V 6 — Network analysis

- Dijkstra algorithm: compute shortest pathways
- Graph layout
- Network robustness

- are biological networks really scale-free?
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The Shortest Path Problem

Problem:
Find the shortest path from a given vertex
to the other vertices of the graph (Dijkstra 1959).

We need (input):  « weighted graph G(V, E)
« start (source) vertex s in G

B\ G
A 1 : :'[‘ ._5 WY “_‘
S - Yoy
LIRSS

We get (output): « shortest distances d[v] between s and v Edsger Dijksfa
* shortest paths from s to v (1930-2002):

ldea: Always proceed with
the closest node
— greedy algorithm

Real world application:
— GPS navigation devices
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Dijkstra Algorithm O

Initialization:  £or a11 nodes v in G: distance and path to all
d[v] = oo D other nodes is still
pred[v] = nil unknown
< distance from source to source =0
d[s] = 0

dlv] =length of path from stov
pred|[v] = predecessor node on the shortest path

In the example: s=1

node |1 2 3 4 5 6 7

d O 00 00 00 00 00 00

pred [- - - - - — -
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Dijkstra |

lteration: o - v Save {V} into working copy Q

while Q 1s not empty:
B — AeckE welEh aielacmied @ choose node closestto s
if d[u] = oo: exit if all remaining
break nodes are inaccessible

delete U from § calculate distance to u's
for each neighbor v of u: neighbors

d temp = d[u] + d(u,Vv) . .
~ If new path is shorter

if d temp < d[v]: => update
dlv] = d temp
pred[v] = u

return pred[]C
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Dijkstra-Example

Q=(1,2,3,4,506,7)
node 1 2 3 4 5 6 7

d O oo 23 12 o0 00 00
pred - -1 1 - - -
Q =V
while Q is not empty:
Q — (21 31 41 51 61 7) u = node with minimal d
node 1 2 3 4 5 6 7 if d[u] = oo:
d 0O oo 21 12 30 37 oo break
pred — — 4 1 4 4 — delete u from Q
for each neighbor v of u:
Q= (2, 3,5, 6, 7) d_temp = df[u] + d(u,v)
node 1 2 3 4 5 6 7 if d_temp < d[v]:
dlv] = d temp
d [0 26 21 12 30 37 o0 rediv] = u
pred - 3 4 1 4 4 " return pred[]C
Q=(2,56,7)

node 1 2 3 4 5 6 7
d O 26 21 12 30 37 42
pred - 3 4 1 4 4 2
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Example contd.

Q=(2,506,7)
node 1 2 3 4 5 6 7
d O 26 21 12 30 37 42

pred - 3 4 1 4 4 2
Q=(5,6,7)
node 1 2 3 4 5 6 7
d O 26 21 12 30 37 42
pred - 3 4 1 4 4 2
Q=(6,7)
Q=(7)
node 1 2 3 4 5 6 7
d O 26 21 12 30 37 42
pred - 3 4 1 4 4 2
d(1, 7) =42 path=(1, 4, 3, 2, 7)

d(1, 6) =37 path = (1, 4, 6) or (1,4,5,6)

V6 -6
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Beyond Dijkstra

Dijkstra works for directed and undirected graphs with
non-negative weights.

Straight-forward implementation: O(N?)

Graphs with positive and negative weights
— Bellman-Ford-algorithm

If there Is a heuristic to estimate weights:
— Improve efficiency of Dijkstra
— A*-algorithm
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Graph Layout

Task: visualize various interaction data:

e.g. protein interaction data (undirected):
nodes — proteins
edges — interactions

metabolic pathways (directed)
nodes — substances
edges — reactions

regulatory networks (directed):
nodes — transcription factors/miRNAs + regulated proteins/miRNAsS
edges — regulatory interactions

co-localization (undirected)
nodes — proteins
edges — co-localization information

homology (undirected/directed)
nodes — proteins
edges — seguence similarity (BLAST score)
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Graph Layout Algorithms

