V7 — Biological PPl Networks

- graph bisection (-> communities)
- graph modularity
- network growth
- functional annotation in the network
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Graph bisection

The simplest graph partitioning problem is the division of a
network into just 2 parts. This is called graph bisection.

If we can divide a network into 2 parts, we can also divide
it further by dividing one or both of these parts ...

graph bisection problem: divide the vertices of a
network into 2 non-overlapping groups of given sizes
such that the number of edges running between
vertices in different groups is minimized.

The number of edges between groups is called the cut size.

In principle, one could simply look through all possible divisions
of the network into 2 parts and choose the one with smallest cut size.
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Algorithms for graph partitioning

But this exhaustive search is prohibitively expensive!

n!

Given a network of n vertices. There are different ways of dividing it

Tll!nz!
into 2 groups of n, and n, vertices.

The amount of time to look through all these divisions will go up roughly
exponentially with the size of the system.

Only values of up to n = 30 are feasible with today’s computers.
In computer science, one often encounters the following situation:
either an algorithm can be clever and run quickly, but will fail to provide the

optimal answer in some (or perhaps in many) cases, or it will always find
the optimal answer, but takes an impractical length of time to do so.
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The Kernighan-Lin algorithm

This algorithm proposed by Brian Kernighan and Shen Lin in 1970 is one of
the simplest and best known heuristic algorithms for the graph bisection

problem.
(Kernighan is also one of the developers of the C language).

(a) The algorithm starts with any division of the vertices of a network into
two groups (shaded) and then searches for pairs of vertices, such as the
pair highlighted here, whose interchange would reduce the cut size
between the groups.

(b) The same network after interchange of the 2 vertices.
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The Kernighan-Lin algorithm

(1) Divide the vertices of a given network into 2 groups (e.g. randomly).

(2) For each pair (i,j) of vertices, where i belongs to the first group and j to
the second group, calculate how much the cut size between the
groups would change if i and j were interchanged between the groups.

(3) Find the pair that reduces the cut size by the largest amount and swap
the vertices.

If no pair reduces it, find the pair that increases it by the smallest
amount.

Repeat this process, but with the important restriction that each vertex in
the network can only be moved once.

Stop when there is no pair of vertices left that can be swapped.
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The Kernighan-Lin algorithm (ll)

(3) Go back through every state that the network passed through during the
swapping procedure and choose among them the state in which the cut
size takes its smallest value.

(4) Perform the steps (2) — (4) repeatedly, starting each iteration with the
best division of the network found in the last round (in step (3)).

(5) Stop when no improvement on the cut size occurs.
Note that if the initial assignment of vertices to groups is done randomly,

the Kernighan-Lin algorithm may give (slightly) different answers
when it is run twice on the same network.
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The Kernighan-Lin algorithm (ll)
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(a) A mesh network of 547 vertices of the kind commonly used in finite
element analysis.

(b) The best division found by the Kernighan-Lin algorithm when the task
is to split the network into 2 groups of almost equal size.

This division involves cutting 40 edges in this mesh network and gives parts
of 273 and 274 vertices.

(c) The best division found by spectral partitioning (alternative method).
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Runtime of the Kernighan-Lin algorithm

The number of swaps performed during one round of the algorithm is equal
to the smaller of the sizes of the two groups € [0, n/ 2].

— in the worst case, there are O(n) swaps.

For each swap, we have to examine all pairs of vertices in different groups
to determine how the cut size would be affected if the pair was swapped.

At most (if both groups have the same size),
there are n/ 2 xn/ 2 = n?/4 such pairs, which is O(n?).
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Runtime of the Kernighan-Lin algorithm (i

When a vertex i moves from one group to the other group, any edges connecting
it to vertices in its current group become edges between groups after the swap.

Let us suppose that there are k53m¢ such edges.

Similarly, any edges that i has to vertices in the other group, (say k°"e" ones)
become within-group edges after the swap.

