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Noisy  Data  — Clear  Statements?
For yeast:  ~ 6000 proteins   → ~18 million potential interactions

rough estimate:          ≤ 100000 interactions occur

→ 1 true positive for 200 potential candidates  = 0.5%
→    decisive experiment must have accuracy <<  0.5% false positives

For yeast:   80000 interactions known,
In 2002, only 2400 were found in > 1 experiment
Possible reason:
Different experiments detect different interactions

TAP

HMS-PCI

Y2H

annotated: septin 
complex

see: von Mering (2002)

Y2H: → many false positives
(up to 50% errors)

Co-expression: → gives indications at best

Combine weak indicators = ???
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Conditional  Probabilities
Joint probability for "A and B":

P(A)

P(B)

P(A ⋂ B) Solve for conditional probability for "A when B is true"
→ Bayes' Theorem:

P(A) = prior probability (marginal prob.) for "A"   → no prior knowledge about A

P(B) = prior probability for "B"   → normalizing constant

P(B | A) = conditional probability for "B given A"

P(A | B) = posterior probability for "A given B"

→ Use information about B to improve knowledge about A
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What  are  the  Odds?
Express Bayes theorem

in terms of odds:

• Also consider case "A does not apply":

• odds for A when we know about B 
(we will interpret B as information or features):

posterior odds for A prior odds for Alikelihood ratio

Λ(A | B) → by how much does our knowledge about A improve?

P(A)

P(B)

P(A ⋂ B)
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2  types  of  Bayesian  Networks
(1) Naive Bayesian network
→ independent odds

(2) Fully connected Bayesian network
→ table of joint odds

B !B

C 0.3 0.16

!C 0.4 0.14
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Bayesian  Analysis  of  Complexes

Science 302 (2003) 449
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Improving  the  Odds
Is a given protein pair AB a complex (from all that we know)?

prior odds for a 
random pair AB to be a 

complex

likelihood ratio:
improvement of the odds when 

we know about features f1, f2, …

Features used by Jansen et al (2003):
• 4 experimental data sets of complexes
• mRNA co-expression profiles
• biological functions annotated to the proteins (GO, MIPS)
• essentiality for the cell

Idea: determine from known complexes and 
use for prediction of new complexes

estimate (somehow)
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Gold  Standard  Sets
To determine

Requirements for training data:
i) independent of the data serving as evidence
ii) large enough for good statistics
iii) free of systematic bias

“Gold Standard Negative Set” (GN):
2708746 (non-)complexes formed by proteins from different cellular compartments 
(assuming that such protein pairs likely do not interact).
Even if there are some exceptions to this, it is likely true for most PP pairs.

Gold Standard Positive Set (GP):
8250 complexes from the hand-curated MIPS catalog of protein complexes
(MIPS stands for Munich Information Center for Protein Sequences)

→ use two data sets with known features f1, f2, … for training
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Prior  Odds

Jansen et al:
• estimated ≥ 30000 existing complexes in yeast
• 18 Mio. possible complexes → P(Complex) ≈ 1/600

→ The odds are  600 : 1  against picking a real complex by chance

→ Oprior = 1/600

Note: Oprior is mostly an educated guess

→ expect 50% good hits (TP ≥ FP) when L ≈ 600 and higher 
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Essentiality
Test whether both proteins are essential (E) for the cell or not (N)
→ for protein complexes, EE or NN should occur more often

pos/neg: # of gold standard positives/
negatives with essentiality information

Essentiality pos neg P(Ess|pos) P(Ess|neg) L(Ess)

EE 1114 81924 5,18E-01 1,43E-01 3,6

NE 624 285487 2,90E-01 4,98E-01 0,6

NN 412 206313 1,92E-01 3,60E-01 0,5

sum 2150 573724 1,00 1,00

possible values 
of the feature

probabilities for each 
feature value

likelihood 
ratios

= 0,5
0.19
0.36

overlap of gold standard 
sets with feature values

In the „pos“ case, the essentiality 
was only known for 2150 out of 

8250 complexes of the gold-
standard. 1114

2150
= 0,518

-> Essentiality is a weak feature!
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mRNA  Co-Expression
Publicly available expression data from
• the Rosetta compendium
• the yeast cell cycle

The 2 data sets are likely correlated
→ use principal components)

Jansen et al, Science 302 (2003) 449

-> Co-expression is a much better feature than essentiality!
(higher likelihood ratio L)



Bioinformatics 3 – WS 19/20 V 4  – 12

Biological  Function
Use MIPS function catalog and Gene Ontology function annotations
• determine functional class shared by the two proteins; 
small values (1-9) indicate highest MIPS function or GO Biol. Process similarity
• count how many of the 18 Mio potential pairs share this classification

