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V7  – Biological  PPI  Networks  

-­ graph  bisection  (-­>  communities)
-­ graph  modularity
-­ network  growth

-­ functional  annotation  in  the  network

Thu,  Nov  7,  2019
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Graph  bisection
The  simplest graph partitioning problem is the division of a  
network into just  2  parts.  This  is called graph bisection.

If we can divide a  network into 2  parts,  we can also  divide
it further by dividing one or both of these parts …

graph bisection problem:  divide the vertices of a  
network into 2  non-­overlapping groups of given sizes
such  that the number of edges running between
vertices in  different  groups is minimized.

The  number of edges between groups is called the cut size.

In  principle,  one could simply look through all  possible divisions
of the network into 2  parts and choose the one with smallest cut size.
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Algorithms  for  graph  partitioning
But  this exhaustive  search is prohibitively expensive!

Given a  network of n vertices.  There are !!
!#!!$!	
  

	
   different  ways of dividing it

into 2  groups of n1 and n2 vertices.  

The  amount of time  to look through all  these divisions will  go up roughly
exponentially with the size of the system.

Only values of up to n =  30  are feasible with today‘s computers.

In  computer science,  one often encounters the following situation:
either an  algorithm can be clever  and run quickly,  but  will  fail to provide the
optimal  answer in  some (or perhaps in  many)  cases,  or it will  always find  
the optimal  answer,  but  takes an  impractical length of time  to do  so.
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The  Kernighan-­Lin  algorithm
This  algorithm proposed by Brian  Kernighan and Shen Lin  in  1970  is one of
the simplest and best known heuristic algorithms for the graph bisection
problem.
(Kernighan is also  one of the developers of the C  language).

(a)  The  algorithm starts with any division of the vertices of a  network into
two groups (shaded)  and then searches for pairs of vertices,  such  as the
pair  highlighted here,  whose interchange would reduce the cut size
between the groups.
(b)  The  same  network after  interchange of the 2  vertices.
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The  Kernighan-­Lin  algorithm
(1)Divide the vertices of a  given network into 2  groups (e.g.  randomly).

(2)For each pair  (i,j)  of vertices,  where i  belongs to the first group and j  to
the second group,  calculate how much the cut size between the
groups would change if i  and j were interchanged between the groups.

(3)Find  the pair  that reduces the cut size by the largest amount and swap
the vertices.

If no pair  reduces it,  find  the pair  that increases it by the smallest
amount.

Repeat  this process,  but  with the important restriction that each vertex in  
the network can only be moved once.

Stop when there is no pair  of vertices left that can be swapped.
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The  Kernighan-­Lin  algorithm  (II)
(3)Go  back  through every state that the network passed through during the
swapping procedure and choose among them the state in  which the cut
size takes its smallest value.

(4)Perform the steps (2)  – (4)  repeatedly,  starting each iteration with the
best division of the network found in  the last  round (in  step (3)).

(5)Stop when no improvement on  the cut size occurs.

Note  that if the initial  assignment of vertices to groups is done randomly,  
the Kernighan-­Lin  algorithm may give (slightly)  different  answers
when it is run twice on  the same  network.
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The  Kernighan-­Lin  algorithm  (II)

(a)  A  mesh network of 547  vertices of the kind commonly used in  finite  
element analysis.
(b)  The  best division found by the Kernighan-­Lin  algorithm when the task
is to split the network into 2  groups of almost equal size.  
This  division involves cutting 40  edges in  this mesh network and gives parts
of 273  and 274  vertices.
(c)  The  best division found by spectral partitioning (alternative  method).
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Runtime  of  the  Kernighan-­Lin  algorithm
The  number of swaps performed during one round of the algorithm is equal
to the smaller of the sizes of the two groups Î [0,  n  /  2].

→  in  the worst case,  there are O(n)  swaps.

For each swap,  we have to examine all  pairs of vertices in  different  groups
to determine how the cut size would be affected if the pair  was  swapped.

At  most (if both groups have the same  size),  
there are n  /  2  ´ n  /  2  =  n2 /  4  such  pairs,  which is O(n2).
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Runtime  of  the  Kernighan-­Lin  algorithm  (ii)
When a  vertex i  moves from one group to the other group,  any edges connecting
it to vertices in  its current group become edges between groups after  the swap.

