V21 Minimal Reaction Cut Sets — Dual Description Method

Elementary Flux Modes vs. Extreme Pathways
Minimal Cut Sets

Dual Description Method
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Definition of Elementary Flux Modes (EFMs)

A pathway P(v) is an elementary flux mode if it fulfills conditions C1 — C3.

(C1) Pseudo steady-state. S - e = 0. This ensures that none of the metabolites is
consumed or produced in the overall stoichiometry.

(C2) Feasibility: rate e; > 0 if reaction is irreversible. This demands that only
thermodynamically realizable fluxes are contained in e.

(C3) Non-decomposability: there is no vector v (except the null vector and e)
fulfilling C1 and C2 and so that P(v) is a proper subset of P(e).

This is the core characteristics for EFMs and EPs and provides the decomposition
of the network into smallest units that are able to hold the network in steady state.

C3 is often called ,genetic independence” because it implies that the enzymes in
one EFM or EP are not a subset of the enzymes from another EFM or EP.

Klamt & Stelling Trends Biotech 21, 64 (2003)
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Definition of Extreme Pathways (EPs)

The pathway P(e) is an extreme pathway
if it fulfills conditions C1 — C3 AND conditions C4 — C5.

(C4) Network reconfiguration: Each reaction must be classified either as
exchange flux or as internal reaction.

All reversible internal reactions must be split up into two separate, irreversible
reactions (forward and backward reaction).

(C5) Systemic independence: the set of EPs in a network is the minimal set of
EFMs that can describe all feasible steady-state flux distributions.

The algorithms for computing EPs and EFMs are quite similar.
We will not cover the algorithmic differences here.

Klamt & Stelling Trends Biotech 21, 64 (2003)
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Reconfigured Network: split up R7
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3 EFMs are not systemically independent: o) Bloxl) Plad) Ala) Blex) Plax) Aled) Biox) Plaxd]
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EFM2 = EP3 + EP5 5 i St S el el S el Jaled
EFM4 = EP2 + EP3

Klamt & Stelling Trends Biotech 21, 64 (2003)
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Property 1 of EFMs

The only difference in the set of EFMs emerging upon reconfiguration consists in
the two-cycles that result from splitting up reversible reactions.

However, two-cycles are not considered as meaningful pathways.

Valid for any network: Property 1

Reconfiguring a network by splitting up reversible reactions
leads to the same set of meaningful EFMs.

Property 2
If all exchange reactions in a network are irreversible then the sets of meaningful
EFMs (both in the original and in the reconfigured network) and EPs coincide.

Klamt & Stelling Trends Biotech 21, 64 (2003)
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EFMs vs. EPs

What is the consequence when all exchange fluxes (and hence all
reactions in the network) are made irreversible?

Table 1. Configurations of the example network (upper part N1 and N3; lower part N2 and N4), with corresponding elementary flux
modes (EFM) and extreme pathways (EP) (see also Fig. 1)

N1 (R2 and R7 reversible) N3 (as N1 but R2 irreversible) N1 N3 Reactions
Afext)  Blext) Plext) EFMs EFMs Rl R2 R3 R4 R5 R6 R7 R8 R9
N . . EFM1 X 1 01 0 1 0 -1 1 0
===~ it EFM2 X 1 01 1 0 0 01 0
T . EFM3 X 2 01 0 1 1 0 0 1
: ] \\ : EFM4 X 2 01 1 0 1 10 1
AR b p ] EFMS5 X 1 11 0 0 1 1.0 1
L\ . EFM6 1 =10 1 0 0 0 0 0
| b : EFM7 1 =10 0 1 0 -1 0 0
L EFM8 X 0 11 0 0 0 01 0
T~
N2 (R2 reversible, R7 split up) N4 (as N2 but R2 irreversible) N2 /ﬁ \ Reactions
Alext)  Blext) Pext) EFMs EFMs EPs \R1 R2 R3 R4 R5 R6 RZ R8 R9 R7b
y . . EFM1 x EPY/ 01 0 1 0 01 0 1
b EEEE SOEE - EFM2 X EP2 1 01 1 0 0 01 0 0
I S EFM3 X EP3 2 01 0 1 1 00 1 0
| ﬁ”:\ i EFM4 % EP4 2 01 1 0 1 10 1 0
| A—E O —ap EFM5 X EP5' 1 11 0 0 1 10 1 0
L 7— | EFM6 f =10 1 0 1 00 0 0
: \, b ! EFM7 -1 0 0 1 0 00 0 1
T ! EFM8 EP§ x EP6’ 11 0 0 0 01 0 0
EFM9 EP6\ x EP7 /0 00 0 0 © 10 0 1

incide!
Klamt & Stelling Trends Biotech 21, 64 (2003) 1 hen EFMs and EPs always co-incide!
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Software: FluxAnalyzer, based on Matlab

Steffen Klamt.