There is one exception. If j is being swapped with vertex j and they are connected
by an edge, then the edge is still between the groups after the swap

— the change in the cut size due to the movement of i is — (keter - kisame — A))
A similar expression applies for vertex J.

— the total change in cut size due to the swap is
— (kiother - kl_same + kjother - kj same _ 9 AU)
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Runtime of the Kernighan-Lin algorithm (iii)

For a network stored in adjacency list form, the evaluation of this expression
involves running through all the neighbors of i and j in turn, and hence
takes time on the order of the average degree in the network,

or O (m/n) with m edges in the network.

— the total running time is O (n x n? x m/n ) = O(mn?).
For a sparse network with m o« n, this is O(n?).

For a dense network (with m — @) , this is O(n?).

This time still needs to be multiplied by the number of rounds the algorithm
is run before the cut size stops decreasing.

For networks up to a few 1000 of vertices, this number may be between 5 and
10.
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Reducing Network Complexity?
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Is there a representation that highlights
the structure of these networks???

* Modular Decomposition (Gagneur, ..., Casari, 2004)
* Network Compression (Royer, ..., Schroder, 2008)
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Method

Modular decomposition of protein-protein interaction networks
Julien Gagneur™, Roland Krause®, Tewis Bouwmeester” and Georg Casari”

Addresses: "Cellzome AG, Meyerhofstrasse 1, 69117 Heidelberg, Germany. "Laboratoire de Mathématiques Appliquées aux Systémes, Ecole
Centrale Paris, Grande Voie des Vignes, 92295 Chatenay-Malabry cedex, France.

Abstract [

We introduce an algorithmic method, termed modular decomposition, that defines the
organization of protein-interaction networks as a hierarchy of nested modules. Modular
decomposition derives the logical rules of how to combine proteins into the actual functional
complexes by identifying groups of proteins acting as a single unit (sub-complexes) and those that
can be alternatively exchanged in a set of similar complexes. The method is applied to experimental

data on the pro-inflammatory tumor necrosis factor-o (TNF-a)/NFkB transcription factor
pathway.

R —— —

Genome Biology 5 (2004) R57
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Shared Components

Shared components = proteins or groups of proteins occurring in different
complexes are fairly common. A shared component may be a small part of
many complexes, acting as a unit that is constantly reused for its function.

Also, it may be the main part of the complex e.g. in a family of variant
complexes that differ from each other by distinct proteins that provide
functional specificity.

Aim: identify and properly represent the modularity of protein-protein
interaction networks by identifying the shared components and the way

&

they are arranged to generate complexes.

' . S

Gagneur et al. Genome Biology 5, R57 (2004)

Georg Casari, Cellzome (Heidelberg)
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Modular Decomposition of a Graph

Module := set of nodes that have the
same neighbors outside of the module

trivial modules:

{a},{b}, ..., {g}

{a,b, ..., g}
non-trivial modules:

{a, b}, {a, c}, {b, c}

{a, b, c}

{e, f}

Quotient: representative node for a module

Iterated quotients — labeled tree representing the original network
— "modular decomposition"

Gagneur et al, Genome Biology 5 (2004) R57
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Quotients

Series: all included nodes are direct neighbors (= clique)

{a, b, ¢} d e

{a, b, c} d e

Bioinformatics 3 —WS 19/20
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A Simple Recursive Example

series : g
* l'llll'.'fg
{a,b,c} d . ,

N e ’
;" (%) o—()—@yg
{a,b,c} d {e,f}
prime }
®
{a,b,c,d,e,f,g}
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Using data from protein complex purifications

e.g. by TAP

Different types of data:
* Y2H: detects direct physical interactions between proteins

* PCP by tandem affinity purification with mass-spectrometric
identification of the protein components identifies multi-protein
complexes

— Molecular decomposition will have a different meaning due to
different semantics of such graphs.

Here, we focus analysis on PCP content from TAP-MS data.

PCP experiment: select bait protein where TAP-label is attached — Co-
purify protein with those proteins that co-occur in at least one complex
with the bait protein.