Graphs encapsulate relationship between objects
— drawing gives visual impression of these relations

Good Graph Layout: aesthetic

* minimal edge crossing

* highlight symmetry (when present in the data)
* even spacing between the nodes

Many approaches in literature (and in software tools),
most useful ones are usually NP-complete (exponential runtime)

Most popular for straight-edge-drawing:

— force-directed: spring model or spring-electrical model
— embedding algorithms like H3 or LGL (not covered)
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Force-Directed Layout

Peter Eades (1984). graph layout heuristic

— "Spring Embedder" algorithm. -
e edges — springs
vertices — rings that connect the springs {i l
e Layout by dynamic relaxation
— lowest-energy conformation / -

— "Force Directed" algorithm

http://www.hpc.unm.edu/~sunls/research/treelayout/nodel.html
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Energy and Force

Energy: describes the
altitude of the landscape

E(x) = mgh(x)

Height

SN

Energy increases when
you go up the hill

Distance

e You need more force
A for a steeper ascent

g — e
*Dista::e F(m) - diE
/ Force: describes the

change of the altitude,
points downwards.
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Spring Embedder Layout

Springs regulate the mutual distance between the nodes
* too close — repulsive force
* too far — attractive force

Spring embedder algorithm:
» add springs for all edges
» add loose springs to all non-adjacent vertex pairs >

Vi—-1 |V

= ) Z (I — 5] — lij)*

i=1 j=i1+1 "3-?

Total energy of the system:

Xi, Xj = position vectors for nodes i and |
i =restlength of the spring between | and |
R = spring constant (stiffness)

Problem: lij have to be determined a priori, e.g., from network distance
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Spring Model Layout

Task: find configuration of minimal energy

In 2D/3D: force = negative gradient of the energy OE \
Ox
o N SE
F(Z) = -VE(@Z) = — | 5/
%
0z

— Iteratively move nodes "downhill" along the gradient of the energy
— displace nodes proportional to the force acting on them

Problems:

* local minima

* a priori knowledge of all spring lengths
— works best for regular grids
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The Spring-Electrical-Model

More general model than spring embedder model: use two types of forces

1) attractive harmonic force between connected nodes (springs)

Fh — _Elpr — one uses usually the same
ij — Ty —Tj) .
spring constant k for all edges

2) repulsive Coulomb-like force between all nodes
"all nodes have like charges" — repulsion

Qz’j

FEc =
YT P

either Q= Q or, e.g., Qi =kik;

Repulsion pushes all nodes apart, springs pull connected nodes together
— workhorse method for small to medium sized graphs

— Do-it-yourself in Assignment 4 (?) <=
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Spring-Electrical Example

e _o—9
o °® o =
o T WSS o)
| @ @ © O
. e o
© o o
(a) (b) (c)
* o
N\ e
| e o o © ®
- S . :
(d) (e) o ©

http://www.it.usyd.edu.au/~aquigley/3dfade/
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Force-Directed Layout: Summary

Analogy to a physical system
=> force directed layout methods tend to meet various aesthetic
standards:

» efficient space filling,

* uniform edge length (with equal weights and repulsions)

e symmetry

e smooth animation of the layout process (visual continuity)

Force directed graph layout — the "work horse" of layout algorithms.

Not so nice: the initial random placement of nodes and even
very small changes of layout parameters will lead to different
representations.

(no unique solution)

Side-effect: vertices at the periphery tend to be closer to
each other than those in the center...
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Runtime Scaling

Force directed layout: Several possible
— arrangements!!!

(local minima)

loop until convergence: <

calculate forces:
L springs

< 2\111
N(N-1) /2 charge pairs O(N=)!!

move vertices

output positions

— force directed layout suitable for small to medium graphs (< O(1000) nodes?)