MATLAB

FluxAnalyzer

User Interfaces

and Functions

Algebraic Routines__|

Fig. 2. Structural setup of the FluxAnalyzer.
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Figure No.1: Small Network Figure No. 3: Network Composer
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Fig. 1. The network project of ‘SMALLNET’ constructed by the FluxAnalyzer. Left: interactive flux map displaying a flux scenario (unknown

rates are denoted by ‘###%7). Right: network composer.
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Fig. 3. Concise graphical representation of the stoichiometric matrix
(here: catabolic part of the network studied in Klamt et al., 2002)
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FluxAnalyzer has both EPs
and EFMs implemented.

Allows convenient studies of
metabolicsystems.

Klamt et al.
Bioinformatics 19, 261 (2003)
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Strain optimization based on EFM-analysis

Metabolic Engineering 12 (2010) 112-122

Contents lists available at ScienceDirect METABOLIC

Metabolic Engineering

journal homepage: www.elsevier.com/locate/ymben

Rational design and construction of an efficient E. coli for production of
diapolycopendioic acid
Pornkamol Unrean, Cong T. Trinh, Friedrich Srienc*

Department of Chemical Engineering and Materials Science, and BioTechnology Institute, University of Minnesota, 240 Gortner Laboratory, 1479 Gortner Ave,
St. Paul, MN 55108, USA

Carotenoids (e.g. DPL and DPA) are light-harvesting pigments, UV-protecting
compounds, regulators of membrane fluidity, and antioxidants.

They are used as nutrient supplements, pharmaceuticals, and food colorants.

Aim: increase carotenoid synthesis in E.coli

Unrean et al. Metabol Eng 12, 112-122 (2010)
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Metabolic network of recombinant E.coli
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Unrean et al. Metabol Eng 12, 112-122 (2010)
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Effect of single gene deletions
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Results of virtual gene knockout calculations (counting number of EFMs and

computing their yield from reaction stochiometries).

Select target genes where knockouts still maintain a maximum possible yield of
carotenoid production, a reasonable yield of biomass while the largest number of
EFMs is eliminated.

Unrean et al. Metabol Eng 12, 112-122 (2010)
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Effect of single gene deletions

Strain Total modes Aerobic modes Anaerobic modes Predicted CRT yield®

Wild-type 29,532 24,155 5377 0.0-426

AldhA 15,662 13,405 2257 0.0-426

AldhAAfrdA 8573 7810 763 0.0-426

AldhAAfrdAApoxB 7541 6861 680 0.0-426

AldhAAfrdAApoxBApta 6171 5600 571 0.0-426

AldhAAfrdAApoxBAptaAadhE 4099 4099 0 0.0-426

AldhAAfrdAApoxBAptaAadhEApykF 2573 2573 0 0.0-426

AldhAAfrdAApoxBAptaAadhEApykFAzwf 375 375 0 0.0-426

AldhAAfrdAApoxBAptaAadhEApykFAzwfAmaeB 5 5 0 0.4-426

2 Yield is in mg-diapolycopendioic acid/g-glucose.

Deleted Reaction Corresponding gene Enzyme Pathway
R9 pykF Pyruvate kinase Glycolysis
R11 wf Glucose-6-phosphate-1-dehydrogenase Pentose phosphate
R22 frdA Fumarate reductase Fermentation
R28 maeB Malate dehydrogenase Anapleurotic
R31 poxB Pyruvate oxidase Fermentation
R32 IdhA Lactate dehydrogenase Fermentation
R34 adhE Alcohol dehydrogenase Fermentation
R35 pta Phosphate acetyltransferase Fermentation

Optimal: 8 gene knockouts lead to predicted over-production of DPL and DPA.

After this deletion, only 5 EFMs remain.