Gagneur et al. Genome Biology 5, R57 (2004)
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Data from Protein Complex Purification

Graphs and module labels from
systematic PCP experiments:

(a) Two neighbors in the network are
proteins occurring in a same complex.

(b) Several potential sets of complexes
can be the origin of the same observed
network. Restricting interpretation to the
simplest model (top right), the series
module reads as a logical AND between
its members.

(c) A module labeled “parallel”
corresponds to proteins or modules
working as strict alternatives with
respect to their common neighbors.

(d) The “prime” case is a structure
where none of the two previous cases
OCCurs.
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Real World E | @a @
eal World Examples

Two examples of modular decompositions of protein-protein

interaction networks.

In each case from top to bottom: schemata of the complexes,

the corresponding protein-protein interaction network as

determined from PCP experiments, and its modular
decomposition (MOD).

(a) Protein phosphatase 2A. oS
Parallel modules group proteins that do not interact but Q/ é \Q

are functionally equivalent. . TN
PCP Protein complex
V' purification

Here these are the catalytic proteins Pph21 Fpies
and Pph22 (module 2) and the regulatory

'MOD » Modular decomposition

@ Protein
proteins Cdc55 and Rts1 (module 3), Se:ies module
connected by the Tpd3 ,backbone”. ) Parallel module

Notes:* Graph does not show functional alternatives!!!
» other decompositions also possible 3

Rts1 C‘d(“i% Pph21 Pph22
Bioinformatics 3 —WS 19/20 Gagneur et al. Genome Biology 5, R57 (2004) V7 -



RNA polymerases |, Il and Il
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Rpatd Gagneur et al. Genome Biology 5, R57 (2004)
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Summary

Modular decomposition of graphs is a well-defined concept.

* One can proof thoroughly for which graphs a modular decomposition
exists.

« Efficient O(m + n) algorithms exist to compute the decomposition.

However, experiments have shown that biological complexes are not
strictly disjoint. They often share components

— separate complexes do not always fulfill the strict requirements of
modular graph decomposition.

Also, there exists a ,danger” of false-positive or false-negative interactions.

— other methods, e.g., for detecting communities (Girven & Newman) or
densely connected clusters are more suitable for identification of
complexes because they are more sensitive.
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Network Growth Mechanisms

Given: an observed PPl network — how did it grow (evolve)?

Inferring network mechanisms: The Drosophila {
melanogaster protein interaction network

Manuel Middendorf!, Etay Ziv¥, and Chris H. WigginsST

'Department of Physics, *College of Physicians and Surgeons, SDepartment of Applied Physics and Applied Mathematics, and "Center for Computational
Biology and Bioinformatics, Columbia University, New York, NY 10027

Communicated bv Rarrv H. Honia. Columhia Liniversitv. New Yark NY. Decemher 20. 2004 (received far review Sentemhe

ot 1Y LD 2

PNAS 102 (2005) 3192

Look at network motifs (local connectivity):
compare motif distributions from various network prototypes to fly network

Idea: each growth mechanism leads to a typical motif distribution,
even if global measures are comparable
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The Fly Network

Y2H PPI network for D. melanogaster from Giot et al. [Science 302 (2003) 1727]

Giot et al. assigned a 10
confidence score [0, I] to ) "7mee. percolation events for p > 0.65
every observed interaction.

10”

— use only data with
p > 0.65 (0.5) because ...

— remove self-interactions

er of vertices

107

and isolated nodes

High confidence network
with 3359 (4625) nodes
and 2795 (4683) edges.

Use prototype networks Size of largest components.At p = 0.65, there is one large component

of same size for training. with 1433 nodes and the other 703 components contain at most |5
nodes.