Speed up layout by: ~(

* multi-level technigues to overcome local minima L

* clustering (octree) methods for distant
groups of nodes — O(N log N)
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Network Robustness

Network = set of connections

Failure events:. e loss of edges
* loss of nodes (together with their edges)

— loss of connectivity
 paths become longer (detours required)
» connected components break apart
— network characteristics change

YR,

— Robustness = how much does the network (not)
change when edges/nodes are removed
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Error and attack tolerance
of complex networks

Réka Albert, Hawoong Jeong & Albert-Laszlé Barabasl

Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame,
Notre Dame, Indiana 46556, USA

i

s Many complex systems display a surprising degree of tolerance
against errors. For example, relatively simple organisms grow,
persist and reproduce despite drastic pharmaceutical or
environmental interventions, an error tolerance attributed to

;  the robustness of the underlying metabolic network'. Complex

communication networks’ display a surprising degree of robust-

ness: although key components regularly malfunction, local fail-
| ures rarely lead to the loss of the global information-carrying
ability of the network. The stability of these and other complex

- systems is often attributed to the redundant wiring of the func-

tional web defined by the systems’ components. Here we demon-

strate that error tolerance is not shared by all redundant systems:
it is displayed only by a class of inhomogeneously wired networks,

millan Magazines Ltd NATURE| VOL 406 |27 JULY 2000 | www.nature.com
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Random vs. Scale-Free

a e ? * e b §
] e* 09 %
& ° o® ®
& ° ©
. . o * o *
' » ® s *
“ EJ ¥ > . o.. 1 ;. ‘0 ®
% s ° o y e W O
* e ) R & * < M A v ®
° = | *‘ < ., o ”'. s ° Lo 3 .. "-.-‘ A _-* 3 N ..
U % X g « caikd’
: few AR L4 . Io._‘.q % .. A& ‘1.. & 7 .,0 ‘ ®
° e S 1028 Mg RN oy o R S St d g I ®
> " ¥ ' " - ‘.-. f .. . h’ o ! [ ‘ ‘ ; \_":' / b
. e . o ® R o AN e .
A e g g | *e R R AN S
s e ‘ L e o .._. e \l. . “ ‘_ *.!?' = °
@ * o & 9 - o AANOF T T e
aQ ‘. . . , ® & o ‘-_‘_’i & . ° & .
o - " & L e ¢ 2 » ' . ® °
] o ; a
© b. LR P s o * & o
* 2 .. . o ®
. . ® %ece e
* 4
o
Exponential Scale-free

130 nodes, 215 edges

The top 5 nodes with the highest k connect to...
... 27% of the network

... 60% of the network

Albert, Jeong, Barabasi,
Bioinformatics 3 — WS 19/20
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Failure vs. Attack

Failure: remove randomly

selected nodes

—
Mo

—

network diameter

I

Failure 0
©  Attack o

o
|
<
O
O
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0

it

O
y o o 0 o o O o o o O O O o o o o o

o
F1

Qﬁﬁﬂoﬂo ]

& 00 | 0.02 | 0.04
fraction of nodes removed

Attack: remove nodes with
highest degrees

SF: scale-free network -> attack

E: exponential (random) network
-> failure / attack

SF: failure

N = 10000, L =20000, but effect is size-independent;

Interpretation:

SF network diameter increases strongly when network is attacked

but not when nodes fail randomly
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Two real-world networks

Scale-free:

—L
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network diameter
o
|
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0
0.00

fraction of nodes removed
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http://moat.nlanr.net/Routing/rawdata/ :

6209 nodes and 12200 links (2000)
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WWW-sample containing 325729

nodes and 1498353 links

Albert, Jeong, Barabasi,

Nature 406 (2000) 378

* very stable against random failure ("packet re-rooting")
* very vulnerable against dedicated attacks ("9/11")
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Network Fragmentation

<s>: average size of the
Isolated clusters (except
the largest one)