Let us suppose that there are kisame such  edges.

Similarly,  any edges that i  has to vertices in  the other group,  (say kiother ones)
become within-­group  edges after  the swap.

There is one exception.  If i  is being swapped with vertex j  and they are connected
by an  edge,  then the edge is still  between the groups after  the swap

→  the change in  the cut size due  to the movement of i  is – (kiother -­ kisame – Aij)

A  similar expression applies for vertex j.  

→  the total  change in  cut size due  to the swap is
– (kiother -­ kisame +kjother -­ kjsame – 2Aij)
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Runtime  of  the  Kernighan-­Lin  algorithm  (iii)
For  a  network stored in  adjacency list form,  the evaluation of this expression
involves running through all  the neighbors of i  and j   in  turn,  and hence
takes time  on  the order of the average degree in  the network,  
or O  (m/n)  with m  edges in  the network.

→  the total  running time  is O  (  n  ´ n2 ´ m/n  )  =  O(mn2).

For a  sparse network with m  µ n,  this is O(n3).

For a  dense network (with 𝑚 → ! !()
*
)  ,  this is O(n4).

This  time  still  needs to be multiplied by the number of rounds the algorithm
is run before the cut size stops decreasing.
For networks up to a  few 1000  of vertices,  this number may be between 5  and
10.
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Reducing  Network  Complexity?

Is there a representation that highlights 
the structure of these networks???

• Modular Decomposition (Gagneur, …, Casari, 2004)
• Network Compression (Royer, …, Schröder, 2008)
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Shared  Components
Shared  components =  proteins  or  groups  of  proteins  occurring  in  different  
complexes  are  fairly  common.  A  shared  component  may  be  a  small  part  of  
many  complexes,  acting  as  a  unit that  is  constantly  reused for  its  function.

Also,  it  may  be  the  main  part of  the  complex  e.g.  in  a  family  of  variant  
complexes  that  differ  from  each  other  by  distinct  proteins  that  provide  
functional  specificity.

Aim:  identify and  properly  represent the  modularity  of  protein-­protein  
interaction  networks  by  identifying  the  shared  components and  the  way  
they  are  arranged  to  generate  complexes.

Gagneur et  al.  Genome  Biology  5,  R57  (2004)

Georg  Casari,  Cellzome  (Heidelberg)
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Modular  Decomposition  of  a  Graph
Module :=  set of nodes that have the 

same neighbors outside of the module

trivial modules:
{a}, {b}, …, {g}
{a, b, …, g}

non-trivial modules:

{a, b}, {a, c}, {b, c}
{a, b, c}
{e, f}

Gagneur et al, Genome Biology 5 (2004) R57

Quotient: representative node for a module

Iterated quotients → labeled tree representing the original network
→ "modular decomposition"
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Quotients
Series:  all included nodes are direct neighbors (= clique)

→

Parallel:  all included nodes are non-neighbors

→

Prime:  "anything else" (best labeled with the actual structure)

→

15
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A  Simple  Recursive  Example

Gagneur et al, Genome Biology 5 (2004) R57

series
parallel

prime
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Using  data  from  protein  complex  purifications  
e.g.  by  TAPDifferent  types of  data:

•  Y2H:  detects  direct  physical  interactions  between  proteins

•  PCP  by  tandem  affinity  purification  with  mass-­spectrometric  
identification  of  the  protein  components  identifies  multi-­protein  
complexes

→ Molecular  decomposition  will  have  a  different  meaning due  to  
different  semantics of  such  graphs.

Gagneur  et  al.  Genome  Biology  5,  R57  (2004)

Here,  we  focus  analysis  on  PCP  content  from  TAP-­MS  data.  

PCP  experiment:  select  bait  protein  where  TAP-­label  is  attached  → Co-­
purify  protein  with  those  proteins  that  co-­occur  in  at  least  one  complex  
with  the  bait  protein.
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Data  from  Protein  Complex  Purification
Graphs  and  module  labels  from  
systematic  PCP  experiments:

(a)  Two  neighbors  in  the  network  are  
proteins  occurring  in  a  same  complex.  

(b)  Several  potential  sets  of  complexes  
can  be  the  origin  of  the  same  observed  
network.  Restricting  interpretation  to  the  
simplest  model  (top  right),  the  series
module  reads  as  a  logical  AND  between  
its  members.  

