
Bioinformatics III

Prof. Dr. Volkhard Helms
Daria Gaidar, Markus Hollander, Duy Nguyen, Thorsten Will
Summer Semester 2018

Saarland University
Chair for Computational Biology

Exercise Sheet 3
Due: May 4, 2018 13:15

Submit your solutions on paper, hand-written or printed at the beginning of the lecture or in build-

ing E2.1, Room 3.02. Alternatively you may send an email with a single PDF attachment to

thorsten.will@bioinformatik.uni-saarland.de. Either way, send me your source code. Due to a bank

holiday on May 1, the tutorials for Assignments 2 and 3 will be held together at May 8.

Bayesian classification and network communities

In this assignment you will implement a Naive Bayes classifier and the algorithm of Radicchi et
al. to identify the communities of a given network. There will be no code templates for this
assignment and you are free to use any programming language. The usage of libraries that solve
core problems of the exercises (any graph or machine learning package) is prohibited, though.

Exercise 3.1: Naive Bayes classifier (50 points)

A naive Bayes classifier is a simple classifier based on the application of Bayes’ theorem and the
(naive) assumption of independence among all features.
You will implement and evaluate such a classifier on the basis of two artificial datasets that relate
100 discrete features (for simplicity) to a boolean outcome. In our case, imagine that the features
describe properties derived from a pair of proteins (co-expression, genomic distance, etc.) that
may tell us if they interact with each other and form a complex.

The following abbreviations will be used within the remaining exercise:
C : ”the proteins form a complex”, C : ”no interaction between the proteins”,
S : state of all features regarding the pair, Si : state of individual feature i.

(a) Given the states of the features, you want to infer if two proteins are likely to physically
interact. In practice, log-likelihood ratios are used in binary classification:

log
P (C|S)

P (C|S)
.

Derive a term that uses observable probabilities such as P (Si|C) to calculate the log-
likelihood ratio from training data. How does the actual classification work?

(b) Shortly discuss: What are the practical advantages of the logarithm and the likelihood ratio
within this framework? State two reasons why this particular type of classifier may perform
poorly on a real world dataset.

(c) Use the file ’training1.tsv’ to build a model. This basically means to determine all necessary
priors and likelihoods from part (a). The file layout is explained in ’README.txt’. Report
P (C) and P (C) as well as the ten Si (feature number, variant and log-ratio) with the highest
absolute log-likelihood ratios. Examine and comment on the results of the training-phase.
Which features seem to be the most helpful?

(d) Predict the ability to interact for the protein pairs in ’test1.tsv’ with your previously trained
model and report the accuracy of the classifier.

(e) At last, train a model using ’training2.tsv’ and test it on ’test2.tsv’. Again, take a look at
the measures asked for in parts (c) and (d). Why is the performance inferior? Could this
have been expected?

mailto:thorsten.will@bioinformatik.uni-saarland.de


Exercise 3.2: Network communities (50pts)

(a) Edge-clustering coefficient

The edge-clustering coefficient C̃
(3)
i,j of a link between nodes i and j is defined as the ratio

of the actual number of triangles z
(3)
i,j to which the link between i and j contributes and the

number of possible triangles, determined by the minimum of the degrees ki and kj of the
two nodes i and j:

C̃
(3)
i,j =

z
(3)
i,j + 1

min[ki − 1, kj − 1]

If one of the nodes has a degree of 1, then C̃
(3)
i,j is infinite. What is the maximal finite value

that the edge-clustering coefficient can take? For which configuration does this occur? Give
an example!

(b) Determine communities

To determine the communities of the supplied network given in GoT.txt (found in the
additional materials), perform the following steps:

(1) Decomposition of the network (by programming)

As explained in the lecture, iteratively delete the links with the smallest C̃
(3)
i,j :

i. Read in the network file.

ii. Calculate the edge-clustering coefficient C̃
(3)
i,j for each link.

iii. Find the link with the smallest C̃
(3)
i,j and delete it from the network (or mark it).

Store the link.

iv. Repeat from (ii) until there is no link left.

Give the links that you deleted from the network in (iii) by printing the names of the
two nodes and their current edge-clustering coefficient in the order of their deletion. Of
course, add the output to the PDF/sheet that you hand in. Implement this part as a
script or class-based, there are no specifications you need to adjust to.



(2) Build communities and the dendrogram (by pen and paper)

There are two criteria for a community (see Radicchi et al., 2004 ):

i. In a community in a strong sense every single member of the subgraph V has more
links to the inside of the community (kin) than to the outside (kout):

kini (V ) > kouti (V ) ∀i ∈ V

ii. In a community in a weak sense the total number of links inside the subgraph V
is bigger than to the outside: ∑

i∈V

kini >
∑
i∈V

kouti

Use the links deleted in (1) in reverse order, i.e., the link that was deleted last is now
used first to construct the communities. To do so, take one link after the other and check
if they have nodes in common with the already included links. During this composition
stage you do not need to keep track of the links, but only of the nodes that belong to
the same subgraph:

i. If the latest link is disjoint from the already processed links, then start a new
subgraph (=list of nodes of this subgraph) from this one.

ii. If the latest link has a single node in common with one of the existing subgraphs,
then add the other node of this link to that (list of the nodes of the) subgraph, too.

iii. If the two nodes of the latest link belong to two different subgraphs, then join the
two subgraphs to form a single one from them. Highlight the two lists of nodes
that are joined in this step.

Finally, when the last link is added, you should end up with a single graph that contains
all nodes of the network and a listing of the subgraphs just before they were joined to
form bigger ones.

To draw the dendrogram of the network, look at the above choice (iii), the joining of
two groups: start from the individual nodes and every time that this happens, connect
two subgraphs.



(c) Visualization of the communities

In Figure 1 a layout of the network is given. Use it to visually identify communities. Point
out two communities that are disjunct. Specify for each of the communities whether the
weak or the strong criterion applies.

The Hound

The Mountain
Joffrey

Cersei
Robert

Jaime
Eddard

Arya

Catelyn

Sansa

Tyrion

Shae

Baelish

Varys

Jon
Samwell

Jeor

Figure 1: The network in “GoT.txt” visualized.

May the Fourth be with you!


