms

Common ancestors of

biological
process

two nodes t, and ¢, : / \

all nodes that are located

on a path from ¢, to root AND \
on a path from ¢, to root. /7 /

macromolecular cellular nitrogen primary
The most informative \f\ \ \/
common ancestor (MICA) e - siopoymer muctechase,
of terms t, und t, is their “rocess e nucloctide and
common ancestor with 7
highest information content. m’"‘ ot

RNA metabolic

Typically, this is the closest

common ancestor. 5hD Dissertation

Andreas Schlicker (UdS, 2010)
Bioinformatics 3 —WS 19/20 VIO -14



Measure functional similarity of GO terms

Lin et al. defined the similarity of two GO terms ¢, und £,

based on the information content of the most informative common ancestor (MICA)

2. IC(MICA)
IC(t;) +1C (1)

SiMRel(t1,12) =
If MICAs are close to the two GO terms, they receive a high similarity score.

Schlicker et al. defined the following variant:
2-IC(MICA)
IC(Il) +1C(12)

where the term similarity is weighted with the counter-probability of the MICA.

SimRel(t1,12) = (1 =p(MICA))

By this, shallow annotations (low “depth” in the tree, slide #4) receive less
relevance than MICAs further away from the root.

PhD Dissertation Andreas Schlicker (UdS, 2010)

Bioinformatics 3 —WS 19/20 VIO -15



Measure functional similarity of two genes

Two genes or two sets of genes A und B typically have more than 1 GO
annotation each. - Consider similarity of all terms /i and ;.

sij = sim(GO},GO%),Vie 1,..,N.Vj€ 1,...M.

and select the maxima in all rows and columns:

N
1
rowScore(A,B) = Zi I r<na<)§w Sijs GOscoref‘jteM (A,B) = 5 (rowScore(A,B) + columnScore(A,B))
M
columnScore(A,B) = Z Illa<x Sij- GOscoreBMA(A, B) = max(rowScore(A, B), columnScore(A, B))

Compute funsim-Score from scores for BP tree and MF tree:

funsim(A. B) 1 [( BPscore )2 N ( MFscore )2]
msim(A,B) = < -
' " 2 L\max(BPscore) max (MFscore)

PhD Dissertation Andreas Schlicker (UdS, 2010)

Bioinformatics 3 —WS 19/20 VIO -16



GO is inherently incomplete

The Gene Ontology is a representation of the current state of
knowledge; thus, it is very dynamic.

The ontology itself is constantly being improved to more accurately represent
biology across all organisms.

The ontology is augmented as new discoveries are made.

The creation of new annotations occurs at a rapid pace, aiming to keep
up with published work.

Despite these efforts, the information contained in the GO database is
necessarily incomplete.

Thus, absence of evidence of function does not imply absence
of function.

This is referred to as the Open World Assumption

Gaudet, Dessimoz,

Gene Ontology: Pitfalls, Biases, Remedies

Bioinformatics 3 —WS 19/20 https://arxiv.org/abs/1602.01876 vio -17



Summary
The GO is the gold-standard for computational annotation of gene
function.

It is continuously updated and refined.

Hypergeometric test is most often used to compute enrichment of GO
terms in gene sets

Semantic similarity concepts allow measuring the functional similarity
of genes. Selecting an optimal definition for semantic similarity of 2 GO terms

and for the mixing rule depends on what works best in practice.

Functional gene annotation based on GO is affected by a number of biases.

Bioinformatics 3 —WS 19/20 VIO -18



Rates of mMRNA transcription and protein translation
ARTICLE

do0i:10.1038/nature10098 P rotei ns
Global quantification of mammalian gene
expression control (3 SILAC light

SILAC: ,,stable isotope labelling by amino acids in cell culture® means that
P &5/ @ SILAC heavy
cells are cultivated in a medium containing heavy stable-isotope versions (t,tt0)

of essential amino acids. l

0O
When non-labelled (i.e. light) cells are transferred to heavy SILAC growth 00852
WS

medium, newly synthesized proteins incorporate the heavy label while

Newly

pre-existing proteins remain in the light form. l
synthesized

Pre-existing
proteins
Quantification of protein . H/Lratio Proteins
turnover and levels. Mouse
fibroblasts were pulse-labelled
Schwanhauser et al. with heavy amino acids (SILAC).

Nature 473,337 (201 1) Protein turnover is quantified by
mass spectrometry.

L
O

Intensity

H
T

m/z
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Rates of mMRNA transcription and protein translation

ARTICLE ’. Quantification of mMRNA turnover and levels.
h Mouse fibroblasts were pulse-labelled with the

Global quantification of mammalian gene nucleoside 4-thiouridine (4sU). mMRNA

expression control turnover is quantified by next-generation
mRNAs

S

l 400 M 4sU (2 h)

Bjorn Schwanhiusser, Dorothea Busse!, Na Li', Gunnar Dittmar’, Johannes Schuchhardt?, Jana Wolf!, Wei Chen’

& Matthias Selbach’ seq uen Ci ng.