Middendorf et al, PNAS 102 (2005) 3192

Bioinformatics 3 —WS 19/20 V7 - 23



Network subgraphs -> motifs

All non-isomorphic subgraphs that can be generated with a walk of length 8
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Growth Mechanisms

Generate 1000 networks, each, of the following 7 types
(same size as fly network, undefined parameters were scanned)

DMC Duplication-mutation, preserving complementarity

DMR Duplication with random mutations

RDS Random static networks

RDG Random growing network

LPA Linear preferential attachment network (Albert-Barabasi)
AGV Aging vertices network

SMW Small world network

Bioinformatics 3 —WS 19/20
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Growth Type 1: DMC

"Duplication — mutation with preserved complementarity”

Evolutionary idea: gene duplication, followed by a partial loss of
function of one of the copies, making the other copy essential

Algorithm:

Start from two connected nodes

* duplicate existing node with all interactions

» for all neighbors: delete with probability gdei
either link from original node or from copy X

Repeat these steps many (e.g. N — 2) times

Bioinformatics 3 —WS 19/20
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Growth Type 2: DMR

"Duplication with random mutations”

Gene duplication, but no correlation between original and copy
(original unaffected by copy)

Algorithm:

Start growth from five-vertex cycle,
repeat N - 5 times:

* duplicate existing node with all interactions

* for all neighbors: delete with probability qdel
link from copy

* add new links to non-neighbors with
probability gnew/n

Bioinformatics 3 —WS 19/20
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Growth Types 3-5: RDS, RDG, and LPA

RDS = static random network

Start from N nodes, add L links randomly

RDG = growing random network

Start from small random network, add nodes,
then edges between all existing nodes

LPA = linear preferential attachment

Add new nodes similar to Barabasi-Albert algorithm,

but with preference according to (ki + a), a =0...5
(BA for a = 0)

Bioinformatics 3 —WS 19/20
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Growth Types 6-7: AGV and SMW

AGYV = aging vertices network

Like growing random network,
but preference decreases with age of the node
— citation network: more recent publications are cited more likely

SMW = small world networks, see Watts, Strogatz, Nature 363,202 (1998)

Randomly rewire regular ring lattice

Bioinformatics 3 —WS 19/20 V7 -
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Alternating Decision Tree Classifier

Trained with the motif counts from 1000 networks of each of the 7 types
— prototypes are well separated and can be reliably classified

DMC: -0.89
DMR: -0.89
RDG: -0.89
LPA: -0.89
AGV: -0.89
SMW: -0.89
RDS: -0.89

Prediction accuracy for networks

s V "\

st x $92.contos 5 stens similar to fly network with p = 0.5:
g |n /, \,, \y n Prediction
Truth DMR DMC AGV LPA SMW RDS RDG
DMC: 0.49 DMC: 0.62 DMC: -0.65 DMC: -1.78 DMC: 4.41
DMR: 0.58 DMR: -3.64 DMR: 0.19 DMR: 0.12 DMR: -3.50 DMR 99.3 0.0 0.0 0.0 0.0 0.1 0.6
RDG: 0.56 RDG: -3.82 RDG: 0.24 RDG: 0.10 RDG: -3.51
LPA: -3.94 LPA: —4.25 LPA: 0.99 LPA: -0.01 LPA: -1.70 bMC 0.0 997 0.0 0.0 03 0.0 0.0
AGV: -3.94 AGV: -0.03 AGV: 0.05 AGV: 0.01 AGV: -2.80 AGV 0.0 0.1 84.7 13.5 1.2 0.5 0.0
: -3, : 0.2 1 -3.92 : 0.02 1 =2,
?:3: -23.9904 ?2"3! o(?so9 erg\g: -33.991. sRhg\g/: :.:3 s':;\)v;/: -3.314 LPA 0.0 0.0 103 89.6 0.0 0.0 0.1
SMW 0.0 0.0 0.6 0.0 99.0 0.4 0.0
; y RDS 0.0 0.0 0.2 0.0 0.8 99.0 0.0
RDG 0.9 0.0 0.0 0.1 0.0 0.0 99.0
6: S49 < 203.0 4 S27 < 27615

/,

DMC: 0.04
DMR: -0.75
RDG: -1.63
LPA: -2.46
AGV: -0.30
SMW: 0.05
RDS: 0.65

¥

DMC: -3.48
DMR: 2.38
RDG: 0.00
LPA: 5.90
AGV: -0.03
SMW: -3.15
RDS: 0.86

DMC: 0.65
DMR: -0.57
RDG: -1.60
LPA: -0.00
AGV: 0.05

Decision nodes count
occurrence of subgraphs

Middendorf et al, PNAS 102 (2005) 3192
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Are the generated networks different?