(c)  A  module  labeled  ́paralleĺ
corresponds  to  proteins  or  modules  
working  as  strict  alternatives  with  
respect  to  their  common  neighbors.  

(d)  The  ́primé case  is  a  structure  
where  none  of  the  two  previous  cases  
occurs.

Gagneur  et  al.  Genome  Biology  5,  R57  (2004)
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Two  examples  of  modular  decompositions  of  protein-­protein  
interaction  networks.

In  each  case  from  top  to  bottom:  schemata  of  the  complexes,  
the  corresponding  protein-­protein  interaction  network  as  
determined  from  PCP  experiments,  and  its  modular  
decomposition  (MOD).  

Real  World  Examples

Gagneur  et  al.  Genome  Biology  5,  R57  (2004)

(a)  Protein  phosphatase  2A.

Parallel  modules  group  proteins  that  do  not  interact  but  
are  functionally  equivalent.  

Here  these  are  the  catalytic  proteins  Pph21  
and  Pph22  (module  2)  and  the  regulatory  
proteins  Cdc55  and  Rts1  (module  3),  
connected  by  the  Tpd3  „backbone“.

Notes:•  Graph  does  not  show  functional  alternatives!!!
•  other  decompositions  also  possible
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Gagneur  et  al.  Genome  Biology  5,  R57  (2004)

RNA  polymerases  I,  II  and  III

Again:  modular  decomposition  is  
much  easier  to  understand  than  
the  connectivity  graph
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Modular  decomposition of  graphs  is  a  well-­defined  concept.
•  One  can  proof  thoroughly  for  which  graphs  a  modular  decomposition  
exists.
•  Efficient  O(m  +  n) algorithms  exist  to  compute  the  decomposition.

However,  experiments  have  shown  that  biological complexes  are  not  
strictly  disjoint.  They  often  share  components
→ separate  complexes  do  not  always  fulfill  the  strict  requirements  of  
modular  graph  decomposition.

Also,  there  exists  a  „danger“  of  false-­positive  or  false-­negative  interactions.

Summary

→ other  methods,  e.g.,  for  detecting  communities  (Girven  &  Newman)  or  
densely  connected  clusters  are  more  suitable for  identification  of  
complexes because  they  are  more  sensitive.

21



Bioinformatics 3 – WS 19/20 V 7  – 22

Network  Growth  Mechanisms
Given:   an observed PPI network → how did it grow (evolve)?

Look at network motifs (local connectivity):
compare motif distributions from various network prototypes to fly network

Idea:  each growth mechanism leads to a typical motif distribution,
even if global measures are comparable

PNAS 102 (2005) 3192
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The  Fly  Network
Y2H PPI network for D. melanogaster from Giot et al. [Science 302 (2003) 1727]

Giot et al. assigned a 
confidence score [0, 1] to 
every observed interaction.
→ use only data with 

p > 0.65 (0.5) because …
→ remove self-interactions

and isolated nodes

High confidence network
with 3359 (4625) nodes
and 2795 (4683) edges.

Use prototype networks
of same size for training.

percolation events for p > 0.65

Middendorf et al, PNAS 102 (2005) 3192

Size of largest components. At p = 0.65, there is one large component 
with 1433 nodes and the other 703 components contain at most 15 
nodes.
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Network  subgraphs  -­>  motifs
All non-isomorphic subgraphs that can be generated with a walk of length 8

Middendorf et al, PNAS 102 (2005) 3192
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Growth  Mechanisms

Generate 1000 networks, each, of the following 7 types
(same size as fly network, undefined parameters were scanned)

DMC Duplication-mutation, preserving complementarity
DMR Duplication with random mutations
RDS Random static networks
RDG Random growing network
LPA Linear preferential attachment network (Albert-Barabasi)
AGV Aging vertices network
SMW Small world network
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Growth  Type  1:    DMC
"Duplication – mutation with preserved complementarity"

Evolutionary idea:  gene duplication, followed by a partial loss of
function of one of the copies, making the other copy essential

Algorithm:

• duplicate existing node with all interactions

• for all neighbors: delete with probability qdel

either link from original node or from copy

Repeat these steps many (e.g. N – 2) times

Start from two connected nodes
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Growth  Type  2:    DMR
"Duplication with random mutations"

Gene duplication, but no correlation between original and copy
(original unaffected by copy)

