Bioinformatics 3 V 5 – Weak Indicators and Communities

Thu, Oct. 31, 2019

Noisy Data — Clear Statements?

For **yeast**: ~ 6000 proteins \rightarrow ~18 million potential interactions rough estimate: \leq 100000 interactions occur

- \rightarrow I true positive for 200 potential candidates = **0.5%**
- \rightarrow **decisive** experiment must have **accuracy** << 0.5% false positives

For yeast: 80000 interactions known, In 2002, only 2400 were found in > 1 experiment Possible reason:

Different experiments detect different interactions

Y2H: \rightarrow many false positives (up to 50% errors)

 $\textbf{Co-expression:} \rightarrow \textbf{gives indications at best}$

Combine weak indicators = ???

Conditional Probabilities

Joint probability for "A and B":

 $P(A \cap B) = P(A|B) P(B) = P(B|A) P(A)$

Solve for conditional probability for "A when B is true" \rightarrow Bayes' Theorem:

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)} = \frac{P(B|A)}{P(B)} P(A)$$

 $P(A) = prior probability (marginal prob.) for "A" \rightarrow no prior knowledge about A$

P(B) = prior probability for "B" \rightarrow normalizing constant

$$P(B | A) =$$
 conditional probability for "B given A"

P(A | B) = posterior probability for "A given B"

 \rightarrow Use information about B to improve knowledge about A

What are the Odds?

• Also consider case "A does not apply":

$$P(\bar{A}|B) = \frac{P(B|\bar{A})}{P(B)} P(\bar{A})$$

odds for A when we know about B
(we will interpret B as information or features):

$$O(A|B) = \frac{P(A|B)}{P(\bar{A}|B)} = \frac{P(B|A)}{P(B|\bar{A})} \frac{P(A)}{P(\bar{A})} = \Lambda(A|B) O(A)$$
posterior odds for A likelihood ratio prior odds for A

 $\Lambda(A \mid B) \rightarrow$ by how much does our knowledge about A improve?

2 types of Bayesian Networks

(I) Naive Bayesian network

 \rightarrow independent odds

 $O(A|B,C) = \Lambda(A|B) \Lambda(A|C) O(A)$

(2) Fully connected Bayesian networl		В	!B	
\rightarrow table of joint odds	С	0.3	0.16	$\Leftrightarrow \Lambda(A B,C)$
	!C	0.4	0.14	() 11(11 2,0)

Bayesian Analysis of Complexes

A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data

Ronald Jansen,¹* Haiyuan Yu,¹ Dov Greenbaum,¹ Yuval Kluger,¹ Nevan J. Krogan,⁴ Sambath Chung,^{1,2} Andrew Emili,⁴ Michael Snyder,² Jack F. Greenblatt,⁴ Mark Gerstein^{1,3}†

We have developed an approach using Bayesian networks to predict proteinprotein interactions genome-wide in yeast. Our method naturally weights and combines into reliable predictions genomic features only weakly associated with interaction (e.g., messenger RNA coexpression, coessentiality, and colocalization). In addition to de novo predictions, it can integrate often noisy, experimental interaction data sets. We observe that at given levels of sensitivity, our predictions are more accurate than the existing high-throughput experimental data sets. We validate our predictions with TAP (tandem affinity purification) tagging experiments. Our analysis, which gives a comprehensive view of yeast interactions, is available at genecensus.org/intint.

Science 302 (2003) 449

Improving the Odds

Features used by Jansen et al (2003):

- 4 experimental data sets of complexes
- mRNA co-expression profiles
- biological functions annotated to the proteins (GO, MIPS)
- essentiality for the cell

Gold Standard Sets

To determine $\Lambda(\text{Complex}|f_1, f_2, \dots) = \frac{P(f_1, f_2, \dots | \text{Complex})}{P(f_1, f_2, \dots | \text{no Complex})}$

 \rightarrow use two data sets with **known** features f_1, f_2, \ldots for **training**

Requirements for training data:

- i) independent of the data serving as evidence
- ii) large enough for good statistics
- iii) free of systematic bias

Gold Standard Positive Set (GP):

8250 complexes from the hand-curated MIPS catalog of protein complexes (MIPS stands for Munich Information Center for Protein Sequences)

"Gold Standard Negative Set" (GN):

2708746 (non-)complexes formed by proteins from different cellular compartments (assuming that such protein pairs likely do not interact).