Ploky)

10 ¥
: e © DMR
@ * RDG
10"} -
i o
(-]
2| ®
10 ¢} @
¢ @
Q
3 o)
10 9
{ (o]
: -
0} %
x QmD
10 — .
10’ 10 10°
kO
DMR RDGC
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b 16

141

# of predictions
@

.20 10 0 10
prediction score

Clustering coefficient
Average shortest path length

20

Example: DMR vs. RDG: Similar global parameters <C> and <I> (left),
but different counts of the network motifs (right)

-> networks can (only) be perfectly separated by motif-based classifier

Bioinformatics 3 —WS 19/20
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How Did the Fly Evolve?

Eight-step subgraphs

Subgraphs with up to
seven edges

Eight-step subgraphs

(p* = 0.65) (p* = 0.65) (p* = 0.5)

Rank Class Score Class Score Class Score

1 DMC 82+1.0 DMC 86 +1.1 DMC 0829
2 DMR —-6.8 0.9 DMR -6.1 1.7 DMR -21=20
3 RDG —-95=+23 RDG -93+16 AGV -31x22
4 AGV —-10.6 = 4.2 AGV -11.5+41 LPA —-10.1 = 3.1
5 LPA —16.5 + 3.4 LPA —-143 + 3.2 SMW -206 1.9
6 SMW —-189 + 0.7 SMW -18.3+1.9 RDS —-223 1.7
7 RDS —-19.1 + 2.3 RDS -199 + 1.5 RDG —-225 =47

Drosophila is consistently (independently of the cut-off in subgraph size) classified as a DMC network, with an
especially strong prediction for a confidence threshold of p* = 0.65.

W—:

— Best overlap with DMC (Duplication-mutation, preserved complementarity)
— Scale-free (LPA) or random networks (RDS/RDG) are very unlikely

Middendorf et al, PNAS 102 (2005) 3192
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Motif Count Frequencies
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-> DMC and DMR
networks contain

subgraph coun

8

most subgraphs in

~
o

similar amount as fly
network (top).

8 8 & 8 8
rank score (%)

—_
o

rank score: fraction of test networks with
a higher count than Drosophila
(50% = same count as fly on avg.)
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Experimental Errors?

Randomly replace edges in fly network and classify again:

101

o

-10F

prediction score

15

-20

-25 :
0 0.1 02 0.3 0.4 0.5 0.6 0.7 08 0.9 1

fraction of edges replaced

— Classification unchanged for < 30% incorrect edges,
at higher values RDS takes over (as to be expected)
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What Does a Protein Do?

BRENDA |
%Commehe"swe Enzyme Information Syste%Jn‘| \0>

Explorer [ SEARCH ][ BROWSE ]

B 1 Oxidoreductases (4042 organisms) 3 %
B 2 Transferases (3198 organisms) 3 %
B 2.1 Transferring one-carbon groups (615 organisms) 3 %
£32.1.1 Methyltransferases (514 organisms) 3 ®
£32.1.2 Hydroxymethyl-, formyl- and related transferases (82 organisms) 3 %
£32.1.3 Carboxy- and carbamoyltransferases (105 organisms) 3 ®
B> 2.1.4 Amidinotransferases (32 organisms) 2 Y
®2.1.4.1 glycine amidinotransferase (17 organisms) 3 Y
®2.1.4.2 scyllo-inosamine-4-phosphate amidinotransferase (15 organisms) 3 %
£32.2 Transferring aldehyde or ketonic groups (91 organisms) 2 @
B32.3 Acyltransferases (930 organisms) 3 i
£32.4 Glycosyltransferases (925 organisms) 3 @
£ 2.5 Transferring alkyl or aryl groups, other than methyl groups (547 organisms) 3 @
£3 2.6 Transferring nitrogenous groups (377 organisms) 3 ®
£32.7 Transferring phosphorus-containing groups (1343 organisms) 3 ®
£3 2.8 Transferring sulfur-containing groups (276 organisms) 3 ®
£32.9 Transferring selenium-containing groups (6 organisms) 2
£33 Hydrolases (4453 organisms) 3 %
B34 Lyases (2145organisms) 3 &
B 5 |somerases (849 organisms) 3 ©
B 6 Ligases (686 organisms) 3 %