Unrean et al. Metabol Eng 12, 112-122 (2010)
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Glucose

Remaining EFMs
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Unrean et al. Metabol Eng 12, 112-122 (2010)  gicinformatics Il
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Experimental verification: increased carotenoid yield

QO
O

0.3 10
‘§T S
£
g 02
= g 05
£ o1
£ B
s :
0.0 o 0.0
MG1655 CRTO028 0 1 2 3 4 5
Consumed glucose (g/l)
MG1655/ CRT028/
pACMNOX pACMNOX
Growth rate (/h) 0.17 + 0.02 0.13 + 0.01
Mutant grows slowe I, Carotenoid production (mg/l) 0.19 + 0.02 0.83 +0.20
) ) Carotenoid yield (mg carotenoid/g glucose) 0.04 + 0.00 0.17 + 0.04
bUt CRT prOdUCthﬂ IS Specific production (mg carotenoid/g cell 0.01 +0.00 0.10 + 0.02

. . d ight-h
increased 4 times. ry weight-h)

Unrean et al. Metabol Eng 12, 112-122 (2010)
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Complexity of finding and enumerating EFMs

Theorem: Given a stochiometric matrix S, an elementary mode can be found in
polynomial time.

Theorem: In case all reactions in a metabolic network are reversible,
the elementary modes can be enumerated in polynomial time.

The enumeration task becomes dramatically more difficult if the reactions are irreversible.
In this case, the modes of the network form a cone, and the elementary modes are the rays of the cone.

Theorem: Given a flux cone and two coordinates /i and j, deciding if there exists
an extreme ray of the cone that contains both r; and r;is NP-complete.

Theorem: Given a matrix S and a number k, deciding whether an elementary mode
exist that contains at most k reactions is NP-complete.

It is an open question whether all elementary modes of a general network can be
enumerated in polynomial time.

Acuna et al. BioSystems 99, 210-214 (2010); BloS¥stems 95, 51-60 (2009)

Bioinformatics Il
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Minimal cut sets in biochemical reaction networks

Concept of minimal cut sets (MCSs): smallest ,failure modes” in the network that
render the correct functioning of a cellular reaction impossible.

Right: fictitious reaction network NetEXx.
The only reversible reaction is R4.

We are particularly interested in the flux

i i

R3 R4
B
'
p
- A \F:\‘-'\a__ - X ohR

obR exporting synthesized metabolite X. ——*

— Characterize solution space by
computing elementary flux modes.

Klamt & Gilles, Bioinformatics 20, 226 (2004)
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Elementary flux modes of NetEx

i i
E R3 R4 RI R2 R3 R4 R5 R6 R7 R8 OobR
i B
B2 . ., Elementary modes
; = EM1 1 1 1 -1 0 0 0 0 0
: y EM2 ] 0 0 0 0 1 1 1 1
RI H\\ abR
] 0 0 11 0 0 0 1

; \\_ﬂ ] EM4
|R6 n ! . g Ri

One finds 4 elementary flux modes for NetEx.

3 of them (shaded) allow the production of metabolite X.

Klamt & Gilles, Bioinformatics 20, 226 (2004)
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Cut set

Now we want to prevent the production of metabolite X.
— demand that there is no balanced flux distribution possible which involves obR.

Definition. A set of reactions is termed a cut set (with respect to a defined objective
reaction)

if after the removal of these reactions from the network

no feasible balanced flux distribution involves the objective reaction.

Klamt & Gilles, Bioinformatics 20, 226 (2004)
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Cut set

A trivial cut set is the reaction itself: CO = {obR}.
Another extreme case is the removal of all reactions except obR ..

This is very inefficient if this involves knocking out these genes or
developing small molecule inhibitors!

Desirable solutions:

- From an engineering point of view, it might be desirable to cut reactions
at the beginning of a pathway.

- The production of biomass is usually not coupled to a single gene or enzyme,
and can therefore not be directly inactivated.

Klamt & Gilles, Bioinformatics 20, 226 (2004)
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Cut set
C1 ={R5,R8} is a cut set already : t !
sufficient for preventing the production of X.

L
s
Removing RS or R8 alone is not sufficient. ;m N

: \ b
Definition. A cut set C (related to a _Hh_. D —=ile B A8 -
defined objective reaction) is a |
minimal cut set (MCS) if no proper
subset of C is a cut set.