Even if there are some exceptions to this, it is likely true for most PP pairs.

Prior Odds

$$O_{prior}(\text{Complex}) = \frac{P(\text{Complex})}{P(\text{no Complex})} = \frac{P(\text{Complex})}{1 - P(\text{Complex})}$$

Jansen et al:

- estimated \geq 30000 existing complexes in yeast
- 18 Mio. possible complexes

 \rightarrow *P*(Complex) \approx 1/600

 \rightarrow O_{prior} = 1/600

- \rightarrow The odds are 600 : I against picking a real complex by chance
- \rightarrow expect 50% good hits (TP \geq FP) when $\Lambda \approx$ 600 and higher

Note: Oprior is mostly an educated guess

Essentiality

Test whether both proteins are essential (E) for the cell or not (N) \rightarrow for protein complexes, EE or NN should occur more often

pos/neg: # of gold standard positives/ negatives with essentiality information

$$L(\text{Ess}) = \frac{P(\text{Ess} | \text{pos})}{P(\text{Ess} | \text{neg})}$$

-> Essentiality is a weak feature!

mRNA Co-Expression

Publicly available expression data from

- the Rosetta compendium
- the yeast cell cycle

The 2 data sets are likely correlated \rightarrow use principal components

Expression correlation			Gold stand	ard overlap			
		# protein pairs	pos	neg	P(exp pos)	P(exp neg)	L
	0.9	678	16	45	2.10E-03	1.68E-05	124.9
	0.8	4,827	137	563	1.80E-02	2.10E-04	85.5
	0.7	17,626	530	2,117	6.96E-02	7.91E-04	88.0
	0.6	42,815	1,073	5,597	1.41E-01	2.09E-03	67.4
	0.5	96,650	1,089	14,459	1.43E-01	5.40E-03	26.5
	0.4	225,712	993	35,350	1.30E-01	1.32E-02	9.9
	0.3	529,268	1,028	83,483	1.35E-01	3.12E-02	4.3
	0.2	1,200,331	870	183,356	1.14E-01	6.85E-02	1.7
ŝ	0.1	2,575,103	739	368,469	9.71E-02	1.38E-01	0.7
Ĩ	0	9,363,627	894	1,244,477	1.17E-01	4.65E-01	0.3
Š	-0.1	2,753,735	164	408,562	2.15E-02	1.53E-01	0.1
	-0.2	1,241,907	63	203,663	8.27E-03	7.61E-02	0.1
	-0.3	484,524	13	84,957	1.71E-03	3.18E-02	0.1
	-0.4	160,234	3	28,870	3.94E-04	1.08E-02	0.0
	-0.5	48,852	2	8,091	2.63E-04	3.02E-03	0.1
	-0.6	17,423	-	2,134	0.00E+00	7.98E-04	0.0
	-0.7	7,602	-	807	0.00E+00	3.02E-04	0.0
	-0.8	2,147	-	261	0.00E+00	9.76E-05	0.0
	-0.9	67	-	12	0.00E+00	4.49E-06	0.0
	Sum	18,773,128	7,614	2,675,273	1.00E+00	1.00E+00	1.0

-> Co-expression is a much better feature than essentiality! (higher likelihood ratio L)

