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V 6 – Network analysis

- Dijkstra algorithm: compute shortest pathways

- Graph layout

- Network robustness

- are biological networks really scale-free?

Tue, Nov 5, 2019
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The Shortest Path Problem

Edsger Dijkstra

(1930-2002):

Problem:

Find the shortest path from a given vertex 

to the other vertices of the graph (Dijkstra 1959).

We need (input): • weighted graph G(V, E)

• start (source) vertex s in G

We get (output): • shortest distances d[v] between s and v

• shortest paths from s to v

Idea: Always proceed with 

the closest node

 greedy algorithm

Real world application:

 GPS navigation devices
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Dijkstra Algorithm 0

Initialization: for all nodes v in G:

d[v] = oo

pred[v] = nil

d[s] = 0
distance from source to source = 0

distance and path to all 

other nodes is still 

unknown

node 1 2 3 4 5 6 7

d 0 oo oo oo oo oo oo

pred – – – – – – –

In the example:  s = 1

d[v] = length of path from s to v

pred[v] = predecessor node on the shortest path
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Dijkstra I

Iteration: Q = V

while Q is not empty:

u = node with minimal d

if d[u] = oo:

break

delete u from Q

for each neighbor v of u:

d_temp = d[u] + d(u,v)

if d_temp < d[v]:

d[v] = d_temp

pred[v] = u

return pred[]C

Save {V} into working copy Q

choose node closest to s

exit if all remaining 

nodes are inaccessible

calculate distance to u's 

neighbors

if new path is shorter

=> update
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Dijkstra-Example

1) Q = (1, 2, 3, 4, 5, 6, 7)

2) Q = (2, 3, 4, 5, 6, 7)

3)
Q = (2, 3, 5, 6, 7)

4)
Q = (2, 5, 6, 7)

node 1 2 3 4 5 6 7

d 0 26 21 12 30 37 42

pred – 3 4 1 4 4 2

node 1 2 3 4 5 6 7

d 0 26 21 12 30 37 oo

pred – 3 4 1 4 4 –

node 1 2 3 4 5 6 7

d 0 oo 21 12 30 37 oo

pred – – 4 1 4 4 –

node 1 2 3 4 5 6 7

d 0 oo 23 12 oo oo oo

pred – – 1 1 – – –
Q = V

while Q is not empty:

u = node with minimal d

if d[u] = oo:

break

delete u from Q

for each neighbor v of u:

d_temp = d[u] + d(u,v)

if d_temp < d[v]:

d[v] = d_temp

pred[v] = u

return pred[]C
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Example contd.

Q = (2, 5, 6, 7)4)

Q = (6, 7)

Q = (7)
Final result:

d(1, 7) = 42 path = (1, 4, 3, 2, 7)

Q = (5, 6, 7)5)

d(1, 6) = 37 path = (1, 4, 6)  or (1,4,5,6)

node 1 2 3 4 5 6 7

d 0 26 21 12 30 37 42

pred – 3 4 1 4 4 2

node 1 2 3 4 5 6 7

d 0 26 21 12 30 37 42

pred – 3 4 1 4 4 2

node 1 2 3 4 5 6 7

d 0 26 21 12 30 37 42

pred – 3 4 1 4 4 2
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Beyond Dijkstra

Graphs with positive and negative weights

 Bellman-Ford-algorithm

If there is a heuristic to estimate weights:  

 improve efficiency of Dijkstra

 A*-algorithm

Dijkstra works for directed and undirected graphs with

non-negative weights.

Straight-forward implementation:  O(N2)
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Graph Layout
Task: visualize various interaction data:

e.g. protein interaction data (undirected): 

nodes – proteins

edges – interactions

metabolic pathways (directed)

nodes – substances

edges – reactions

regulatory networks (directed): 

nodes – transcription factors/miRNAs + regulated proteins/miRNAs

edges – regulatory interactions

co-localization (undirected)

nodes – proteins

edges – co-localization information

homology (undirected/directed)

nodes – proteins

edges – sequence similarity (BLAST score)
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Graph Layout Algorithms

Graphs encapsulate relationship between objects

 drawing gives visual impression of these relations

Good Graph Layout:  aesthetic

• minimal edge crossing

• highlight symmetry (when present in the data)

• even spacing between the nodes

Many approaches in literature (and in software tools), 

most useful ones are usually NP-complete (exponential runtime)

Most popular for straight-edge-drawing:

 force-directed:  spring model or spring-electrical model

 embedding algorithms like H3 or LGL (not covered)
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Force-Directed Layout

Peter Eades (1984):  graph layout heuristic

 "Spring Embedder'' algorithm. 