e _—_J

Enzyme Classification scheme
(from http://www.brenda-enzymes.org/)
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What about Un-Classified Proteins?

doi: 10. 1083/bicinformatics/bti1054

Vol 21 Suppl. 12005, pages i302-i310 {

b : Whole-proteome prediction of protein function
?..mg: via graph-theoretic analysis of interaction maps
?1111 Elena Nabieva'-2, Kam Jim?, Amit Agarwal', Bernard Chazelle’

‘ 3 and Mona Singh’-2*

'Computer Science Department and 2Lewis-Sigler Institute for Integrative Genomics,
Princeton University, Princeton, NJ 08544, USA

Received on January 15, 2005; accepted on March 27, 2005

Many unclassified proteins:
— estimate: ~1/3 of the yeast proteome not annotated functionally

— BioGRID: 4495 proteins in the largest cluster of the yeast physical

interaction map.
only 2946 have a MIPS functional annotation
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Partition the Graph

Large PPI networks can be built from (see V3, V4, V5):
* HT experiments (Y2H, TAP, synthetic lethality, coexpression, coregulation, ...)
» predictions (gene profiling, gene neighborhood, phylogenetic profiles, ...)

— proteins that are functionally linked

p

4
soone <O AT ® H S—
., T

5

. ~E-DDE—
|co-regulaled - genome | 3 = ;P -_g H,_\ EEDD I_/,_\
e e e o o o
BN o
OO-—

|dentify unknown functions from clustering of these networks by, e.g.:

» shared interactions (similar neighborhood)

* membership in a community

» similarity of shortest path vectors to all other proteins (= similar path into

the rest of the network)
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Protein Interactions

Nabieva et al used the S. cerevisiae dataset from GRID of 2005 (now BioGRID)
— 4495 proteins and 12 531 physical interactions in the largest cluster

' [ 2 Search aasas
B l O G l D /LT BT B Escherichia coli K12 A m
General Repository for Interaction Datasets

help / : :

home support contribute downloads  mirrors about us
About BioGRID BioGRID Links
The Biological General Repository for Interaction Datasets (BioGRID) database « Arabidopsis Information
(http://www.thebiogrid.org) was developed to house and distribute collections of Resource
protein and genetic interactions from major model organism species. BioGRID  BioPIXIE
currently contains over 198 000 interactions from six different species, as « Biotechnology and Biological
derived from both high-throughput studies and conventional focused studies. Sciences Research Council
Through comprehensive curation efforts, BioGRID now includes a virtually (BBSRC)
complete set of interactions reported to date in the primary literature for both the » Canadian Institutes of Health
budding yeast Saccharomyces cerevisiae and the fission yeast Research (CIHR)
Schizosaccharomyces pombe. A number of new features have been added to » Cytoscape
the BioGRID including an improved user interface to display interactions based » Database of Interacting
on different attributes, a mirror site and a dedicated interaction management Proteins
system to coordinate curation across different locations. The BioGRID provides ¢ Entrez-Gene
interaction data with monthly updates to Saccharomyces Genome Database,  Flybase
Flybase and Entrez Gene. Source code for the BioGRID and the linked Osprey » Gene DB
network visualization system is now freely available without restriction. » Gene Ontology

o Germ Online

http://www.thebiogrid.org/about.php
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Function Annotation

Task: predict function (= functional annotation) for an unlabeled protein
from the available annotations of other proteins in the network

Similar task:
How to assign colors to
the white nodes!?