Mo
T
4]
o
J

I F & 5 |

- .\

S: relative size of the 1 S <s> e
o = Fajlure

cluster sizes S and <s>

largest cluster S; this o e Attack
s defined as the 5 £ *

: 8 ,~ €©
fraction of nodes %_ , M Sl By Y .
contained in the .0 0.2 0.4 0.0 0.2 0.4
largest cluster (that fraction of nodes removed

IS, S=1forf=0)

Random network: < no difference between attack and failure (homogeneity)
 fragmentation threshold atfc = 0.28 (S =0)

Scale-free network: « delayed fragmentation and isolated nodes for failure
« critical breakdown under attack at fc = 0.18

Albert, Jeong, Barabasi,
Bioinformatics 3 — WS 19/20 Nature 406 (2000) 378 V6 -23
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brief communications {

Lethality and centrality in protein networks

The most highly connected proteinsinthe cellare the mostimportant forits survival.

*———f
Jeong, Mason, Barabasi, Oltvai, Nature 411 (2001) 41

a a b o
E I f I
: i — "PPI networks
< | apparently are
g ) scale-free..."
4l |
s BT o
P k + kg
5 e l [ [ ~ "Are" they scale-free
2 | I+ <[4[T 7
ém' ¥}Ti£ ’ ‘ 1 or
7RI -G | "Do they look like"
Y4 %M £ o0 % scale-free???
No. of links

largest cluster of the yeast proteome (at 2001)
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“ffect of sampling on topology predictions ¢

of protein-protein interaction networks

Jing-Dong ] Han'—3, Denis Dupuy', Nicolas Bertin!, Michael E Cusick! & Marc Vidal!

RERe———

Nature Biotech 23 (2005) 839

Generate networks of various types,

sample sparsely from them
— determine degree distribution

 Random (ER / Erdos-Renyi) —
* Exponential (EX) —>
 scale-free/ power-law (PL) —

> (
> (

> (

K) = Poisson
K) ~ exp[-K]
K) ~ k™Y

* P(k) = truncated normal distribution (TN)

Bioinformatics 3 — WS 19/20
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Partial Sampling

Estimated for yeast. 6000 proteins, 30000 interactions

Table 1 Topological properties of interactome maps

Ito ef al. Uetz ef al. Ito-Uetz Li et al. Giot et al. Minimum Maximum

Data set (yeast) (yeast) combined {worm) (fly) value value
Total number of nodes 797 1,005 1,417 1,415 4,651 797 4,651
Modes in main 417 (52%) 473 (47%) 970 (68%) 1,260 (B9%) 3,039 (65%]) 47% B9%
component
Total number B06 S48 1,520 2,135 a. 787 806 4, 787
of interactions
Interactions in main hd4 atals 1,229 2,038 3,715 ha4 3,715
component
R-square 0.843 0.954 0.899 0.885 0.91 0.843 0.954
v -1.82 —2.42 -1.91 -1.59 -2.7/5 -2.75b -1.59
<k 1.96 1.84 2.15 2.98 2.04 1.84 2.98
Average clustering 0.2 011 0.09 0.09 0.06 0.06 0.2
coefficient
Mumber of network 143 177 160 f0 a9l FO 991
components
Average component size hb o7 8.9 20.2 7.9 5.6 20.2
Characteristic path length 6.14 .48 6.55 4.91 9.43 4,91 9.43
Mumber of baits 455 al? H27 al2 2,820 455 2,820

The linear regression R-square measures the linearity between log(n{&)} and log(k) i.e. the fit to a power-law distribution. vis the exponent of the power law distribution
formula that best fits the observed distribution. <k= is the average number of interactions per protein observed in the netwark. For the Ita, Li and Giot data sets anly the high
confidence interactions were considerad (core).

Y2H experiments detected only 3...9% of the complete interactome!

Han et al, Nature Biotech 23 (2005) 839
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R square

Given: a data set with n values y,,...,y,, and
a set of fitted / predicted / modelled values f,,....f, e.g. from linear regression.