• edges  springs 

vertices  rings that connect the springs 

• Layout by dynamic relaxation

 lowest-energy conformation

 "Force Directed'' algorithm

http://www.hpc.unm.edu/~sunls/research/treelayout/node1.html
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Energy and Force

Height

Distance

Downhill force

Distance

Energy increases when 

you go up the hill

Energy: describes the 

altitude of the landscape

You need more force 

for a steeper ascent

Force: describes the 

change of the altitude, 

points downwards.
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Spring Embedder Layout

Springs regulate the mutual distance between the nodes

• too close  repulsive force

• too far  attractive force

Spring embedder algorithm:

• add springs for all edges

• add loose springs to all non-adjacent vertex pairs

Total energy of the system:

xi, xj = position vectors for nodes i and j

lij = rest length of the spring between i and j

R = spring constant (stiffness)

Problem: lij have to be determined a priori, e.g., from network distance
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Spring Model Layout

Task:  find configuration of minimal energy

In 2D/3D:  force = negative gradient of the energy

 Iteratively move nodes "downhill" along the gradient of the energy

 displace nodes proportional to the force acting on them

Problems:

• local minima

• a priori knowledge of all spring lengths

 works best for regular grids
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The Spring-Electrical-Model

More general model than spring embedder model:  use two types of forces

1) attractive harmonic force between connected nodes (springs)

2) repulsive Coulomb-like force between all nodes

"all nodes have like charges"  repulsion

one uses usually the same 

spring constant k for all edges

either Qij = Q or, e.g., Qij = ki kj

Repulsion pushes all nodes apart,  springs pull connected nodes together

 workhorse method for small to medium sized graphs

 Do-it-yourself in Assignment 4 (?) <=
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Spring-Electrical Example

http://www.it.usyd.edu.au/~aquigley/3dfade/
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Force-Directed Layout:  Summary
Analogy to a physical system

=> force directed layout methods tend to meet various aesthetic

standards:

Side-effect: vertices at the periphery tend to be closer to 

each other than those in the center…

• efficient space filling, 

• uniform edge length (with equal weights and repulsions)

• symmetry

• smooth animation of the layout process (visual continuity)

Force directed graph layout  the "work horse" of layout algorithms. 

Not so nice: the initial random placement of nodes and even 

very small changes of layout parameters will lead to different 

representations.

(no unique solution)
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Runtime Scaling

Force directed layout:

loop until convergence:

calculate forces:

L springs

N(N-1)/2 charge pairs

move vertices

output positions

O(N2)!!!

Several possible 

arrangements!!!

(local minima)

 force directed layout suitable for small to medium graphs (≤ O(1000) nodes?)

Speed up layout by:

• multi-level techniques to overcome local minima

• clustering (octree) methods for distant 

groups of nodes  O(N log N)
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Network Robustness

Network  =  set of connections

→ Robustness =  how much does the network (not) 

change when edges/nodes are removed

Failure events: • loss of edges

• loss of nodes (together with their edges)

→ loss of connectivity

• paths become longer (detours required)

• connected components break apart

→ network characteristics change
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Random vs. Scale-Free

Albert, Jeong, Barabási,  

Nature 406 (2000) 378

130 nodes,  215 edges

The top 5 nodes with the highest k connect to…

… 27% of the network … 60% of the network
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Failure vs.  Attack

fraction of nodes removed

n
e
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ia
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Failure:  remove randomly

selected nodes

Attack:  remove nodes with

highest degrees

N = 10000,  L = 20000,  but effect is size-independent;

Interpretation: 

SF network diameter increases strongly when network is attacked 

but not when nodes fail randomly

Albert, Jeong, Barabási,  Nature 406 (2000) 378

SF: scale-free network -> attack

E: exponential (random) network

-> failure / attack

SF: failure



Bioinformatics 3 – WS 19/20 V 6  – 22

Two real-world networks

fraction of nodes removed
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Albert, Jeong, Barabási,  

Nature 406 (2000) 378

Scale-free: • very stable against random failure ("packet re-rooting")

• very vulnerable against dedicated attacks ("9/11")

http://moat.nlanr.net/Routing/rawdata/ :

6209 nodes and 12200 links (2000)

WWW-sample containing 325729 

nodes and 1498353 links

http://moat.nlanr.net/Routing/rawdata/


Bioinformatics 3 – WS 19/20 V 6  – 23

Network Fragmentation

fraction of nodes removed

c
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 <

s
><s>: average size of the 

isolated clusters (except 

the largest one)

S: relative size of the 

largest cluster S; this 

is defined as the 

fraction of nodes 

contained in the 

largest cluster (that 

is, S = 1 for f = 0)

• no difference between attack and failure (homogeneity)

• fragmentation threshold at fc ≳ 0.28   (S ≈ 0)

Random network:

• delayed fragmentation and isolated nodes for failure

• critical breakdown under attack at fc ≈ 0.18

Scale-free network:

Albert, Jeong, Barabási,  

Nature 406 (2000) 378
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24

Jeong, Mason, Barabási, Oltvai,  Nature 411 (2001) 41

→ "PPI networks

apparently are 

scale-free…"

"Are" they scale-free

or

"Do they look like" 

scale-free???

largest cluster of the yeast proteome (at 2001)
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25

Nature Biotech 23 (2005) 839

Generate networks of various types,

sample sparsely from them

→ determine degree distribution

• Random (ER / Erdös-Renyi) → P(k) = Poisson

• Exponential (EX) → P(k) ~ exp[-k]

• scale-free / power-law (PL) → P(k) ~ k–γ

• P(k) = truncated normal distribution (TN)
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Partial Sampling

Estimated for yeast:    6000 proteins,   30000 interactions

Y2H experiments detected only 3…9% of the complete interactome!

Han et al,  Nature Biotech 23 (2005) 839
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Given: a data set with n values y1,...,yn and 

a set of fitted / predicted / modelled values f1,...,fn e.g. from linear regression.

We call their difference residuals ei = yi − fi

and the mean value

The total sum of squares (proportional to the variance of the data) is:

The sum of squares of residuals is:

The coefficient of determination, R2 or r2 is often defined as:

R square

www.wikipedia.org
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Sparsely Sampled random (ER) Network

resulting P(k) for different coverages
(c) Shows linearity (R square) between detected 

P(k) and ideal power law; good agreement (red; 

R 1 for low edge coverage)

→ for sparse sampling (10-20%), even an ER network 

"looks" scale-free (when only P(k) is considered)

Han et al,  Nature Biotech 23 (2005) 839

R square

(b) Shows log-scale
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Anything Goes – different topologies

Han et al,  Nature Biotech 23 (2005) 839

All network topologies look scale-free (red) when undersampled
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Compare to Uetz et al. data

Sampling density affects observed degree distribution

→ true underlying network cannot be identified from available data

Han et al,  Nature Biotech 23 (2005) 839

Uetz et al. data

(solid line) is

compared to 

sampled 

networks of

similar size.
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Link prediction based on PPI network
Kovács, ... Vidal & 

Barabási

Nature Commun. 10, 

1240 (2019) 

(a) In social networks, a large number of common friends implies a higher 

chance to become friends (red link between nodes X and Y), known as the 

Triadic Closure Principle (TCP). 

TCP predicts (P) links based on node similarity (S), quantifying the 

number of shared neighbors between each node pair (A2). 

(b) A basic mathematical formulation of TCP would imply that protein pairs 

of high Jaccard similarity are more likely to interact
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TCP does not apply to PPI networks
Kovács, ... Vidal & 

Barabási

Nature Commun. 10, 

1240 (2019) 

However, Kovács and co-workers did not observe the expected trend in 

Protein-Protein Interaction (PPI) datasets, as illustrated here for a binary 

human PPI network (HI-II-14): high Jaccard similarity indicates a lower 

chance for the proteins to interact. 

The data are binned logarithmically based on the Jaccard similarity values.

J = |NX ∩ NY| / |NX ∪ NY|, 

where NX and NY are the 

interaction partners of X 

and Y.
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PPIs involve binding interfaces

Kovács, ... Vidal & 

Barabási

Nature Commun. 10, 

1240 (2019) 

PPIs often require complementary interfaces 

(see V8). 

Hence, two proteins, X and Y, with similar 

interfaces share many of their neighbors. 

Yet, a shared interface does not typically 

guarantee that X and Y directly interact with 

each other. 

Instead, an additional interaction partner of X 

(protein D) might be also shared with protein Y 

(blue link). 

Such a link can be predicted by using paths of 

length 3 (L3). L3 identifies similar nodes to the 

known partners (P = AS), going one step 

beyond the similarity-based argument of TCP.



Bioinformatics 3 – WS 19/20 V 6  – 34

Structural illustration of L3 principle

Kovács, ... Vidal & 

Barabási

Nature Commun. 10, 

1240 (2019) 

We will illustrate this link prediction 

principle with existing 3D structural data

on two human proteins from PDB,

CDC42 and RHOA that interact with 

some of their partners through the 

same shared interface.

CDC42 and RHOA are not known to 

interact with each other. But we expect 

them to share some additional 

interaction partners, interacting with the 

same shared interface. 