Jansen et al, Science 302 (2003) 449

-> Co-Functionality is a semi-weak feature!
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Experimental  Data  Sets
In vivo pull-down:

HT-Y2H:

Gavin et al, Nature 415 (2002) 141
Ho et al,  Nature 415 (2002) 180

Uetz et al, Nature 403 (2000) 623
Ito et al,  PNAS 98 (2001) 4569

31304 pairs
25333 pairs

981 pairs
4393 pairs

4 experiments on overlapping PP pairs 
→ 24 = 16 categories   — table represents fully connected Bayes network

Jansen et al, Science 302 (2003) 449



Bioinformatics 3 – WS 19/20 V 4  – 14

Statistical  Uncertainties

1)  L(1111) < L(1001) . This is counterintuitive.

statistical uncertainty:

Overlap of 4 experiments is smaller than for 2 → larger uncertainty

2)  L(1110) = NaN?

Use conservative lower bound → assume 1 overlap with Gold Negatives
→  then, L(1110) ≥ 1970

Jansen et al, Science 302 (2003) 449



Bioinformatics 3 – WS 19/20 V 4  – 15

Overview

Jansen et al, Science 302 (2003) 449
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Performance  of  complex  prediction

None of the individual evidences alone was enough to get
a likelihood ratio > 600,
neither predicted nor experimental evidences

Jansen et al, Science 302 (2003) 449

Predictions Experimental data
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Follow-up  work:  PrePPI  (2012)

Zhang et al, Nature (2012) 490, 556–560

For each subunit, find both close and remote structural neighbors. 
A ‘template’ for the interaction exists whenever a PDB structure contains a pair of 
interacting chains (e.g. NA1–NB3) that are structural neighbors of MA and MB, 
respectively. 

A model is constructed by superimposing the individual subunits, MA and MB, on 
their corresponding structural neighbors, NA1 and NB3. 

Given a pair of query proteins that potentially interact (QA, QB), try to find 
representative structures for the individual subunits (MA, MB) in the PDB, 
where available, or from homology model databases.
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Follow-up  work:  PrePPI  (2012)

Zhang et al. assigned 5 empirical-structure-based scores to each interaction model and 
calculated a likelihood for each model to represent a true interaction by combining 
these scores using a Bayesian network trained on a high-confidence data set of positive 
interactors and a reference set of non-interactors. 

Then, the structure-derived score (SM) was combined with non-structural evidence 
associated with the query proteins (for example, co-expression, functional similarity) 
using a naive Bayesian classifier.

Zhang et al, Nature (2012) 490, 556–560
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Results  of  PrePPI
Receiver-operator characteristics (ROC) for 
predicted yeast complexes.

Examined features: 
- structural modeling (SM), 
- GO similarity (see V11), 
- protein essentiality (ES) (see p.10), 
- MIPS similarity (see p.12), 
- co-‐expression (CE) (see V.13), 
- phylogenetic profile (PP) similarity (V4).

Also listed are 2 combinations:  
- NS for the integration of all non-‐structural 
features, i.e. GO, ES, MIPS, CE, and PP, 
- PrePPI - all structural and non-‐structure 
features combined). 

Jansen et al, Science 302 (2003) 449

This approach predicted 30.000 high-
confidence PP interactions for yeast 
and 300.000 for human.
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Summary:    Bayesian  Analysis
Combination of weak features yields powerful predictions
• boosts odds via Bayes' theorem
• Gold standard sets for training the likelihood ratios

Bayes vs. other machine learning techniques:
(voting, unions, SVM, neuronal networks, decision trees, …)

→ arbitrary types of data can be combined
→ weight data according to their reliability
→ include conditional relations between evidences
→ easily accommodates missing data (e.g., zero overlap with GN)
→ transparent procedure
→ predictions easy to interpret
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Insert:  Relation  of  PPI  networks  to  diseases

Sahni et al., Marc Vidal (2015) 
Cell 161, 647–660

In principle, a protein mutant can 
destabilize proteins (left) or 
perturb interactions (right)

3 possible outcomes: all interactions kept,
some or no interactions remain.

Disease alleles enriched in „edgetic“ cases.

Q: Can one study this systematically
on a genome-level?
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Y2H:  screen  native  PPIs

Sahni et al., Marc Vidal (2015) 
Cell 161, 647–660

Aim: Systematic characterization of PPI perturbations associated with disease 
mutation. 

Experimental dataset: 2,449 mutant proteins and their 1,072 corresponding 
WT proteins.