We call their difference residuals e, = y; - f;
I B
and the mean value ¥ = — Zyi
=

The total sum of squares (proportional to the variance of the data) Is:

SSiot = Y (ui — 9),

T

The sum of squares of residuals is:

9 Stes = Z{lﬁ - fi}g — ZEE

The coefficient of determination, R? or r? is often defined as:
SSI-EE

R =1 .
SSiot

www.wikipedia.org
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Sparsely Sampled random (ER) Network

(c) Shows linearity (R square) between detected

resulting P(k) for different coverages P(k) and ideal power law; good agreement (red:;
/ R ~1 for low edge coverage)
a b C \
1,600 - 10,000 -
1,200 1.000]
s‘g 1008 1 %\ 100 |

600 -

200 -

1 3 8 7 9 1113 15 17 16 21 23 100

Edge coverage (%)

" (b) Shows log-scale , - :
Ma.pping' covarage:' | | ) | R S q u ar e
~e Bait 10%/Edge 10% Bait 40%/Edge 40% —¥— Bail 80%Edge 80%

—+— Bait 20%¢Edge 20% ~&— Bait 60%Edge 60% —%— Bail 100%/Edge 100%

— for sparse sampling (10-20%), even an ER network

"looks" scale-free (when only P(k) is considered)

Bicinformatics 3 — WS 19/20 Han et al, Nature Biotech 23 (2005) 839 V6 —28




Anything Goes — different topologies

100

<k>=5 90

100

<k>=10 %0

<k>=20 50

g 0.3 1
R-square

All network topologies look scale-free (red) when undersampled

Han et al, Nature Biotech 23 (2005) 839
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Compare to Uetz et al. data

ER
10,000

nfk) 1000

10,0C0

1,000
4

100 \ \

nfk)

<k>=10

EX

10

K

100 1,000 1

PL

10

K

100 1,000 1

N

k

100 1,000

Sampling density affects observed degree distribution

Uetz et al. data
(solid line) is
compared to
sampled
networks of
similar size.

— true underlying network cannot be identified from available data

Bioinformatics 3 — WS 19/20

Han et al, Nature Biotech 23 (2005) 839
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TCP

Link prediction based on PPl network

Social networks b TCP predicted trend Kovacs, ... Vidal &
A Barabasi
P=S & 2/ N\ A Nature Commun. 10,
=
/ \ Prototype: _§ A 1240 (2019)

Py o
N c A
= S
/| X 4 _> Y S =A? *8-'
N A
;\I)I/ \ / - A2 §

e " &

®_® Jaccard similarity

SRy

(a) In social networks, a large number of common friends implies a higher
chance to become friends (red link between nodes X and Y), known as the
Triadic Closure Principle (TCP).

TCP predicts (P) links based on node similarity (S), quantifying the
number of shared neighbors between each node pair (A?).

(b) A basic mathematical formulation of TCP would imply that protein pairs
of high Jaccard similarity are more likely to interact

Bioinformatics 3 — WS 19/20 V6 -31



TCP does not apply to PPl networks

b TCP predicted trend

o

Interactome data KOVéCS, Vidal &
Barabasi

Z 0l . . Nature Commun. 10,
A, 1240 (2019)

1072 AA A
La J =[Ny N Ny|/|Ny UNyJ,
where N, and N, are the

Jaccard similarity e Interaction partners of X

%)—C@ }g{ @) Jaccard similarity and Y

However, Kovacs and co-workers did not observe the expected trend in
Protein-Protein Interaction (PPI) datasets, as illustrated here for a binary
numan PPl network (HI-11-14): high Jaccard similarity indicates a lower
chance for the proteins to interact.

>
b
>

Connection probability
B
Connection probability

—h

9
w

B

The data are binned logarithmically based on the Jaccard similarity values.
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(¢=3 paths)

PPIs involve binding interfaces

Interactome

A P=AS
/< \ Prototype:
S =A?
X D\: }:) Y
|

Kovacs, ... Vidal &
Barabasi

Nature Commun. 10,
1240 (2019)

Similar

Bioinformatics 3 — WS 19/20

PPIs often require complementary interfaces
(see V8).