Rl R2 R3 R4 RS R6 R7 R8 obR

Elementary modes

EMI1 1 1 1 —1 0 0 0 0 0
EM2 1 0 0 0 0 1 1 1 1
— C1 is a minimal cut set EMs 2 L0000
EMA4 1 0 0 1 1 0 0 0 1
Minimal cut sets (objective reaction: obR)
MCSO0 X
MCSI1 X
MCS2 X X
MCS3 X X
MCS4 X X
MCS5 X X X
MCS6 X X X
MCS7 X X X
MCS8 X X X
Klamt & Gilles, Bioinformatics 20, 226 (2004) 11:;22?0 X X X
1CS X X X
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Remarks

(1) An MCS always guarantees dysfunction as long as the assumed network
structure is currect. However, additional regulatory circuits or capacity restrictions
may allow that even a proper subset of a MCS is a cut set.

The MCS analysis should always be seen from a purely structural point of view.

(2) After removing a complete MCS from the network,
other pathways producing other metabolites may still be active.

i [

(3) MCS4 = {R5,R8} clearly stops production of X. HH R
o
What about MCS6 = {R3,R4,R6}? R N -
R6 |:~\'=~E"'~ g -R8

Cannot X be still be produced via R1, R2, and R5?
However, this would lead to accumulation of B
and is therefore physiologically impossible.

Klamt & Gilles, Bioinformatics 20, 226 (2004)
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21. Lecture WS 2019/20 20



Algorithm for computing MCSs

The MCSs for a given network and objective reaction are members
of the power set of the set of reaction indices and are uniquely determined.

A systematic computation must ensure that the calculated MCSs are:

(1) cut sets (,destroying” all possible balanced flux distributions involving the
objective reaction), and

(2) that the MCSs are really minimal, and

(3) that all MCSs are found.

Klamt & Gilles, Bioinformatics 20, 226 (2004)
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Algorithm for computing MCSs

Necessary condition for cut sets: they interrupt all possible balanced flux
distributions involving the objective reaction,

Use the fact that any feasible steady-state flux distribution r in a given network can
be represented by a non-negative linear combination of the N elementary modes:

rzﬁ:aiEMi, o =0

To ensure that the rate r, of the objective reaction is O in all r,
each EM must contain O at the k-th place.

— If C is a proper cut set the following cut set condition must hold:
For each EM involving the objective reaction (with a non-zero value),
there is at least one reaction in C also involved in this EM.

This guarantees that all EMs, in which the objective reaction participates,
will vanish when the reactions in the cut set are removed from the network.

Bioi : Klamt & Gilles, Bioinformatics 20, 226 (2004)
ioinformatics Il
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Klamt & Gilles, Bioinformatics 20, 226 (2004)

According to Acuna (2009) this algorithm is often
very inefficient.

More efficient algorithms exist already and are
still being developed.

Bioinformatice ..
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(5.2.1)

(5.2.2)

(5.2.3)

(5.2.4)

(5) FOR 1=2 TO MAX CUTSETSIZE
(5.1) new precutsets=[ |:

(5.2) FOR j = 1 TO g (g: number of reactions)

Remove all sets from precutsets where
reaction j participates

Find all sets of reactions in precutsefs
that do not cover at least one EM 1n
em_obR where reaction j participates:
combine each of these sets with reaction
J and store the new preliminary cut sets
in temp_precutsets

Drop all femp precutsets which are a
superset of any of the already determined
minimal cut sets stored in mes

Find all retained femp precutsets which
do now cover all EMs and append them to
mes: append all others to new precutsets

ENDFOR
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15310 Break
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ENDIF
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Applications of MCSs

Target identification and repression of cellular functions

A screening of all MCSs allows for the identification of the best suitable
manipulation.

For practical reasons, the following conditions should be fulfilled:
- usually, a small number of interventions is desirable (small size of MCS)
- other pathways in the network should only be weakly affected

- some of the cellular functions might be difficult to shut down genetically or by
inhibition, e.g. if many isozymes exist for a reaction.

Klamt & Gilles, Bioinformatics 20, 226 (2004)
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Applications of MCSs

Network verification and mutant phenotype predictions

We expect that cutting away an MCS from the network is definitely intolerable
for the cell with respect to certain cellular reactions/processes.

Such predictions, derived purely from network structure,
are a useful strategy for verification of hypothetical or reconstructed networks.

If the outcome of prediction and experiments differ,
this often indicates an incorrect or incomplete network structure.

Klamt & Gilles, Bioinformatics 20, 226 (2004)
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Structural fragility and robustness

If we assume that each reaction in a metabolic network has the same probability to
fail, small MCSs are most probable to be responsible for a failing objective
function.