Biological Function

Use MIPS function catalog and Gene Ontology function annotations

• determine functional class shared by the two proteins;

small values (1-9) indicate highest MIPS function or GO Biol. Process similarity

• count how many of the 18 Mio potential pairs share this classification

			Gold stand	ard overlap						
MIPS function similarity		# protein pairs	pos	neg	sum(pos)	sum(<i>neg</i>)	sum(pos)/ sum(neg)	P(MIPS pos)	P(MIPS neg)	L
	1 9	6,584	171	1,094	171	1,094	0.16	2.12E-02	8.33E-04	25.5
8	10 99	25,823	584	4,229	755	5,323	0.14	7.25E-02	3.22E-03	22.5
Ĩ	100 1000	88,548	688	13,011	1,443	18,334	0.08	8.55E-02	9.91E-03	8.6
Š	1000 10000	255,096	6,146	47,126	7,589	65,460	0.12	7.63E-01	3.59E-02	21.3
	10000 Inf	5,785,754	462	1,248,119	8,051	1,313,579	0.01	5.74E-02	9.50E-01	0.1
	Sum	6,161,805	8,051	1,313,579	-	-	-	1.00E+00	1.00E+00	1.0

			Gold stand	ard overlap						
GO biological process similarity		# protein pairs	pos	neg	sum(<i>pos</i>)	sum(<i>neg</i>)	sum(pos)/ sum(neg)	P(GO pos)	P(GO neg)	L
	1 9	4,789	88	819	88	819	0.11	1.17E-02	1.27E-03	9.2
SS	10 99	20,467	555	3,315	643	4,134	0.16	7.38E-02	5.14E-03	14.4
ne l	100 1000	58,738	523	10,232	1,166	14,366	0.08	6.95E-02	1.59E-02	4.4
Š	1000 10000	152,850	1,003	28,225	2,169	42,591	0.05	1.33E-01	4.38E-02	3.0
	10000 Inf	2,909,442	5,351	602,434	7,520	645,025	0.01	7.12E-01	9.34E-01	0.8
	Sum	3,146,286	7,520	645,025	-	-	-	1.00E+00	1.00E+00	1.0

-> Co-Functionality is a semi-weak feature!

Experimental Data Sets

In vivo pull-down:	Gavin et al, <i>Natur</i> e 415 (2002) 141 Ho et al, <i>Natur</i> e 415 (2002) 180	31304 pairs 25333 pairs
HT-Y2H:	Uetz et al, <i>Natur</i> e 403 (2000) 623 Ito et al, <i>PNAS</i> 98 (2001) 4569	981 pairs 4393 pairs

4 experiments on overlapping PP pairs

 \rightarrow 2⁴ = 16 categories — table represents fully connected Bayes network

Cavin		Lista	lto.	# protoin	Gold-standard overlap							
(g)	(h)	(u)	(i)	# protein pairs	pos	neg	sum(pos)	sum(nea)	sum(pos)/ sum(nea)	P(g,h,u,i pos)	P(g,h,u,i neg)	L
1	1	1	0	16	6	0	6	0	-	7.27E-04	0.00E+00	
1	0	0	1	53	26	2	32	2	16.0	3.15E-03	7.38E-07	4268.3
1	1	1	1	11	9	1	41	3	13.7	1.09E-03	3.69E-07	2955.0
1	0	1	1	22	6	1	47	4	11.8	7.27E-04	3.69E-07	1970.0
1	1	0	1	27	16	3	63	7	9.0	1.94E-03	1.11E-06	1751.1
1	0	1	0	34	12	5	75	12	6.3	1.45E-03	1.85E-06	788.0
1	1	0	0	1920	337	209	412	221	1.9	4.08E-02	7.72E-05	529.4
0	1	1	0	29	5	5	418	227	1.8	6.06E-04	1.85E-06	328.3
0	1	1	1	16	1	1	413	222	1.9	1.21E-04	3.69E-07	328.3
0	1	0	1	39	3	4	421	231	1.8	3.64E-04	1.48E-06	246.2
0	0	1	1	123	6	23	427	254	1.7	7.27E-04	8.49E-06	85.7
1	0	0	0	29221	1331	6224	1758	6478	0.3	1.61E-01	2.30E-03	70.2
0	0	1	0	730	5	112	1763	6590	0.3	6.06E-04	4.13E-05	14.7
0	0	0	1	4102	11	644	1774	7234	0.2	1.33E-03	2.38E-04	5.6
0	1	0	0	23275	87	5563	1861	12797	0.1	1.05E-02	2.05E-03	5.1
0	0	0	0	2702284	6389	2695949	8250	2708746	0.0	7.74E-01	9.95E-01	0.8