Hence, two proteins, X and Y, with similar
Interfaces share many of their neighbors.

Yet, a shared interface does not typically
guarantee that X and Y directly interact with
each other.

Instead, an additional interaction partner of X
(protein D) might be also shared with protein Y
(blue link).

Such a link can be predicted by using paths of
ength 3 (L3). L3 identifies similar nodes to the
Known partners (P = AS), going one step

peyond the similarity-based argument of TCP.
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Structural illustration of L3 principle

RHGO1 We will illustrate this link prediction
principle with existing 3D structural data
on two human proteins from PDB,
CDC42 and RHOA that interact with
some of their partners through the
same shared interface.

CDC42 and RHOA are not known to
Interact with each other. But we expect
them to share some additional
Interaction partners, interacting with the
same shared interface.

From a network perspective, the

Kovacs, ... Vidal & _ _ _
Barabasi structurally inferred (blue) interaction

Nature Commun. 10, between ITSN1 and RHOA connects

1240 (2019) nodes that are linked by a larger

number of paths of length | = 3.
Bioinformatics 3 — WS 19/20 V6 —34
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Connection probability

L3 applies to PPl networks

L3 predicted trend

# of ¢=3 paths

VCO”@“@J

f

Connection probability

1

Interactome data

—
<

—
<
[\

—

<
w
=

1

10 102

# of ¢=3 paths

e Even without using any structural information, two proteins, such as Y
and D are expected to interact if they are linked by multiple £ = 3 paths in
the network (L3).

f A strong positive trend in HI-1I-14 is observed between the probability of
two proteins interacting and the number of £=3 paths between them,
supporting the validity of the L3 principle

Bioinformatics 3 — WS 19/20

Kovacs, ... Vidal &
Barabasi
Nature Commun. 10,
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Apply degree normalization

High-degree nodes (hubs) induce multiple, unspecific shortcuts in the
network, resulting in biased predictions that can only be avoided by proper

degree normalization.

Such degree normalization Is particularly important for L3, as it needs to
choose candidates from nodes at | = 3 steps, an exponentially larger pool
than the | = 2 distance pool utilized by TCP.

To eliminate potential degree biases caused by intermediate hubs, we
assign a degree-normalized L3 score to each node pair, X and Y
dxuluvivy

Pxy = Skoky

U,.v

where K Is the degree of node U and ay, = 1 if proteins X and U
Interact, and zero otherwise.

Kovacs, ... Vidal &
Barabasi

Nature Commun. 10,
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Literature

Cross-validation

Binary
Lit-BM-13

L3
0.8 CN

Random L3

[
0.4 \\

0.2 ¢

Precision

0 0.02 004 006 0.08 0.1
Recall

Bioinformatics 3 — WS 19/20

We randomly select 50% of the PPIs and use it
as the input network to predict the rest of the
PPIs.

L3 outperforms Common Neighbors (CN) on
PPl networks. Monte Carlo cross-validation of
CN (a TCP implementation).

Precision: fraction of interacting proteins vs. all
predicted pairs.

Recall : fraction of predicted PPIs compared to
the number of test PPIs.

Kovacs, ... Vidal &
Barabasi

Nature Commun. 10,
1240 (2019) V6 —37



0.8

o
o))

Validation rate

o
>

High-throughput validation

Top 500 predicted interactions were
tested by Y2H method (positives and
negative combinations).

paths (9
2
3
4
2,3
other

= CN
w—; 3
A4
— CRA
— PA
— AA
—— ACDD
— CDD
CAR
CJC
— FSW
— DI
— HPI
— G
JC
LHN
RA
SAL
SEN
= s = Lp
=== CAA
== EGE

-> High validation rate

NN NDNNNDNNRNNNDNDN

-> L3 method outperforms all other
link prediction methods (such as
PrePPI) at least 2-fold.