Approach: run Y2H screen how mutant and WT proteins interact with proteins 
encoded by the 7,200 ORFs in the human ORFeome v1.1. 

Intersect this with the human interactome map HI-II-14 (enhance confidence).

-> interaction profiles for 460 mutant proteins and their 220 WT counterparts. Out 
of 1,316 PPIs (ca. 6 per protein), 521 interactions were perturbed.

Only 2 mutations conferred PPI gains, what suggests that gain of 
interactions may be a rare event in human disease.
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Findings

Sahni et al., Marc Vidal (2015) 
Cell 161, 647–660

Ca. 60% of disease-associated missense mutations perturb PPIs.

- Of these, half result in complete loss of interactions, 
generally caused by protein misfolding and impaired expression.

- The other half lead to edgetic perturbations.

Importantly, different mutations in the same gene frequently result in different 
interaction perturbation profiles. 
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Connected  Regions
Observation: There are  more interactions inside a complex 

than to the outside

→ Q: how can one identify highly connected regions in a network?

Suitable data structure to detect complexes (?):
Fully connected region:  Clique

clique := G' = (V', E' = V'(2))

Problems with cliques:
• finding cliques is NP-hard
(but can be done in O(N2) for sparsely 
connected biological networks)

• biological protein complexes are not
always fully connected
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Communities
Community := subset of vertices, for which the internal connectivity is 

denser than to the outside

Aim:  map network onto tree that reflects the community structure

<=>

???

Radicchi et al,  PNAS 101 (2004) 2658:
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Define  communities  by  agglomerative  clustering
1)  Assign a weight Wij to each pair of vertices i, j that measures 

how "closely related" these two vertices are.
2) Iteratively add edges between pairs of nodes with decreasing Wij

Measures for Wij:

1) Number of vertex-independent paths between vertices i and j
(vertex-independent paths between i and j:  no shared vertex except i and j)

2) Number of edge-independent paths between i and j

Menger (1927):  the number of vertex-independent paths equals the 
number of vertices that have to be removed to cut all paths between i and j
→ measure for network robustness

3) Total number of paths L between i and j
but L = 0 or ∞ → weight paths with their length αL with α < 1

Problem:  vertices with a single link are separated from the communities
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Vertex  and  Edge  Betweenness
4) Freeman (1927):  count on how many shortest paths a vertex is visited

For a graph  G = (V, E)  with  |V| = n

Betweenness for vertex ν:

sst (v) : shortest path including v.
There are  n - 1 other vertices besides v.
They have shortest paths to n - 2 vertices.
-> Computing shortest paths takes O(n2) 
operations 

5) Alternative:  edge betweenness
→ to how many shortest paths does 

this edge belong?
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Girvan-Newman  Algorithm
Girvan, Newman,  PNAS 99 (2002) 7821:

1)  Calculate betweenness for all m edges 

For a graph  G = (V, E)  with  |V| = n,  |E| = m

2)  Remove edge with highest betweenness

3)  Recalculate betweenness for all affected nodes

4)  Repeat from 2) until no more edge is left  (at most m iterations)

5)  Build up tree from V by reinserting edges in reverse order

Works well, but slow: O(mn2) ≈ O(n3) for scale-free networks  (|E| = 2 |V|)

Reason for complexity: shortest paths (n2) are computed for m edges

→ recalculating a global property is expensive for larger networks



Bioinformatics 3 – WS 19/20 V 4  – 29

Zachary's  Karate  Club
• observed friendship relations of 34 members over two years
• correlate fractions at break-up with calculated communities

administrator's 
fraction

instructor's 
fraction

with edge betweenness:

with number of edge-independent paths:

Girvan, Newman,  PNAS 99 (2002) 7821
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Collaboration  Network

Girvan, Newman,  PNAS 99 (2002) 7821

Vertices: scientists at the Santa Fe 
Institute. 

Symbols: scientific fields they work in.

Edges connect 2 authors that have co-
authored a joint paper.

Shown is the largest component of the 
Santa Fe Institute collaboration network.

The primary divisions detected by the 
GN algorithm are indicated by different 
vertex shapes.
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Determining  Communities  Faster
Radicchi et al,  PNAS 101 (2004) 2658:

Determine edge weights via edge-clustering coefficient
→ local measure
→  much faster, esp. for large networks

Modified edge-clustering coefficient:
→ fraction of potential triangles 

with edge between i and j

k = 5

k = 4

C(3) = (2+1) / 3 = 1Here, zi,j
(3) is the number of triangles, 

ki and kj are the degrees of nodes i and j.