El R PR3 PEF4 PR3 R6 R7 RE obR

Define a fragility coefficient F; as the

Elementary modes

reciprocal of the average size of all ML 1 L1 -1 0 0000
EM? 1 0 0 0o 0o 1 1 1 1
MCSs in which reaction i participates. EM3 2 L L0000
EM4 1 0 0 1 1 0 o0 o0 1
Minimal cur sets (objective reaction: obR)
MCS0 x
) \ MCSI  x
- : - MCS2 * *
R3 R4 MCS3 % x
i B MCs4 % *
Y MCS3 P by b
| RY —= MCS6 X % x
: . MCS7 % x x
Bl A é\‘_ - X SbR MCS8 x X x
\ i MCS9 X X X
;H'r -J:i"' - . R& . MCS10 x b4
—+——= D = F 1 13 13 13 12 38 38 38 1

Besides the essential reaction R1, reaction

RS is most crucial for the objective reaction.
Klamt & Gilles, Bioinformatics 20, 226 (2004)
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Example: MCSs in the central metabolism of E.coli

Table 2. Overview on computed MCSs in the central metabolism of E.coli

ObjeCtive reaction for growth on four different substrates
,2biomass synthesis”
Acetate  Succinate Glycerol Glucose
Network: 110 reactions, No. of EMs with growth 363 3421 9479 21592
. No. of MCSs (objective 245 1235 2970 4225
89 meta bOIlteS, reaction: growth)
see Stelllng et al. (2002) Maxiﬂ?_al.umnber n::f | 3363 69628 344196 902769
preliminary MCSs (during
computation)
Computation time 7s 20 min 342 h 2967h
(Intel Pentium, 1 MHZ:
4 GB RAM)
F; values (1n parentheses: size of the smallest MCS in which the reaction
OCCurs)
F16P-bisphosphatase 1(1) 1(1) 1(1) 0.102 (&)
ATP-synthase 1(1) 0.325(3) 0.141(3) 0.149(3)
SuccCoA-synthetase 0207(2) 01453(2) 0125(2) 0.131(2)
PEP-carboxylase 0128 (2) 0.117(2) 0.120(2) 0.143(2)
Malic enzyme 0.5(2) 0.5(2) 0.114(2) 0.123(2)
R13P-X5P (epimerase) 0198 (2) 0.135(2) 0.128(2) 0.148(2)
F 0.783 0718 0.699 0.643

The computation time does not wvolve the time needed for computing the elementary

modes. F;: fragility coefficient of reaction ¢, F: network (overall) fragility coefficient.

Klamt & Gilles, Bioinformatics 20, 226 (2004)

Bioinformatics Il
21. Lecture WS 2019/20

27



Conclusion - MCS

A MCS is an irreducible combination of network elements whose simultaneous
inactivation leads to a guaranteed dysfunction of certain cellular reactions or
processes.

Theorem: Determining a reaction cut of minimum cardinality is NP-hard.

- Computing MCSs and EMs becomes challenging in large networks.

MCSs are inherent and uniquely determined structural features of metabolic
networks similar to EMs.

Analyzing the MCSs gives deeper insights in the structural fragility of a given
metabolic network and is useful for

identifying target sets for an intended repression of network functions.

Klamt & Gilles, Bioinformatics 20, 226 (2004)
Acuna et al. BioSystems 95, 51-60 (2009)
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Review: Double Description Method (1953)

The Double Description method is the basis for simple & efficient algorithms
for the task of enumerating extreme rays.

For example, it serves as a framework for popular methods to compute
elementary flux modes and extreme pathways.

Analogy with Computer Graphics problem:
How can one efficiently describe the space

in a dark room that is lighted by a torch
shining through the open door?

Bioinformatics Il
21. Lecture WS 2019/20 30



Review: Duality of Matrices

Left: all points above the dividing line the shaded area) fulfill the condition x > 0.
Middle: the points in the grey area fulfill the conditions x, > 0 and x, > 0.

This is the
duality

But how could we describe the points in the grey area on the right side in a
correspondingly simple manner?

Obviously, we could define a new coordinate system (r,, r,) as a new set of
generating vectors.

But we could also try to transform this area back into the grey area

of the middle panel and use the old axes x; and x..