Statistical Uncertainties

Courin		11-4-	14.0	#		G	old			
(g)	(h)	(u)	(i)	# protein pairs	pos	neg		P(g,h,u,i pos)	P(g,h,u,i neg)	L
1	1	1	0	16	6		0	7.27E-04	0.00E+00	-
1	0	0	1	53	26		2	3.15E-03	7.38E-07	4268.3
1	1	1	1	11	9		1	1.09E-03	3.69E-07	2955.0
1	0	1	1	22	6		1	7.27E-04	3.69E-07	1970.0
1	1	0	1	27	16		3	1.94E-03	1.11E-06	1751.1
1	0	1	0	34	12		5	1.45E-03	1.85E-06	788.0

1) L(1111) < L(1001). This is counterintuitive.

statistical uncertainty: $\Delta N = \sqrt{N+1}$

Overlap of 4 experiments is smaller than for $2 \rightarrow$ larger uncertainty

2) L(1110) = NaN?

Use conservative lower bound \rightarrow assume 1 overlap with Gold Negatives \rightarrow then, $L(1110) \ge 1970$

Bioinformatics 3 – WS 19/20

Jansen et al, Science 302 (2003) 449

Overview

B

31,304 Integration of

25,333 experimental

4,393 data (PIE)

8,250 Training &

testing

981 interaction

Performance of complex prediction

Predictions

Experimental data

None of the individual evidences alone was enough to get

a likelihood ratio > 600,

neither predicted nor experimental evidences

B Given a pair of query proteins that potentially interact (QA, QB), try to find representative structures for the individual subunits (MA, MB) in the PDB, where available, or from homology model databases.

For each subunit, find both close and remote **structural neighbors**. A '**template**' for the interaction exists whenever a PDB structure contains a pair of interacting chains (e.g. NA_1 – NB_3) that are structural neighbors of MA and MB, respectively.

A **model** is constructed by **superimposing** the individual subunits, MA and MB, on their corresponding structural neighbors, NA₁ and NB₃.

Bioinformatics 3 – WS 19/20

Zhang et al, Nature (2012) 490, 556–560 V 4 – 17

Follow-up work: PrePPI (2012)

Zhang et al. assigned 5 empirical-structure-based scores to each interaction model and calculated a likelihood for each model to represent a true interaction by combining these scores using a Bayesian network trained on a high-confidence data set of positive interactors and a reference set of non-interactors.

Then, the structure-derived score (SM) was combined with non-structural evidence associated with the query proteins (for example, co-expression, functional similarity) using a **naive Bayesian classifier**.

Results of PrePPI

Receiver-operator characteristics (ROC) for predicted yeast complexes.

Examined features:

- structural modeling (SM),
- GO similarity (see VII),
- protein essentiality (ES) (see p.10),
- MIPS similarity (see p.12),
- co-expression (CE) (see V.13),
- phylogenetic profile (PP) similarity (V4).

Also listed are 2 combinations:

- NS for the integration of all non-structural features, i.e. GO, ES, MIPS, CE, and PP,

- PrePPI - all structural and non-structure features combined).

This approach predicted 30.000 highconfidence PP interactions for yeast and 300.000 for human.

Summary: Bayesian Analysis

Combination of weak features yields powerful predictions

- boosts odds via Bayes' theorem
- Gold standard sets for training the likelihood ratios

Bayes vs. other machine learning techniques:

(voting, unions, SVM, neuronal networks, decision trees, ...)