Algorithm:

• duplicate existing node with all interactions

• for all neighbors: delete with probability qdel

link from copy

Start growth from five-vertex cycle,
repeat N - 5 times:

• add new links to non-neighbors with 
probability qnew/n
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Growth  Types  3–5:  RDS,  RDG,  and  LPA
RDS = static random network

Start from N nodes, add L links randomly

LPA = linear preferential attachment

Add new nodes similar to Barabási-Albert algorithm, 
but with preference according to (ki + α),  α = 0…5
(BA for α = 0)

RDG = growing random network

Start from small random network, add nodes, 
then edges between all existing nodes
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Growth  Types  6-­7:    AGV  and  SMW
AGV = aging vertices network

Like growing random network, 
but preference decreases with age of the node
→ citation network:  more recent publications are cited more likely

SMW = small world networks, see Watts, Strogatz, Nature 363, 202 (1998)

Randomly rewire regular ring lattice
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Alternating  Decision  Tree  Classifier
Trained with the motif counts from 1000 networks of each of the 7 types
→ prototypes are well separated and can be reliably classified

Prediction accuracy for networks 
similar to fly network with p = 0.5:

Part of a trained ADT

Decision nodes count 
occurrence of subgraphs 

Middendorf et al, PNAS 102 (2005) 3192
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Are  the  generated  networks  different?

Example: DMR vs. RDG:  Similar global parameters <C> and <l> (left), 
but different counts of the network motifs (right)

-> networks can (only) be perfectly separated by motif-based classifier

Middendorf et al, PNAS 102 (2005) 3192

Clustering coefficient
Average shortest path length
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How  Did  the  Fly  Evolve?

→ Best overlap with DMC (Duplication-mutation, preserved complementarity)
→ Scale-free (LPA) or random networks (RDS/RDG) are very unlikely

Middendorf et al, PNAS 102 (2005) 3192
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Motif  Count  Frequencies

rank score:  fraction of test networks with 
a higher count than Drosophila
(50%  =  same count as fly on avg.)

Middendorf et al, PNAS 102 (2005) 3192

-> DMC and DMR 
networks contain 
most subgraphs in 
similar amount as fly 
network (top).
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Experimental  Errors?
Randomly replace edges in fly network and classify again:

→ Classification unchanged for ≤ 30% incorrect edges,
at higher values RDS takes over (as to be expected)
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What  Does  a  Protein  Do?

Enzyme Classification scheme 
(from http://www.brenda-enzymes.org/)
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What  about  Un-­Classified  Proteins?

Many  unclassified  proteins:      
→  estimate:  ~1/3  of  the  yeast  proteome  not  annotated  functionally
→  BioGRID:    4495  proteins  in  the  largest  cluster  of  the  yeast  physical  
interaction  map.

only  2946  have  a  MIPS  functional  annotation
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Partition  the  Graph
Large  PPI  networks can  be  built  from  (see  V3,  V4,  V5):
•  HT  experiments  (Y2H,  TAP,  synthetic  lethality,  coexpression,  coregulation,  …)
•  predictions  (gene  profiling,  gene  neighborhood,  phylogenetic  profiles,  …)
→  proteins  that  are  functionally  linked

genome 1

genome 2

genome 3

sp 
1

sp 
2

sp 
3

sp 
4

sp 
5

Identify  unknown functions from  clustering of  these  networks  by,  e.g.:
•  shared  interactions  (similar  neighborhood)
•  membership  in  a  community
•  similarity  of  shortest  path  vectors  to  all  other  proteins  (=  similar  path  into  
the  rest  of  the  network)
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Protein  Interactions
Nabieva et al used the S. cerevisiae dataset from GRID of 2005 (now BioGRID)
→ 4495 proteins and 12 531 physical interactions in the largest cluster

http://www.thebiogrid.org/about.php
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Function  Annotation
Task:  predict function (= functional annotation) for an unlabeled protein 

from the available annotations of other proteins in the network

Similar task:
How to assign colors to 
the white nodes?