3
3
2,3

2,
2;

2, other
2, other
other

CPA
- YZ
- - RND

500
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1000
predicted rank

Kovacs, ... Vidal &
Barabasi

Nature Commun. 10,

1240 (2019) V6 -38



L3 predicted interaction

For 2 proteins involved in

CARD9 PNMA2

retinitis pigmentosa,
Wit/ e  FAMI161A and PRPF31, we
) s\ G/ show all known interacting
RN\l 77225\ s partners (gray), together
) o O - with those predicted by the
N 77 e | 3 glgorithm and confirmed

-\ conctss | | // /PPERDIR\
BOR2 ]z S ER

DHX32 o\
‘ 1//// £EPro\\\

| AEs /
TRIMSZ_ \ ; , [

; N\ ceoctoes/ ////,
. BENDS EHMT2 N //,
KIAAO753__ POCS. NN\

S HMBOXN N\

" AIKRNS

MTHS2

e A

~ CCDEs3 - »

ke by pairwise tests (blue).

e —
RINFI " ..~
'RBMY1F

" cnlogtr’/ /

e O\ JAKMIPZ
PPEIAT N e

FSD2

cZres M /- ZNF250

TRIM15 TRIM27 \

e Vi \ CDCATL ZNF587

~ zBTB43  /
NECAB2 '

The top L3 predicted
Interaction is connecting
TRIM23 FAM161A to GOLGAZ2, two
— | 3 predicted, experimentally validated proteins without any shared
——— Previously known (HI-tested) interaction partners. The
node size and color
Kovacs. .. Vidal & llustrates the degree of the

Barabasi proteins in Hl-tested.
Nature Commun. 10,

Bioinformatics 3 — WS 19/20 1240 (2019) V6 -39
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Link to evolution
o Lo

A key evolutionary mechanism responsible for the emergence of novel
proteins Is gene duplication (see V7).

non-SIP

If protein V duplicates, the duplicated node (V') will (at least initially)
retain the links of the original protein.

This may partly explain the success of L3.

Kovacs, ... Vidal &
Barabasi
Nature Commun. 10,

Bioinformatics 3 — WS 19/20 1240 (2019) V6 —-40



Summary

What you learned today:

« Graph layout: spring-electric layout algorithm
produces aesthetic graphs

* Network robustness
scale-free networks are failure-tolerant, but fragile to attacks
<=> the few hubs are important
=> Immunize hubs!

* L3 principle suitable for link prediction

Next lecture:

- graph bisection (-> communities)

- graph modularity

- network growth

- functional annotation in the network
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Additional slides (not used)
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Transcriptional activation

looping
factors

.
LJ
.
A
.
L
'.
L

.........
" .
...........

Mediator

TATA
DNA-looping enables interactions fort e distal

promotor regions,
Mediator cofactor-complex serves as a huge linker
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cis-regulatory modules

coactivators 0 C:a
corepressor @

TFs are not dedicated activators or respressors!
It's the assembly that is crucial.

Biomfﬂﬁ@e%‘ﬂ&r?ce%@n\’é’§o%%895 Protein Data Bank, 2010 V6 —44



Protein complexes involving
multiple transcription factors

@@

Borrow Idea from ClusterOne method:

|dentify candidates of TF complexes
In protein-protein interaction graph

by optimizing the cohesiveness

w (V)

V) = win (V) + whownd (V)
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underlying domain-domain representation of
PPIs

Assumption: every domain supports only one interaction.

Green proteins A, C, E form actual complex.

Their red domains are connected by the two green edges.