- \rightarrow **arbitrary types** of data can be combined
- \rightarrow weight data according to their **reliability**
- \rightarrow include conditional relations between evidences
- \rightarrow easily accommodates missing data (e.g., zero overlap with GN)
- \rightarrow **transparent** procedure
- \rightarrow predictions easy to **interpret**

Insert: Relation of PPI networks to diseases

In principle, a protein mutant can destabilize proteins (left) or perturb interactions (right)

Sahni et al., Marc Vidal (2015) Cell 161, 647–660

Bioinformatics 3 – WS 19/20

3 possible outcomes: all interactions kept, some or no interactions remain.

Disease alleles enriched in "edgetic" cases.

Q: Can one study this systematically on a genome-level? v4 - 21

Y2H: screen native PPIs

Aim: Systematic characterization of PPI perturbations associated with disease mutation.

Experimental dataset: 2,449 mutant proteins and their 1,072 corresponding WT proteins.

Approach: run Y2H screen how mutant and WT proteins interact with proteins encoded by the 7,200 ORFs in the human ORFeome v1.1.

Intersect this with the human interactome map HI-II-14 (enhance confidence).

-> interaction profiles for 460 mutant proteins and their 220 WT counterparts. Out of 1,316 PPIs (ca. 6 per protein), 521 interactions were perturbed.

Only 2 mutations conferred PPI gains, what suggests that gain of interactions may be a rare event in human disease. Sahni et al., Marc Vidal (2015) Cell 161, 647–660

Bioinformatics 3 – WS 19/20

Findings

Ca. 60% of disease-associated missense mutations perturb PPIs.

- Of these, half result in complete loss of interactions, generally caused by protein misfolding and impaired expression.

- The other half lead to **edgetic perturbations**.

Importantly, different mutations in the same gene frequently result in different interaction perturbation profiles.

Sahni et al., Marc Vidal (2015) Cell 161, 647–660

Connected Regions

Observation: There are **more interactions inside** a complex than to the outside

 \rightarrow Q: how can one identify highly connected regions in a network?

Suitable data structure to detect complexes (?): Fully connected region: **Clique**

clique := $G' = (V', E' = V'^{(2)})$

Problems with cliques:

- finding cliques is **NP-hard** (but can be done in O(N²) for sparsely
 connected biological networks)
- **biological** protein complexes are **not** always **fully** connected

Communities

Community := subset of vertices, for which the **internal** connectivity is **denser** than to the outside

Aim: map network onto tree that reflects the community structure

Radicchi et al, PNAS IOI (2004) 2658:

Define communities by agglomerative clustering

- Assign a weight W_{ij} to each pair of vertices *i*, *j* that measures how "closely related" these two vertices are.
- 2) Iteratively add edges between pairs of nodes with decreasing W_{ij}

Measures for W_{ij}:

 I) Number of vertex-independent paths between vertices *i* and *j* (vertex-independent paths between *i* and *j*: no shared vertex except *i* and *j*)

Menger (1927): the number of vertex-independent paths equals the number of vertices that have to be removed to cut all paths between *i* and *j* \rightarrow measure for network robustness

- 2) Number of edge-independent paths between i and j
- 3) **Total number of paths** *L* between *i* and *j*

but L = 0 or $\infty \rightarrow$ weight paths with their length α^{L} with $\alpha < I$

Problem: vertices with a single link are separated from the communities

Bioinformatics 3 – WS 19/20

Vertex and Edge Betweenness

4) Freeman (1927): count on how many **shortest paths** a vertex is visited

For a graph G = (V, E) with |V| = n

Betweenness for vertex v:

$$C_B(\nu) = \frac{\sum_{s \neq \nu \neq t \in V} \sigma_{st}(\nu)}{(n-1)(n-2)}$$

 $\sigma_{st}(v)$: shortest path including v. There are n - 1 other vertices besides v. They have shortest paths to n - 2 vertices. -> Computing shortest paths takes $O(n^2)$ operations

5) Alternative: edge betweenness → to how many shortest paths does this edge belong?