The 4sU-labeled RNA fraction is thiol-specifically biotinylated
generating a disulfide bond between biotin and the newly

transcribed RNA. @

l RNA isolation and
' ' . . biotinylation
Total cellular RNA' can then be quantitatively separated into

labeled (‘newly transcribed’) and unlabeled ('pre-existing’) RNA (\\7:\5

with high purity using streptavidin-coated magnetic beads. N /”700,8
(S
/'\ 06,6%/7
Separation

Finally, labeled RNA is recovered from the beads by simpl
. labeled | ed from the beads by simply (PR &
adding a reducing agent (e.g. dithiothreitol) cleaving the disulfide o ’
Pre-existing Newly synthesized Total

bond and releasing the newly transcribed RNA from the beads. RNA RNA RNA

Ridle, ] Vis Exp. 2013; (78): 50195. \ i /

Solexa sequencing

Bioinformatics 3 —WS 19/20 Schwanhauser et al. Nature 473,337 (201 1) V10 20



Rates of mMRNA transcription and protein translation
84,676 peptide sequences were identified by MS and assigned to 6,445 unique

proteins.

5,279 of these proteins were quantified by at least 3 heavy to light (H/L) peptide
ratios belonging to these proteins.

Top: high=-turnover protein

L b H
100, © t, (1.5 h) 100 t, (4.5 h) ) 100. 1:(135h) ®
Mass spectra of peptides o Rrm2 j Rm2 j Rrm2
. . £ 80 (APTNPSVEDEPLLR) 80§ | (APTNPSVEDEPLLR) 80§ (APTNPSVEDEPLLR)

fOI" two Protelns (X-aXIS: S 3 H/L ratio = 0.24 i o H/Lratio=1.26 1 H/Lratio=12.8

€ 60 603 60
mass over charge ratio). £ 4o H ! 40}

¢ 20 N I 20; I 20; 5

H ey | . N L - | . el I T — . A - | O' I T —T l' S - I‘

Over time, the heavy to 0 770 772 774 776° 770 772 774 776 770 772 774 776
: : m/z m/z miz
light (H/L) ratios ) ] {, (135 h)
: @) (@) o Hist1hic

2 80 Hist1hic 80 Hist1h1c 80 H/L ratio = 0.63 H

2 (SEAAPAAPAAAPPAEK) (SEAAPAAPAAAPPAEK) )
You should understand £ 60 H/L ratio = 0.05 60 H/L ratio = 0.19 60

2 40 403 40
these spectra! = . a .

e 20 H 203 I l 20 ‘

0. . v l ' v ?' | v 0. 4 l 2 . l l' . 0. v . I A' 4 - . l Ay
746 748 750 746 748 750 752 746 748 750 752
m/z miz m/z
Schwanhauser et al. Nature 473,337 (2011) Bottom: low=turnover

protein, slow synthesis, long half-
Bioinformatics 3 —WS 19/20 life VI0o -2]



P, Protein half-lifes

Consider ratio r of protein with heavy amino p=_H
. . . . , P,
acids (P,) and light amino acids (P)): 25and decay rates
Assume that proteins labelled with light amino , —_—
acids decay exponentially with degradation rate _
: _ = bignt T 15 R?=10.99
constant kg, : PL _ Poe o g PR
. = t,,=62.1h
Express (P,) as difference between total number - R? = 0.99
of a specific protein P, and P;:
0 Ll Ll 1
— D 2 t, ts
PH (t) - }Dtota.f(t) f L (t) Harvesting time point
Assume that P, ,, doubles during duration/of one Consider m intermediate time points:
cell cycle (which lasts t,, ): 2 log, @, + 1), log_ 2
k. = =1 _ [
tit dp m ’
P,()=P, (H)-P,()=P21=/-P (), $ L.
PH P )L. . i=1
r= Pr = Pr ' 1 From kg, we get the desired half-life:
log, 2 L
Pn _BP,x T = 9¢ 2 because this gives
P P k
L L d toge2 1
take In on both sides Py = P(:‘t:_,l;',!;;{ _ PUF—&‘.-;;. Fap — P{]t:,-og.% _ ;P{]
In(ratio+1) =1n —29%c = Inefwrt 4 N7 = Fgpt + In 2%
L .
In(ratio + 1) = kdp[+L1n2 _ IX(kd,, lnz) 1 ratio + 1)1 = tzx(kdp N l;nz) The same is done to compute
fee 2\ “ mRNA half-lives (not shown).
In(ratio+ 1)t = t* x | kqp + [—)
- V10 -22

Bioinformatics 3 —W5 19/20 Schwanhauser et al. Nature 473,337 (201 1)



MRNA and protein levels and half-lives

1,0001
s IR b ool [h menaNa a, b, Histograms of mRNA
. | :
8004 median: 9 h Protein I bI .
2 ||}, Prot o Protein ue) and protein (red) half-
S 600+ meclan:soh S 8001 median: 16,000 ( ) P (red)
8 oo S 400- lives (a) and levels (b).
2001 JJ-[ h 200+
o) ——aHlIUIHI e o LAlLVAETTRINTHN N e Proteins were on average 5
1 10 100 1,000 1 10 1001,00010% 10° 10% 107 .