In 2D, this transformation can be obviously best performed by multiplying
all vectors inside the grey area by a two-dimensional rotation matrix.
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The Double Description Method

A pair (A,R) of real matrices A and R is said to be a double description pair or
simply a DD pair if the relationship

Ax>0 ifandonlyif x =R A forsomeA>0
holds. The column size of A has to be equal to the row size of R, say d.

For such a pair, the set P(A) represented by A as P(A) = {X cR' :Ax > O}
is simultaneously represented by R as {X ceR :x=RA forsome A> O}

A subset P of R9 is called polyhedral cone if P = P(A) for some matrix A,
and A is called a representation matrix of the polyhedral cone P(A).

Then, we say R is a generating matrix for P.

Each column vector of a generating matrix R lies in the cone P
and every vector in P is a nonnegative combination of some columns of R.
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The Double Description Method

Theorem 1 (Minkowski‘s Theorem for Polyhedral Cones)
For any m x n real matrix A, there exists some d x m real matrix R such that (A,R)
is a DD pair, or in other words, the cone P(A) is generated by R.

The theorem states that every polyhedral cone
admits a generating matrix.

The nontriviality comes from the fact that the row size of R is finite.

If we allow an infinite size, there is a trivial generating matrix R oot
T . Herrmann Minkowski
consisting of all vectors in the cone. 1864-1909

Also the converse is true:

Theorem 2 (Weyl's Theorem for Polyhedral Cones)

For any d x n real matrix R, there exists some m x d real matrix A
such that (A,R) is a DD pair, or in other words, the set generated |
by R is the cone P(A). Herrmann Weyl

1885-1955

Bioinformatics Il
21. Lecture WS 2019/20 33



The Double Description Method

Task: how does one construct a matrix R from a given matrix A, and the converse?

These two problems are computationally equivalent.
Farkas’ Lemma shows that (A,R) is a DD pair if and only if (RT,AT) is a DD pair.

A more appropriate formulation of the problem is to require the minimality of R:
find a matrix R such that no proper submatrix is generating P(A).

A minimal set of generators is unique up to positive scaling when we assume the
regularity condition that the cone is pointed, i.e. the origin is an extreme point of P(A).

Geometrically, the columns of a minimal generating matrix are in 1-to-1
correspondence with the extreme rays of P.

Thus the problem is also known as the extreme ray enumeration problem.

No efficient (polynomial) algorithm is known for the general problem.
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Double Description Method: primitive form
Suppose that the m x d matrix A is given and let P(A): {XAX 2()}

(This is equivalent to the situation at the beginning of constructing EPs or EFMs where S is given.)

The DD method is an incremental algorithm to construct
a d x m matrix R such that (A,R) is a DD pair.

Let us assume for simplicity that the cone P(A) is pointed.

Let K be a subset of the row indices {1,2,...,m} of A and
let Ak denote the submatrix of A consisting of rows indexed by K.

Suppose we already found a generating matrix R for A, or equivalently,
(Ak,R) is a DD pair. If A=Ak, we are done.

Otherwise we select any row index i not in K and try to construct a DD pair
(Ak+i» RY) using the information of the DD pair (Ak,R).

Once this basic procedure is described, we have an algorithm
to construct a generating matrix R for P(A).
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Geometric version of iteration step

The procedure can be understood geometrically
by looking at the cut-section C of the cone P(Ak)
with some appropriate hyperplane h in Rd

which intersects with every extreme ray of P(Ay)
at a single point.

Such a cutsection is illustrated in the Figure.

Here, C is the cube abcdefgh.
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Geometric version of iteration step

The newly introduced inequality A;-x > 0 partitions the space R into three parts:
H*={xec R : A:x>0}
HO={x e R : A;x=0}
H={xeR:Ax<0}

The intersection of H? with P and the new extreme points j and
in the cut-section C are shown in bold in the Figure.

d
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Geometric version of iteration step
Let J be the set of column indices of the current generating matrix R.

The rays r; (j €J ) are then partitioned into three parts accordingly:
Jr={jed:rpe H"}
Jo={jed:reHP}
J ={ed:reH}

We will call the rays indexed by J*, J9, J- the positive, zero, negative rays
with respect to /, respectively.

To construct a matrix R from R, we generate new | J*| x | J| rays
lying on the ith hyperplane H?

- by taking an appropriate positive combination

of each positive ray r; and each negative ray r; and

- by discarding all negative rays.
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Geometric version of iteration step

The following lemma ensures that we have a DD pair (Ak.; ;R’), and provides the
key procedure for the most primitive version of the DD method.