Girvan-Newman Algorithm

Girvan, Newman, PNAS 99 (2002) 7821:

For a graph G = (V, E) with |V| = n, |E| = m

- I) Calculate **betweenness** for all *m* edges
- 2) **Remove** edge with highest betweenness
- 3) **Recalculate** betweenness for all affected nodes
- 4) **Repeat** from 2) until no more edge is left (at most *m* iterations)
- 5) Build up **tree** from V by reinserting edges in reverse order

Works well, but **slow**: $O(mn^2) \approx O(n^3)$ for scale-free networks (|E| = 2 |V|)

Reason for complexity: shortest paths (n^2) are computed for *m* edges

 \rightarrow recalculating a **global** property is expensive for larger networks

Zachary's Karate Club

- observed friendship relations of 34 members over two years
- correlate fractions at break-up with calculated communities

Girvan, Newman, PNAS 99 (2002) 7821

Collaboration Network

Vertices: scientists at the Santa Fe Institute.

Symbols: scientific fields they work in.

Edges connect 2 authors that have coauthored a joint paper.

Shown is the largest component of the Santa Fe Institute collaboration network.

The primary divisions detected by the GN algorithm are indicated by different vertex shapes.

Girvan, Newman, PNAS 99 (2002) 7821

Determining Communities Faster

Radicchi et al, PNAS 101 (2004) 2658:

Determine edge weights via edge-clustering coefficient

 \rightarrow local measure

 \rightarrow much faster, esp. for large networks

Modified edge-clustering coefficient:

 \rightarrow fraction of potential triangles with edge between *i* and *j*

$$C_{i,j}^{(3)} = rac{z_{i,j}^{(3)} + 1}{\min[(k_i - 1), (k_j - 1)]}$$

Here, $z_{i,j}^{(3)}$ is the number of triangles, k_i and k_j are the degrees of nodes *i* and *j*.

Note: "+ I" to remove degeneracy for
$$z_{i,j}^{(3)} = 0$$

 $C^{(3)} = (2+1) / 3 = 1$

Algorithm works exactly like GN-algorithm except that at each iteration, the edge is removed with smallest $C_{i,j}^{(3)}$

Performance

 $\mathcal{T}_{i,j}^{(g)}$

Instead of triangles: **cycles** of higher order $g \rightarrow$ continuous transition to a global measure

Radicchi et al-algorithm: $O(N^2)$ for large networks

Radicchi et al, PNAS IOI (2004) 2658:

Comparison of algorithms

Data set: football teams from US colleges; different symbols = different conferences, teams played ca. 7 intraconference games and 4 interconference games in 2000 season.

Girven-Newman algorithm

Radicchi with g = 4

 \rightarrow very similar communities

Many approaches exist that try to maximize the modularity when a network is divided into communities.

Author	Ref.	Label	Order
Eckmann & Moses	[13]	EM	$O(m\langle k^2 \rangle)$
Zhou & Lipowsky	[14]	ZL	$O(n^3)$
Latapy & Pons	[15]	LP	$O(n^3)$
Newman	[24]	NF	$O(n\log^2 n)$
Newman & Girvan	[25]	NG	$O(m^2n)$
Girvan & Newman	[32]	GN	$O(n^2m)$
Guimerà et al.	[27, 43]	SA	parameter dependent
Duch & Arenas	[31]	DA	$O(n^2 \log n)$
Fortunato et al.	[33]	FLM	$O(n^4)$
Radicchi et al.	[34]	RCCLP	$O(n^2)$
Donetti & Muñoz	[35, 36]	DM/DMN	$O(n^3)$
Bagrow & Bollt	[37]	BB	$O(n^3)$
Capocci et al.	[38]	CSCC	$O(n^2)$
Wu & Huberman	[39]	WH	O(n+m)
Palla et al.	[40]	PK	$O(\exp(n))$
Reichardt & Bornholdt	[41]	RB	parameter dependent

Methods have different complexities.

Q: How well can each method detect communities in ad hoc networks with a well known, fixed community structure?