Average cellular half-life (h) Average copies per cell times more stable (46h VS. 9h)
¢ 1.0004 d : and 900 times more abundant
2 100 8 than mRNA:s.
= a
2 104 8
o c
(a i 5

e
1- L ,I D-

1005 10" 1015 1 10 100 1,000

mRNA half-life (h) mRNA copies per cell

(right) mRNA and protein levels showed
reasonable correlation (R?2 = 0.41)

(left) However, there was practically no
correlation of protein and mRNA half-lives.

Bioinformatics 3 —WS 19/20 Schwanhauser et al. Nature 473,337 (2011) V10 —23
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translation
A widely used minimal description of
the dynamics of transcription and A» mRNA Ko X [mRNA]) dR
translation includes the synthesis and E qt =V —KarR
degradation of mMRNA and protein, ; | ap
respectively Ksp X [mRNA]» proteinkdp X [proteun]» ’ra =KgpoR — kg P

The mRNA (R) is synthesized with a constant rate v, and
degraded proportional to their numbers with rate constant k,.

The protein level (P) depends on the number of mRNAs,
which are translated with rate constant kg,

Protein degradation is characterized by the rate constant kg,

The synthesis rates of mMRNA and protein are calculated
from their measured half lives and levels.

Schwanhauser et al. Nature 473, 337 (201 1)

Bioinformatics 3 —WS 19/20 VIO -24



Computed transcription and translation rates

Top
Average cellular transcription rates predicted

by the model span two orders of magnitude.

The median is about 2 mRNA molecules per hour
(very slow!).

An extreme example is the protein Mdm2 of which
more than 500
mRNAs per hour are transcribed.

Bottom

The median translation rate constant
is about 40 proteins per mMRNA

per hour

Schwanhauser et al. Nature 473,337 (201 1)

Bioinformatics 3 —WS 19/20
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Maximal translation constant

Abundant proteins are translated about 100 times

more efficiently than those of low abundance

Translation rate constants of abundant proteins
saturate between approximately 120 and 240

-
(@)
A

proteins per mRNA per hour.

—L
A

o
—i

K, (Proteins per mKNA per hour)
o
o

The maximal translation rate constant in

. 100 1,000 10¢ 105 108 107
mammals is not known. Protein copies per cell

The estimated maximal translation rate constant
in sea urchin embryos is 140 copies per mRNA
per hour, which is surprisingly close to the
prediction of this model.

Schwanhauser et al. Nature 473,337 (201 1)
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Ribosomal mRNA translation

Elongation cycle of a ribosome (gray dome)
translating an mRNA.

Aminoacyl-tRNA (small gray, green, purple, or
sphere) is delivered to the ribosome in a ternary complex Non- / ‘

Near-Cognate y" » / (/ "\

with the elongation factor EF-Tu (larger blue sphere) and Cognate

In addition to the initial binding site, the ribosome has 3 S—

tRNA binding sites, the A, P, and E sites. f O

\ o
Cognate ‘ ‘

he A site of the ribosome has arrived at a new codon (green) of
the mMRNA.The ribosome then binds a teritary complex with a tRNA that may be cognate (sequence matches),
near-cognate, or non-cognate to this c¢odon.

The elongation cycle of translation starts whe

As a consequence, the elongdtion cycle exhibits 3 different branches corresponding to 3 different reaction
pathways:
(left) A non-cognate ternary complex is again released from the initial binding site of the ribosome;

(top) A near-cognate ternary complex is usually rejected but is very rarely used to elongate the peptide chain;and

(bottom) A cognate ternary complex may also be rejected but is typically used for elongation of the peptide chain.

Rudorf et al. (2014)
Bioinformatics 3 —WS 19/20 PLoS Comput Biol 10: e1003909. V10 -27



MRNA translation modelled as Markov process

Non-Cognate (Left) All transition rates of this Markov
Near-Cognate y ‘TK Cognate model could be measured for E.coli in
off on
wWao w40 N o o

mg @ vitro. ®,. : recognition rate, ®_, :

| - € > —_— —_— o
l e o o w1 conformational rate

W9,10 W45 l

o Wpro . < Wpro e Whatare the in vivo rates!
A

20¢

From the model, one can deduce N

codon-specific translation
rates:

(A) In-vitro values for high-fidelity ST Eaa
buffer at 37°C. B 3

30/

Elongation Rate [aa/s]

To derive in vivo rates from this, one 25,
adjusts the diffusion constant and uses

exp. measured tRNA concentrations.

