
Bioinformatics III

Prof. Dr. Volkhard Helms
Daria Gaidar, Markus Hollander, Duy Nguyen, Thorsten Will
Summer Semester 2018

Saarland University
Chair for Computational Biology

Exercise Sheet 1
Due: April 20, 2018 13:15

1 Introduction to Python and some network properties

To keep the complexity down for this assignment, we focus on the random network and provide
several hints and code stubs to ease your the work in respect of the upcoming exercises. There-
fore this assignment is split into separate modules which can (and should be) be reused in later
assignments.

General remarks

Since the first assignments are based on each other, it is recommended you visit the tutorials if
there are any problems early on. Otherwise you are likely to encounter difficulties when working
on the next assignment sheets.

Python

For the programming tasks of those assignments the programming language Python (version 3.x)
is used. The aim of this assignment is to learn basic Python concepts and to get familiar with
network properties.
Note that line indentation is crucial in Python! All code templates you are given use 4 spaces as
tabs, adjust your editor/IDE accordingly to avoid problems.
Furthermore, since it is the most common package for that, you will use the ’matplotlib’ library
for all plotting tasks which you need to install first. Linux users are advised to install the library
using their package management system,
macOS users may find this link useful: http://fonnesbeck.github.io/ScipySuperpack/
and Windows users should take a look here: http://www.lfd.uci.edu/~gohlke/pythonlibs/.

Submission process and rules

(a) You are advised to work in groups of two people. If necessary, we will suggest teammates
after the first assignment has been submitted. You may submit your solutions in english or
german language.

(b) Submit your solutions on paper, hand-written or printed at the beginning of the lecture
in the lecture hall or in Room 302, both E2.1. Alternatively, you may send an email with
a single PDF attachment to thorsten.will@bioinformatik.uni-saarland.de. Always attach
your source code. Late submissions and submissions as Word- or simple text-files will not
be considered. Please note that later sheets need to be sent to different teaching assistants.

(c) Include source code listings into the submitted document, we will not merge and layout your
source code. If relevant sources are missing in the exercise sheet, they will not be graded.

(d) Feel free to use the LATEX-template provided in the supplementary material.

(e) Do not forget to mention your names/matriculation numbers. :)

Discussion of this exercise will be on Tuesday, April 24th at 12:00 c.t. in the lecture room (E2.1
Room 007).

http://fonnesbeck.github.io/ScipySuperpack/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
mailto:thorsten.will@bioinformatik.uni-saarland.de

Exercise 1.1: Constructing a network (50 Points)

We start by building a simple data structure that represents a network in general. Therefore we
first (a) implement a Node-class that represents a single node in the network and stores its links
to other nodes, we then (b) define an abstract superclass that stores all nodes of a network, which
can later be used to derive our different network types from, and (c) implement a subclass that
actually builds a random network.

We provide templates for all classes that you need to implement in the supplementary material.
Most method implementations are very short. Feel free to extend your interface as you need.

(a) Implement the missing methods of the Node-class in Node.py.

(b) We need a network class that stores all nodes of a network. Use a Python-dictionary to store
all nodes in a key → node fashion within a class variable called self.nodes. Implement it
in AbstractNetwork.py.

Hint:

• An example how to use python dictionaries:

i n i t d i c t i ona ry
nodes = {}

crea te node with id 0
node = Node (0)

add entry to d i c t i ona ry
nodes [node . id] = node

(c) Implement the algorithm to set up a random graph (as given in the lecture) in the initializa-
tion method of a RandomNetwork object in RandomNetwork.py. Start from a given
number of nodes and add unique links stepwise.
As you will see in the code template, RandomNetwork extends AbstractNetwork.

Hint:

• When adding a link between two nodes i and k, do not forget the entry for k → i.

Exercise 1.2: Degree distribution of random networks (50 Points)

(a) Write a class that determines and prints the degree distribution for a network created above.
Again, a stub is given in the supplement.

Hints:

• First determine the biggest number of links that occurs in your network and initialize
a list of that size with zero values. An example to do this with 10 entries is:

histogram = [0] ∗ 10

This array then holds the degree distribution.

• Now loop over the network list and increment the cells indexed with the corresponding
degree.

• Normalize the histogram to obtain a valid probability distribution which can be re-
trieved by the getNormalizedDistribution() method.

(b) To visually assess that the degree distribution of a random network obeys the Poisson dis-
tribution P (k) with a mean value of λ, you need to implement a few methods in Tools.py:

• First implement the method poisson(k, lambda) which returns P (k) for given λ
according to

P (k) =
λk

k!
e−λ.

Then, in getPoissonDistributionHistogram(num nodes, num links, k) you de-
termine λ from the numbers of nodes and links and compute the Poisson distribution
for a sufficiently large range of k. The structure of the output should match the output
of (a).

Tip:
In case you encounter numerical problems calculating the factorial, consider an iterative
solution, e.g.

P (0) = e−λ, P (1) =
λ

1
· P (0), . . . , P (n) =

λ

n
· P (n− 1)

• The file also contains a simple function that plots several distributions for comparison.
To get visually pleasing plots ensure that all distributions that are plotted together
have the same length. This can be done by appropriately extending the shorter ones.
Why does this happen and how do you need to ”fill” the shorter distributions? Are the
ranges of the discrete distributions we obtain in (c) deterministic in our case?
Furthermore, two important annotations are still missing there, fill the two empty
strings correctly.

(c) Use the provided script createAndPlotNetworks.py that sets up the following networks
(each given in the form nodes/links) and plots P (k) together with the degree distributions
of the random networks.. Save the plots and attach them to your solution.

Plot 1: 50/100 500/1000 5000/10000 50000/100000
Plot 2: 20000/5000 20000/17000 20000/40000 20000/70000

Describe both plots and explain the difference (or the trend) between the different parameter
sets.

General hint:

• Never forget to label the axes! (This hint applies to the entire lecture and beyond.)

Have fun!

	Introduction to Python and some network properties