Note:  "+ 1" to remove degeneracy for zi,j(3) = 0

Algorithm works exactly like 
GN-algorithm except that at 
each iteration, the edge is 
removed with smallest 
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Performance

Instead of triangles:  cycles of higher order g
→ continuous transition to a global measure

Radicchi et al-algorithm:  O(N2) for large networks

Radicchi et al,  PNAS 101 (2004) 2658:
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Comparison  of  algorithms

Girven-Newman algorithm Radicchi with g = 4

→ very similar communities

Data  set:  football  teams  from  US  colleges;;  different  symbols  =  different  
conferences,  teams  played  ca.  7  intraconference  games  and  4  inter-
conference  games  in  2000  season.



Bioinformatics 3 – WS 19/20 V 4  –

Many approaches exist that try to maximize the modularity
when a  network is divided into communities.

Comparison  of  modularity  maximization  methods

34

Danon,  Duch,  Diaz-Guilera,  Arenas,  
J.  Stat.  Mech.  P09008  (2005)

Methods have different  
complexities.

Q:  How  well  can  each  
method  detect  communities  
in  ad  hoc  networks  with  a  
well  known,  fixed  community  
structure?
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Generate  many  synthetic  toy  networks  with  n  =  128  nodes
that  are  split  into  4  communities  containing  32  nodes  each.  

Pairs  of  nodes  belonging  to  the  same  community  are  linked  
with  probability  pin whereas  
pairs  belonging  to  different  communities  are  joined  with  probability  pout.

Set  value  of  pout   so  that  the  average  number  of  links  that  a  node  has  to  
members  of  any  other  community,  zout,  can  be  controlled.  

While  pout (and  therefore  zout)  is  varied  freely,  the  value  of  pin  is  chosen  to  
keep  the  total  average  node  degree,  k, constant at  k =  16.

35

Danon,  Duch,  Diaz-Guilera,  Arenas,  J.  Stat.  Mech.  P09008  (2005)

Comparison  of  modularity  maximization  methods
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As  zout  increases,  the  communities  become  more  and  more  diffuse  and  
harder  to  identify  (see  figure  from  left  to  right).  

36

Danon,  Duch,  Diaz-Guilera,  Arenas,  
J.  Stat.  Mech.  P09008  (2005)

Comparison  of  modularity  maximization  methods

Since  the  “real”  community  
structure  is  well  known  in  this  
case,  
it  is  possible  to  measure  the  
number  of  nodes  correctly  
classified  by  the  method  of  
community  identification.

Q:  How can one quantify the
quality of a  division?

A  good division is one where there
are fewer than expected edges
between groups.
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Quantify  assortative  mixing
Find  the fraction of edges that run between vertices of the same  type
and subtract from this the fraction of edges that we would expect if edges
were positioned at  random without considering the vertex type.

ci :  class or type  of vertex i ,  ci Î [1  …  nc]
nc :  total  number of classes

The  total  number of edges between vertices of the same  type  is

! 𝛿 𝑐$, 𝑐& =
1
2!𝐴$&𝛿 𝑐$, 𝑐&

�

$&

�

edges	   $,&

Here d(m,n)  is the Kronecker delta (d is 1  if m  =  n and 0  otherwise).
The  factor ½  accounts for the fact that every vertex pair  i,j is counted
twice in  the sum.
Aij are the elements of the adjacency matrix.
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Quantify  assortative mixing
Q:  How many edges do  we expect between vertices if the network contains in  
total  m edges that are placed randomly?

Consider a  particular edge attached to vertex i which has degree ki.

By way of construction,  the network contains 2m ends of edges.

If connections are made randomly,  the chances that the other end  of our
particular edge is one of the kj ends attached to vertex j is kj /  2m.

Counting all  ki edges attached to i ,  the total  expected number of edges
between 2  particular vertices i and j is then ki kj /  2m .
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Quantify  assortative  mixing
Hence,  the expected total  number of edges between all  pairs of vertices
of the same  type  is

	  	  
1
2!

𝑘$𝑘&
2𝑚 𝛿 𝑐$, 𝑐&

�

$&
where the factor ½  avoids double-counting vertex pairs.

Taking the difference between the actual and expected number of edges gives
3
4
∑ 𝐴$&𝛿 𝑐$, 𝑐&�
$& − 3

4
∑ 7879

4:
𝛿 𝑐$, 𝑐&�

$& = 3
4
∑ 𝐴$& −

7879
4:

𝛿 𝑐$, 𝑐&�
$&

Typically one does not  calculate the absolute  number of such  edges
but  the fraction of edges,  which is obtained by dividing this by m

𝑄 =
1
2𝑚! 𝐴$& −

𝑘$𝑘&
2𝑚 𝛿 𝑐$, 𝑐&

�

$&
This  quantity Q  is called the modularity.  
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In  the simulated annealing (SA) approach,  one starts from an  initial  
partition  of  the  nodes  into  communities.  