Table 1. Table summarising how the computational cost of different approaches scales with number of nodes n, number of links m and average degree $\langle k \rangle$ [42]. The labels shown here are used in Figures 2 and 3.

Danon, Duch, Diaz-Guilera, Arenas, J. Stat. Mech. P09008 (2005)

Generate many synthetic toy networks with n = 128 nodes that are split into 4 communities containing 32 nodes each.

Pairs of nodes belonging to the **same community** are linked with probability p_{in} whereas pairs belonging to different communities are joined with probability p_{out} .

Set value of p_{out} so that the average number of links that a node has to members of any other community, z_{out} , can be controlled.

While p_{out} (and therefore z_{out}) is varied freely, the value of p_{in} is chosen to keep the total average node degree, k, constant at k = 16.

Danon, Duch, Diaz-Guilera, Arenas, J. Stat. Mech. P09008 (2005)

As z_{out} increases, the communities become more and more diffuse and harder to identify (see figure from left to right).

Since the "real" community structure is well known in this case,

it is possible to measure the number of nodes correctly classified by the method of community identification.

Q: How can one quantify the quality of a division?

A good division is one where there are **fewer than expected** edges between groups.

Danon, Duch, Diaz-Guilera, Arenas, J. Stat. Mech. P09008 (2005)

Bioinformatics 3 – WS 19/20

Quantify assortative mixing

Find the fraction of edges that run between vertices of the same type and subtract from this the fraction of edges that we would expect if edges were positioned at random without considering the vertex type.

 c_i : class or type of vertex i, $c_i \in [1 \dots n_c]$

 n_c : total number of classes

The total number of edges between vertices of the same type is

$$\sum_{\text{edges}\,(i,j)} \delta(c_i, c_j) = \frac{1}{2} \sum_{ij} A_{ij} \delta(c_i, c_j)$$

Here $\delta(m,n)$ is the Kronecker delta (δ is 1 if m = n and 0 otherwise). The factor $\frac{1}{2}$ accounts for the fact that every vertex pair *i*,*j* is counted twice in the sum.

 A_{ii} are the elements of the **adjacency matrix**.

Quantify assortative mixing

Q: How many edges do we expect between vertices if the network contains in total *m* edges that are placed randomly?

Consider a particular edge attached to vertex *i* which has degree k_i .

By way of construction, the network contains 2m ends of edges.

If connections are made randomly, the chances that the other end of our particular edge is one of the k_i ends attached to vertex *j* is $k_i / 2m$.

Counting all k_i edges attached to i, the total expected number of edges between 2 particular vertices i and j is then $k_i k_j / 2m$.

Quantify assortative mixing

Hence, the expected total number of edges between all pairs of vertices of the same type is

$$\frac{1}{2}\sum_{ij}\frac{k_ik_j}{2m}\delta(c_i,c_j)$$

where the factor $\frac{1}{2}$ avoids double-counting vertex pairs.

Taking the difference between the actual and expected number of edges gives $\frac{1}{2}\sum_{ij}A_{ij}\delta(c_i,c_j) - \frac{1}{2}\sum_{ij}\frac{k_ik_j}{2m}\delta(c_i,c_j) = \frac{1}{2}\sum_{ij}\left(A_{ij} - \frac{k_ik_j}{2m}\right)\delta(c_i,c_j)$

Typically one does not calculate the absolute number of such edges but the fraction of edges, which is obtained by dividing this by m

$$Q = \frac{1}{2m} \sum_{ij} \left(A_{ij} - \frac{k_i k_j}{2m} \right) \delta(c_i, c_j)$$

This quantity Q is called the **modularity**.

In the **simulated annealing (SA)** approach, one starts from an initial partition of the nodes into communities.

At each step, a node is chosen at random and moved to a different community, also chosen at random.

If the change improves the modularity ($\Delta Q > 0$), it is always accepted, otherwise it is accepted with a probability $exp(\Delta Q/kT)$.

The simulation will start at high temperature T and is then slowly cooled down.

GN: Girvan-Newman algorithm (used as standard here).