20/

15

Elongation Rate [aa/s]

This gave 10;
(B) in-vivo values for E. coli at growth 3

conditions of 0.7 dbl/h. 0l
Rudorf et al. (2014) PLoS Compu

t Bio

Bioinformatics 3 —WS 19/20



Optimization of elongation rates

Sequences with
alternative, synonymous
codons are proposed
from the original
sequence and selected
to maximize the protein
expression score.

COSEM current: translation rate per mRNA transcript

mMRNA secondary structure: mRNA folding energy in the first 30 codons of the
5’-end,

GC3 content: fraction of guanine and cytosine in the third nucleotide positions of

all codons ) , ,
Trosemeier et al. Sci. Rep. 9,751 1 (2019)
Bioinformatics 3 —WS 19/20 V10 -29



Derive codon-specific elongation rates

Geneart (GeneOptimizer) from ThermoFisher is
another tool to optimize codon usage.
This tool did not lead to increased Ova levels.

COSEM gave 3-4 fold increase.

Protein expression of
synthetic ovalbumin
(main constituent of egg
white) in S. Typhimurium
(after artificial gene
transfer).

Measured protein
abundance (Western blot)
relative to wildtype
compared to protein
expression score relative to
wildtype for ova variants.

Trosemeier et al. Sci. Rep. 9,751 1 (2019)

Bioinformatics 3 —WS 19/20
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Codon-specific elongation rates in human

Table S9. Codon-specific elongation rates for HEK293.

Codon  Codon-specific elongation rate [s™!] | Codon  Codon-specific elongation rate [s!]

AAA 21.21084 | GAA 9.11984
AAC 14.12447 | GAC 21.96470
AAG 11.23207 | GAG 5.48026
AAU 14.12483 | GAU 21.96470
ACA 10.48064 | GCA 5.89915
ACC 14.78216 | GCC 17.75464
ACG 7.33020 | GCG 6.04496
ACU 14.78260 | GCU 17.75464
AGA 1.59880 | GGA 8.12605
AGC 15.08409 | GGC 24.84194
AGG 7.37762 | GGG 11.61666
AGU 15.08453 | GGU 24.84194
AUA 2.51558 | GUA 13.09163
AUC 11.82971 | GUC 28.00956
AUG 34.86228 | GUG 41.11098
AUU 11.81255 | GUU 28.01011
CAA 12.59770 | UAA 171.67736
CAC 18.93839 | UAC 5.27462
CAG 27.28044 | UAG 171.67736
CAU 18.93835 | UAU 5.27632
CCA 8.84760 | UCA 21.12999
cCC 1.00058 | UCC 7.59376
CCG 5.92273 | UCG 3.59940
CCU 1.00958 | UCU 7.59376
CGA 17.13684 | UGA 171.67736
CcGC 7.35781 | UGC 8.83135
CGG 10.10466 | UGG 13.32441
CGU 7.35781 | UGU 8.83135
CUA 3.35796 | UUA 15.73559
cucC 0.71702 | UUC 14.33256
CUG 16.39336 | UUG 4.20173
Ccuu 0.71704 | UUU 14.33295

UAA, UAG and UGA are
stop codons.

The elongation rates for
other codons are of
similar magnitude
(between | and 30 per
second) as in E.coli.

Trosemeier et al. Sci. Rep. 9,751 1 (2019)

Bioinformatics 3 —WS 19/20
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Transcriptome / Proteome
molecular FlNDlNGS

- 'IRA\\(,:;HENT OFP:\ SYStems
Artfc{e PROCESS ACCESS

biology

A deep proteome and transcriptome abundance * hundreds of proteins, partlcularly In

atlas of 29 healthy human tissues testis, could not be detected
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Interpretation: the mRNA of not detected proteins shows - on average - smaller
levels of mMRNA expression.
However, even some highly expressed mRNAs were missing as proteins.
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Summary

Transcription and translation are tightly regulated processes in cells because the
cells need

() to make sure that the right mRNAs and proteins are being synthesized
which are needed for the particular cell state or cell fate, and

(b) to make sure that no unnecessary molecules are synthesized which
would be costly in terms of resources.

How transcription and translation processes are regulated is still subject of
intense research.

Recently, the SILAC method and the ribosome profiling method (where
processing ribosomes are stalled by application of small-molecule inhibitors, and
the mRNA sequences the ribosomes bind to get sequenced) have enabled
researchers to pinpoint the precise kinetics of expressing individual genes and of
translating individual mRNAs.
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