Use information on:

e distance to colored nodes
* local connectivity

* reliability of the links
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Algorithm I: Majority
This concept was presented in
Schwikowski, Uetz, and Fields, " A network of protein—protein interactions in yeast"
Nat. Biotechnol. 18 (2000) 1257

Consider all direct neighbors and sum up how often a certain annotation occurs
— score for an annotation = count among the direct neighbors
— take the 3 most frequent functions

Majority makes only limited use

of the local connectivity

— cannot assign function to
next-neighbors

For weighted graphs:
— use weighted sum
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Extended Majority: Neighborhood

This concept was presented in
Hishigaki, Nakai, Ono, Tanigami, and Takagi, "Assessment of prediction accuracy of
protein function from protein—protein interaction data",

Yeast 18 (2001) 523

Look for overrepresented functions within a given radius of 1,2, or 3 links
— use as function score the value of a y’—test

Neighborhood algorithm does not
, ® consider local network topology

‘\(5/. O Both examples (left) are
treated identically with r =
? 2
@ ./O\ although the right situation

feels more certain (2 direct

neighbors of ? are labeled)
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Minimize Changes: GenMultiCut

This concept was presented in

Karaoz, Murali, Letovsky, Zheng, Ding, Cantor, and Kasif, "Whole-genome annotation
by using evidence integration in functional-linkage networks"

PNAS 101 (2004) 2888

"Annotate proteins so as to minimize the number of times that different
functions are associated to neighboring (i.e. interacting) proteins”

— generalization of the multiway k-cut problem for weighted edges,
can be stated as an integer linear program (ILP)

P PR B

Multiple possible solutions — scores from frequency of annotations
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Nabieva et al: FunctionalFlow

Extend the idea of "guilty by association™
— each annotated protein is considered as a source of "function”-flow
— propagate/simulate for a few time steps
— choose the annotation a with the highest accumulated flow

Each node u has a reservoir Ri(u), each edge a capacity constraint (weight) wuy

oo, if u 1s annotated with a,

a —
0, otherwise. and gy(u,v) =0

Initially: R¢(u) = {

Then: downhill flow from node u to neighbor node v:

O, lf Ra 1(u) <Ra l(v) Idea: Node v has already ,,more
t— I—

function* than node u = no flow
uphill

gl (u,v) =

. (/7 .
min (wu,v , = ) , otherwise.
Z(u,y)eE Wy y

Score from accumulated in-flow:

d
@)=Y Y  gi,u)

t=1 v:(u)eE

Nabieva et al, Bioinformatics 21 (2005) i302
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accumulated thickness = current flow
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Comparison

T T T T
1000 F| . Majority ¢ .
Neighborhood, r =1 A ishted
Neighborhood, r = 2 v unweighted yeast map
_>; Neighborhood, r = 3 v
t), GenMultiCut 0
800 FunctionalFlow  + pbbt o+t -
Q
e . e i
o s =
0 o« 5
T 600 f |
+ A
9| AAAA
B 5t -
¥ AAA v
Q0 400 AAA ]
2] Y-y
o o
o v
(0]
o
E 200 . v vV vaW-
o v
v v ¥ v
v vvy vv VvV v
0 1 1 L 1
1000 1500 2000 2500
Proteins predicted incorrectly

For FunctionalFlow:

SiX propagation steps were
simulated; this is comparable
to the diameter of the yeast
network = 12

Majority results are initially
very good, but method has
limited coverage.

Results with neighborhood
get more imprecise for larger
radii r

Change score threshold for accepting annotations — ratio TP/FP
— FunctionalFlow performs best in the high-confidence region
— but generates still many false predictions!!!
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Going the Distance for Protein Function Prediction: A
New Distance Metric for Protein Interaction Networks

Citation: Cao M, Zhang H, Park J, Daniels NM, Crovella ME, et al. (2013) Going the Distance for Protein Function Prediction: A New Distance Metric for Protein
Interaction Networks. PLoS ONE 8(10): e76339. doi:10.1371/journal.pone.0076339

Relying on the ordinary shortest-path distance metric in PPl networks is
problematic because PPl networks are “small world” networks.
Most nodes are “close” to all other nodes.