SA: simulated annealing.

Most modern algorithms work better than GN.

Danon, Duch, Diaz-Guilera, Arenas, J. Stat. Mech. P09008 (2005)

Strong Communities

"Community := subgraph with more interactions inside than to the outside"

A subgraph V is a **community** in a...

...strong sense when:

 $k_i^{in}(V) \ > \ k_i^{out}(V) \quad \forall i \in V$

 \rightarrow Check every node individually

... weak sense when:

$$\sum_{i \in V} k_i^{in}(V) > \sum_{i \in V} k_i^{out}(V)$$

 \rightarrow allow for borderline nodes

Radicchi et al, PNAS IOI (2004) 2658

- $\Sigma k_{in} = 2$, $\Sigma k_{out} = 1$
 - ${k_{in}, k_{out}} = {\mathbf{I}, \mathbf{I}}, {\mathbf{I}, 0}$
- \rightarrow community in a weak sense
- $\Sigma k_{in} = 10, \ \Sigma k_{out} = 2$ { k_{in}, k_{out} } = {2,1}, {2,0}, {3,1}, {2,0}, {1,0}
- \rightarrow community in a strong and weak sense

Summary

What you learned **today**:

- how to combine a set of **noisy evidences** into a **powerful** prediction tool
- \rightarrow Bayes analysis
- how to find **communities** in a network efficiently
- \rightarrow betweenness, edge-cluster-coefficient

Next lecture:

- Modular decomposition
- Robustness

Additional slides (not used)

How do mutations affect protein folding?

Aim 2: How do disease mutations impact protein folding and disposition?

Measure how well hmORF-encoded proteins and their WT counterparts interact with cellular **quality control factors** (QCFs) using a quantitative high-throughput LUMIER assay.

They selected the following QCFs based on their broad specificity:

(1) the cytoplasmic chaperones HSP90 and HSC70,

- (2) their **co-chaperones** BAG2 and CHIP/STUBI,
- (3) the regulatory subunit PSMD2 of the **proteasome** and
- (4) the **ER chaperones** GRP78/BIP and GRP94.

Idea: Increased interaction between a QCF and mutant or WT protein, as measured by the LUMIER assay, indicates a mutation-induced **perturbation** in **conformational stability** that is often associated with compromised or complete loss of function. Sahni et al., Marc Vidal (2015) Cell 161, 647–660

Experimental pipeline

Select **mutations** associated with a wide range of **disorders**, including

- cancer susceptibility and
- heart, respiratory, and neurological diseases.

Out of 16,400 such mutations affecting over 1,200 genes for which we have a wildtype (WT) open-reading frame (ORF) clone in our human "ORFeome" collection, the authors selected 1 to 4 mutations per gene.

> Sahni et al., Marc Vidal (2015) Cell 161, 647–660

Lumier assay

LUMIER stands for "luminescence-based mammalian interactome mapping".

In a LUMIER assay, a luciferase-tagged 'bait' protein is screened against a series of Flag-tagged 'prey' proteins.

An antibody against Flag is used to affinity-purify the prey, and the prey-associated luminescence reveals the extent of bait interaction

The antibodies (yellow) are immobilized on sepharose beads (black sphere).

An array scanner can be used to quantify the relative extent of interaction for large numbers of assays.

Barrios-Rodiles, M. et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science **307**, 1621–1625 (2005).

Interaction with QCFs

15

0.3

The interaction profiles of most mutant proteins correlated with their WT counterparts. However, compared to a background control set, a significant enrichment was found for mutant alleles having increased interaction with QCFs (A-H) but little or no enrichment for decreased interaction (A).

(I) The interaction profiles of mutant proteins with the five cytoplasmic QCFs were highly correlated, distinct from those with the 2 ER factors. -> coordination and specificity of cellular quality control pathways.

28% of the tested alleles exhibited ^{0.7} increased binding to at least 1 of the 7 OCFs tested.

Sahni et al., Marc Vidal (2015) Cell 161, 647-660

V 4 48