B and D are incident proteins. They could form new interactions

(red edges) with unused domains (blue) of A, C, E
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data source used: Yeast Promoter Atlas,
PPl and DDI

seed proteins,
threshold for pairs,
max. depth of search

Prot # emBL-eBif

weighted p-ratein-pmtein T
interaction data, such as . . :
domain-aware cohesiveness ;
PrePPl optimization algorithm :

domain-domain

interaction network Jr'
transcription factor data retrieval and buildup automatically
complex candidates Plam £2 interpro

FrEE MR P e

Will, T. and Helms, V. (2014)
Bioinformatics, 30, 1415-1421
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Daco identifies far more TF complexes than
other methods

DACO Cllps Clls (Il MCD MCL

TF complexes 1375 175/176  61/63 106/106 16/38  75/79
TF variants 412 134/138  59/61  80/80 16/38  75/79
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Examples of TF complexes — comparison
with ClusterONE

."'H._
1 s,
o 1

CEIE1 L .
- J" YRANE
f..l-._!,am___.a
PG4

{mfﬂﬁmgmyfdﬁﬁgDNE

(c) RPD3L{CYCo008) / (d) RPDSL{CYOR008) / ClusterONE
DACO

Bioinformatics 3 — WS 19/20

(f) ORC{MIPS) / ClusterONE

Green nodes: proteins in the
reference that were matched by

the prediction

red nodes: proteins that are in
the predicted complex, but not
part of the reference.
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Performance evaluation

4.5 . | . .
Methods Ref. comparison Bio. relevance
4.0r B DACO M Prec Bl NColoc
B Cllps Bl Rec B GOE
331 @@ Clls W GeoA W GOE(MF)
a0l 1 CI1 MMR GOE(BP)
™ MCD GOE(CC)
55 B MCL

2.0

Composite score

©
!
o
LN
O
=

1.5

1.0

0.81

b g
M
o
I~
)
o
I_l
=
o

0.5

0.0
ref.: CYC2008 ref.: MIPS ref.: SGD bio. relevance
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Co-expressed target genes of MET4/MET32
TF complex during yeast cell cycle

normalized expression

NN N 2~
RN~
N —

‘r" -

0 5 10 15 20 25 30
timepoints
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Functional role of TF complexes

TFs Paecs  Binding mode Targets Regulatory influence GO process enrichment (P <0.05, Bonferroni corrected) in targets
MET4/MET32 0.0010 coloc. 19 + Methionine metabolic process

TBP/HAPS 0.0335 med. 47 +

GLN3/DALRO 0.0009 med. 28 Allantoin catabolic process

DIGI/STEI2/SWI6 0.0369 all 15 Fungal-type cell wall organization

FHL1/RAPI 0.0001 coloc. 116 + rRNA transport

RPHI/GISI 0.0001 med. 100 Hexose catabolic process

CBFI/MET32 0.0002 coloc. 33 0 Sulfate assimilation

DIGI1/STEI12 0.0003 med. 34 Response to pheromone

GCN4/RAPI 0.033 med. 62 +

MSN4/MSN2 0.0021 med. 105 + Oligosaccharide biosynthetic process

DALSO/GZE3 0.0044 med. 20 Purine nucleobase metabolic process

SWI6/SWI4 0.0039 med. 53 + Regulation of cyclin-dependent protein serine/threonine kinase activity
STB1/SWI6 0.0275 all 47 + /

TBP/SWI6 0.0159 med. 14 +

GLN3/GZF3 0.0120 ad. 31 Allantoin catabolic process

MBPI/SWI6/SWI4  0.0307 med. 18 + Regulation of cyclin-dependent protein serine/threonine kinase activity
MBPI1/SWI6 0.0124 ad. 25 Cell cycle process

Note: Owing to the number of permutations of the test, the lowest possible value is Pgecs = 10, The calculations were conducted for different conceivable modes of targeting
(all shared target proteins, direct adjacency, mediated adjacency and colocalization) to have a detailed picture of the possible target—gene sets. Only the most enriched GO
process term 1s shown for each target set. The inferred regulatory influence on the rate of transcription is abbreviated as follows: + (increase), — (decrease), o (no statement
possible), / (conflicting annotations).
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