— any method that infers similarity based on proximity will find that a large
fraction of the network is proximate to any typical node.

distribution of shortest path distances

Largest connected component of S. cerevisiae 7
PPI network (BioGRID) has 4990 nodes and °
74,310 edges (physical interactions). i

4+t

3_

frequency * 10 6

Right figure shows the histogram of shortest- Al
path lengths in this network. Over 95% of all 1
pairs of nodes are either 2 hops or 3 hops apart °* — > & &+ =+ &

shortest path distance
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What nodes mediate short contacts?

The 2-hop neighborhood of a typical node
probably includes around half of all nodes in the graph.

One of the reasons that paths are typically short in biological networks
like the PPl network is due to the presence of hubs.

But hub proteins often represent proteins with
different functional roles than their neighbors.

Hub proteins likely also have multiple, distinct functions.

— not all short paths provide equally strong evidence
of similar function in PPl networks.
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DSD Distance Metric

Given some fixed k>0, we define HelX) (A4,B) to be the expected
number of times that a random walk starting at 4 and proceeding

for k steps, will visit B. If there is no ambiguity about k, we can drop k.

He(Vi) - (He(Vi,Vl),He(V,',Vz),...,He(Vj,Vn))
He(v) is a ,,random walk distance vector® of node v, from all other nodes.
DSD(u,v)=||He(u)— He(v)||,  where

||He(u)— He(v)||; denotes the L; norm of the He vectors

Two nodes u and v have small DSD if they have similar distance from all other

nodes.

. The one-norm (also known as the Li-norm, #; norm, or mean norm) of a vector ¥ is denoted
EXPIanatlon- ||7]|; and is defined as the sum of the absolute values of its components:

n
ol =3 foil (1)
1=1

for example, given the vector v = (1, —4,5), we calculate the one-norm:
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DSD clearly improves functional predictions

MIPS Top Level, Accuracy

65.00%
60.00% ‘,4!
55.00%
— F1 Score on GO term Prediction for S. cerevisiae
' 30.00%
45.00%
1 2 3 4 5 6 7 8 9 101112 13 14 1516 17 18 19 20
—=—DSD Weighted ~ ====DSD Unweighted = Original MV 25.00%
MV: majority voting
® Majority Vote
MIPS Second Level, Accuracy 20.00% m MV (weighted DSD)
55.00% ®m Functional Flow
50.00% 15.00% ® FF with DSD
®m Neighborhood
45.00%
10.00% ® Neighborhood with DSD
40.00% : ® Multi-cut
35.00% M Multi-cut with DSD
1 2 3 45 6 7 8 9 10111213 14 15 16 17 18 19 20
5.00%
—a==DSD Weighted -~ DSD Unweighted  ====Qriginal MV
. 0.00% -
MIPS Third Level, Accu racy Exact Match  Overlap Depth Overlap Counting
47.00%
45.00% Figure 6. Improvement on F1 Score for DSD using three
43.
4i gx evaluation methods: exact match, overlap depth and overlap
— counting, on informative GO terms for the four algorithms for
37.00% S. cerevisiae in 10 runs of 2-fold cross validation.
35.00%

1 2 3 45 6 7 8 9 10111213 141516 17 18 19 20

wmwe=DSD Weighted  ==e==DSD Unweighted  =====Qriginal MV
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Summary
What you learned today:

- Graph bisection
=> Kernighan Lin algorithm

- Modules in networks
=> modular decomposition

- Postulated modes of network evolution
=> DMC yields networks that mimicking real networks most closely

- Predicting unknown protein functions
from a protein’s connectivity in PPl network

V8: wrap up protein interaction networks

Then next block of the lecture: gene-regulatory networks
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