Lemma 3 Let (Ak,R) be a DD pair and let / be a row index of A not in K.
Then the pair (Ak,; ,R’) is a DD pair, where R‘is the d x |[J°| matrix with column
vectors r; (j € J)) defined by

J'=JruJSu (J xJ), and

l'”‘ = (Al’rj)rjs— (Al’rjc)rj for each (I,_I‘) eJt xJ

Proof omitted.

Bioinformatics Il
21. Lecture WS 2019/20 39



Finding seed DD pair
It is quite simple to find a DD pair (Ak,R) when |K| = 1.
This can serve as the initial DD pair.

Another simple (and perhaps the most efficient) way to obtain
an initial DD form of P is by selecting a maximal submatrix Ak of A
consisting of linearly independent rows of A.

The vectors r;'s of matrix R are then obtained by solving the system of equations
A(R=1
where | is the identity matrix of size |K|.

As we have assumed rank(A) = d, i.e. R=A",
the pair (Ak,R) is clearly a DD pair,
since Ay x>0 x=A"\, A >0.
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Primitive algorithm for DoubleDescriptionMethod

procedure DoubleDescriptionMethod(A); This algorithm is very primitive

begin
Obtain any initial DD pair (Ag, R); The straightforward implementation
while K # {1,2,...,m} do : .
begin will be quite useless because the
Select any index i from {1,2,...,m}\ K; size of J increases extremely fast.
Construct a DD pair (Ag+;, R') from (Ag, R);
/* by using Lemma 3 */

R:=R: K:=K+i: This is because many vectors rj;
end; : :
Output R: generated by the algorithm defined

end. in Lemma 3 are unnessary.

We need to avoid generating
redundant vectors!

To avoid generating redundant vectors, we will use the zero set or active set Z(x)
which is the set of inequality indices satisfied by x in P(A) with equality.

Noting A . the ith row of A, Z(x) ={i: A ;. x = 0}
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Towards the standard implementation

Two distinct extreme rays r and r‘ of P are adjacent
if the minimal face of P containing both rays contains no other extreme rays.

Proposition 7. Let r and r‘ be distinct rays of P.

Then the following statements are equivalent
(a) r and r‘ are adjacent extreme rays,

(b) r and r*are extreme rays and the rank of the matrix Az - 749 is d — 2,

(c) if r** is a ray with Z(r%) o Z(r) n Z(r’) then eitherr“=rorr“=r"
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Towards the standard implementation

Lemma 8. Let (Ak,R) be a DD pair such that rank(Ag) = d
and let / be a row index of A not in K.

Then the pair (Ag,; , RY) is a DD pair, where R‘is the d x| J| matrix
with column vectors r; (j € J°) defined by

J'=J"u J2U Ad]
Adj ={(J) € J* x J 1 r;and r;-are adjacent in P(Ag)} and
r=(A;r;) r— (Ar;) r for each (j,j) €Ad.

Furthermore, if R is a minimal generating matrix for P(Ag)
then R’is a minimal generating matrix for P(Ax.).
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Algorithm for standard form of double description method

This is now a straightforward variation of the DD method which produces a
minimal generating set for P:

procedure DDMethodStandard(A)
begin
Obtain any initial DD pair (Ag, R): such that R is minimal
while K # {1,2,...,m} do
begin
Select any index ¢ from {1,2,...,m} \ K;
Construct a DD pair (Ag i, R') from (Ag, R);
/* by using Lemmag ¢/
R:=R'; K:=K+1i;
end;
Output R;
end.

To implement DDMethodStandard, we must check for each pair of extreme rays
r and r‘ of P(Ak) with A; r > 0 and A, r* < 0 whether they are adjacent in P(Ay).

This completes our quick look at the Double Description method.
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Summary

Compared to other cellular networks, our understanding of metabolic networks is
quite mature. This is due to the almost complete characterization of central
metabolism in most organisms and by the ability to perform direct fluxome
measurement using e.g. '3C-labelled substrate.

FBA and EP enable us to characterize topological properties of the networks and
even make quantitative predictions.

Metabolic network use is highly uneven (power-law distribution) both at the global
level and at the level of the individual metabolites.

E. coli responds to changes in growth conditions by reorganizing the rates of
selected fluxes predominantly within this high-flux backbone. The use of the other
pathways remains unaltered. These reorganizations result in large, discrete
changes in the fluxes of the HFB reactions.
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