Use information on:
• distance to colored nodes
• local connectivity
• reliability of the links
• …

<=>
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Algorithm  I:    Majority
This concept was presented in 
Schwikowski, Uetz, and Fields, " A network of protein–protein interactions in yeast" 
Nat. Biotechnol. 18 (2000) 1257

Consider all direct neighbors and sum up how often a certain annotation occurs
→ score for an annotation  =  count among the direct neighbors

→ take the 3 most frequent functions

Majority makes only limited use 
of the local connectivity
→ cannot assign function to 

next-neighbors

For weighted graphs:
→ use weighted sum
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Extended  Majority:    Neighborhood
This concept was presented in 
Hishigaki, Nakai, Ono, Tanigami, and Takagi,  "Assessment of prediction accuracy of 
protein function from protein–protein interaction data", 
Yeast 18 (2001) 523

Look for overrepresented functions within a given radius of 1, 2, or 3 links
→ use as function score the value of a c2–test

Neighborhood algorithm does not 
consider local network topology

?
?

Both examples (left) are 
treated identically with r = 
2
although the right situation 
feels more certain (2 direct 
neighbors of ? are labeled)
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Minimize  Changes:    GenMultiCut

"Annotate proteins so as to minimize the number of times that different
functions are associated to neighboring (i.e. interacting) proteins"

This concept was presented in 
Karaoz, Murali, Letovsky, Zheng, Ding, Cantor, and Kasif,  "Whole-genome annotation 
by using evidence integration in functional-linkage networks" 
PNAS 101 (2004) 2888

→ generalization of the multiway k-cut problem for weighted edges,
can be stated as an integer linear program (ILP)

Multiple possible solutions → scores from frequency of annotations
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Nabieva  et  al:    FunctionalFlow
Extend the idea of "guilty by association"
→ each annotated protein is considered as a source of "function"-flow

→ propagate/simulate for a few time steps
→ choose the annotation a with the highest accumulated flow

Each node u has a reservoir Rt(u), each edge a capacity constraint (weight) wu,v

Initially:

Then: downhill flow from node u to neighbor node v:

Score from accumulated in-flow:

and

Nabieva et al, Bioinformatics 21 (2005) i302

Idea: Node v has already „more 
function“ than node u → no flow 
uphill
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An  Example
accumulated 
flow

thickness = current flow

…..

…..

…..
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Comparison

Change score threshold for accepting annotations → ratio  TP/FP
→ FunctionalFlow performs best in the high-confidence region
→ but generates still many false predictions!!!

unweighted yeast map

Nabieva et al, Bioinformatics 21 (2005) i302

For FunctionalFlow:
six propagation steps were 
simulated; this is comparable 
to the diameter of the yeast 
network ≈ 12

Majority results are initially 
very good, but method has 
limited coverage.

Results with neighborhood 
get more imprecise for larger 
radii r
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Largest  connected  component  of  S.  cerevisiae
PPI  network  (BioGRID)  has  4990  nodes  and  
74,310  edges  (physical  interactions).

Right figure shows  the  histogram  of  shortest-­
path  lengths  in  this  network.  Over  95%  of  all  
pairs  of  nodes  are  either  2  hops  or  3  hops  apart

Relying on the ordinary shortest-path distance metric in PPI networks is 
problematic because PPI networks are “small world” networks. 
Most nodes are “close” to all other nodes.

® any method that infers similarity based on proximity will find that a large 
fraction of the network is proximate to any typical node. 
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The 2-hop neighborhood of a typical node 
probably includes around half of all nodes in the graph.

One of the reasons that paths are typically short in biological networks 
like the PPI network is due to the presence of hubs.

But hub proteins often represent proteins with 
different functional roles than their neighbors.

Hub proteins likely also have multiple, distinct functions.

® not all short paths provide equally strong evidence 
of similar function in PPI networks. 

What  nodes  mediate  short  contacts?
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DSD  Distance  Metric

Explanation:

If there is no ambiguity about k, we can drop k.

where

He(vi) is a „random walk distance vector“ of node vi from all other nodes.

Two nodes u and v have small DSD if they have similar distance from all other 
nodes.
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DSD  clearly  improves  functional  predictions

MV: majority voting
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Summary

V8: wrap up protein interaction networks

Then next block of the lecture:  gene-regulatory networks

- Modules in networks
=> modular decomposition

What you learned today:

- Graph bisection
=> Kernighan Lin algorithm

- Postulated modes of network evolution
=> DMC yields networks that mimicking real networks most closely

- Predicting unknown protein functions
from a protein’s connectivity in PPI network