From a network perspective, the 

structurally inferred (blue) interaction 

between ITSN1 and RHOA connects 

nodes that are linked by a larger 

number of paths of length l = 3. 
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L3 applies to PPI networks

Kovács, ... Vidal & 

Barabási

Nature Commun. 10, 

1240 (2019) 

e Even without using any structural information, two proteins, such as Y 

and D are expected to interact if they are linked by multiple ℓ = 3 paths in 

the network (L3). 

f A strong positive trend in HI-II-14 is observed between the probability of

two proteins interacting and the number of ℓ=3 paths between them, 

supporting the validity of the L3 principle
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Apply degree normalization

Kovács, ... Vidal & 

Barabási

Nature Commun. 10, 

1240 (2019) 

High-degree nodes (hubs) induce multiple, unspecific shortcuts in the 

network, resulting in biased predictions that can only be avoided by proper 

degree normalization.

Such degree normalization is particularly important for L3, as it needs to 

choose candidates from nodes at l = 3 steps, an exponentially larger pool 

than the l = 2 distance pool utilized by TCP.

To eliminate potential degree biases caused by intermediate hubs, we 

assign a degree-normalized L3 score to each node pair, X and Y

where kU is the degree of node U and aXU = 1 if proteins X and U

interact, and zero otherwise.
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Cross-validation

Kovács, ... Vidal & 

Barabási

Nature Commun. 10, 

1240 (2019) 

We randomly select 50% of the PPIs and use it 

as the input network to predict the rest of the 

PPIs. 

L3 outperforms Common Neighbors (CN) on 

PPI networks. Monte Carlo cross-validation of 

CN (a TCP implementation). 

Precision: fraction of interacting proteins vs. all 

predicted pairs.

Recall : fraction of predicted PPIs compared to 

the number of test PPIs. 
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High-throughput validation

Kovács, ... Vidal & 

Barabási

Nature Commun. 10, 

1240 (2019) 

Top 500 predicted interactions were 

tested by Y2H method (positives and 

negative combinations).

-> High validation rate

-> L3 method outperforms all other 

link prediction methods (such as 

PrePPI) at least 2-fold.
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L3 predicted interaction

Kovács, ... Vidal & 

Barabási

Nature Commun. 10, 

1240 (2019) 

For 2 proteins involved in 

retinitis pigmentosa, 

FAM161A and PRPF31, we 

show all known interacting 

partners (gray), together 

with those predicted by the 

L3 algorithm and confirmed 

by pairwise tests (blue).

The top L3 predicted 

interaction is connecting 

FAM161A to GOLGA2, two 

proteins without any shared 

interaction partners. The 

node size and color 

illustrates the degree of the 

proteins in HI-tested. 
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Link to evolution

Kovács, ... Vidal & 

Barabási

Nature Commun. 10, 

1240 (2019) 

A key evolutionary mechanism responsible for the emergence of novel 

proteins is gene duplication (see V7).

If protein V duplicates, the duplicated node (V') will (at least initially) 

retain the links of the original protein.

This may partly explain the success of L3.



Bioinformatics 3 – WS 19/20 V 6  – 41

Summary

What you learned today:

Next lecture:

- graph bisection (-> communities)

- graph modularity

- network growth

- functional annotation in the network

• Graph layout: spring-electric layout algorithm 

produces aesthetic graphs

• Network robustness

scale-free networks are failure-tolerant, but fragile to attacks

<=> the few hubs are important

=> immunize hubs!

• L3 principle suitable for link prediction
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Additional slides (not used)
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Transcriptional activation

Mediator

looping 

factors

DNA-looping enables interactions for the distal 

promotor regions,

Mediator cofactor-complex serves as a huge linker
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cis-regulatory modules

TFs are not dedicated activators or respressors!

It‘s the assembly that is crucial.

coactivators

corepressor

TFs

IFN-enhanceosome from RCSB Protein Data Bank, 2010
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Borrow idea from ClusterOne method:

Identify candidates of TF complexes

in protein-protein interaction graph

by optimizing the cohesiveness

Protein complexes involving 

multiple transcription factors
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underlying domain-domain representation of 

PPIs

Green proteins A, C, E form actual complex. 

Their red domains are connected by the two green edges.

B and D are incident proteins. They could form new interactions 

(red edges) with unused domains (blue) of A, C, E

Assumption: every domain supports only one interaction.
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data source used: Yeast Promoter Atlas, 

PPI and DDI

Will, T. and Helms, V. (2014) 

Bioinformatics, 30, i415-i421



Bioinformatics 3 – WS 19/20 V 6  – 48

Daco identifies far more TF complexes than 

other methods
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Examples of TF complexes – comparison 

with ClusterONE

Green nodes: proteins in the 

reference that were matched by 

the prediction 

red nodes: proteins that are in 

the predicted complex, but not 

part of the reference.
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Performance evaluation
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Co-expressed target genes of MET4/MET32

TF complex during yeast cell cycle
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Functional role of TF complexes