At  each  step,  a  node  is  chosen  at  random  and  moved  to  a  different  
community,  also  chosen  at  random.  

If  the  change  improves  the  modularity  (DQ  >  0),  it  is  always  accepted,  
otherwise  it  is  accepted  with  a  probability  exp(DQ/kT).  

The  simulation  will  start  at  high  temperature  T  and  is  then  slowly  cooled  
down.

40

Comparison  of  modularity  maximization  methods
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Danon,  Duch,  Diaz-Guilera,  Arenas,  J.  Stat.  Mech.  P09008  (2005)

Comparison  of  modularity  maximization  methods

GN:
Girvan-Newman
algorithm (used as
standard here).

SA: simulated
annealing.

Most modern
algorithms work
better than GN.
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Strong  Communities
"Community :=  subgraph with more interactions inside than to the outside"

…strong sense when:

→ Check every node individually

A subgraph V is a community in a…

…weak sense when:

→ allow for borderline nodes

• Σ kin = 2,  Σ kout = 1
{kin, kout} = {1,1}, {1,0}
→ community in a weak sense

• Σ kin = 10,  Σ kout = 2
{kin, kout} = {2,1}, {2, 0}, {3, 1},  {2,0}, {1,0}
→ community in a strong and weak sense

Radicchi et al, PNAS 101 (2004) 2658
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Summary
What  you  learned  today:

Next lecture:  

•  Modular  decomposition
•  Robustness

•  how  to  combine  a  set  of  noisy  evidences into  a  powerful prediction  tool
→  Bayes  analysis

•  how  to  find  communities in  a  network  efficiently
→  betweenness,    edge-cluster-coefficient
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Additional  slides  (not  used)
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How  do  mutations  affect  protein  folding?

Sahni et al., Marc Vidal (2015) 
Cell 161, 647–660

Aim 2: How do disease mutations impact protein folding and disposition?

Measure how well hmORF-encoded proteins and their WT counterparts interact 
with cellular quality control factors (QCFs) using a quantitative high-
throughput LUMIER assay. 

They selected the following QCFs based on their broad specificity:
(1) the cytoplasmic chaperones HSP90 and HSC70, 
(2) their co-chaperones BAG2 and CHIP/STUB1, 
(3) the regulatory subunit PSMD2 of the proteasome and 
(4) the ER chaperones GRP78/BIP and GRP94.

Idea: Increased interaction between a QCF and mutant or WT protein, as measured 
by the LUMIER assay, indicates a mutation-induced perturbation in 
conformational stability that is often associated with compromised or 
complete loss of function.
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Experimental  pipeline

Sahni et al., Marc Vidal (2015) 
Cell 161, 647–660

Select mutations associated with a wide range of disorders, including 
- cancer susceptibility and 
- heart, respiratory, and neurological diseases.

Out of 16,400 such mutations affecting over 1,200 genes for which we have a wild-
type (WT) open-reading frame (ORF) clone in our human
‘‘ORFeome’’ collection, the authors selected 1 to 4 mutations per gene.
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Lumier  assay

Barrios-Rodiles, M. et al. High-throughput mapping of a dynamic signaling 
network in mammalian cells. Science 307, 1621−1625 (2005).

LUMIER stands for “luminescence-based mammalian 
interactome mapping”. 
In a LUMIER assay, a luciferase-tagged 'bait' protein is screened 
against a series of Flag-tagged 'prey' proteins. 

An antibody against Flag is used to affinity-purify the prey, and 
the prey-associated luminescence reveals the extent of bait 
interaction 

The antibodies (yellow) are immobilized on sepharose beads 
(black sphere). 

An array scanner can be used to quantify the relative extent of 
interaction for large numbers of assays.
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Interaction  with  QCFs

Sahni et al., Marc Vidal (2015) 
Cell 161, 647–660

The interaction profiles of most 
mutant proteins correlated with their 
WT counterparts. However, compared 
to a background control set, a 
significant enrichment was found 
for mutant alleles having increased 
interaction with QCFs (A–H) but 
little or no enrichment for decreased 
interaction (A).

(I) The interaction profiles of mutant 
proteins with the five cytoplasmic 
QCFs were highly correlated, distinct 
from those with the 2 ER factors. 
-> coordination and specificity of 
cellular quality control pathways. 

28% of the tested alleles exhibited 
increased binding to at least 1 of the 7 
QCFs tested.


