Bioinformatics llI:
Network View of Cell Biology

Molecular Systems Biology: "It's both + molecular interactions”

genetic molecular biochemical
, , => => phenotype
information structu re functlon
molecular

interactions

- highly connected network of various interactions, dependencies

=> study networks
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V1 - Introduction

Medalia et al, Science 298 (2002) 1209
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A cell is a crowded environment
=> many different proteins,
metabolites, compartments, ...

At the microscopic level
=> direct two-body interactions

At the macroscopic level
=> complex behavior

Can we understand the behavior
from the interactions?

=> Connectivity

Vi



Lecture — Overview

Protein complexes: spatial structure
=> experiments, spatial fitting, docking

Protein association:

=> interface properties, spatial simulations

Protein-Protein-Interaction Networks: pairwise connectivity
=> data from experiments, quality check

PPl: static network structure
=> network measures, clusters, modules, ...

A3ojoig swa3sAg

Gene regulation: cause and response
=> Boolean networks

Metabolic networks: steady state of large networks
=> FBA, extreme pathways

Metabolic networks / signaling networks: dynamics
=> ODEs, modules, stochastic effects
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Lecture — Table of contents - Chapters

Introduction — Networks in Biological Cells

Structures of Protein Complexes and Subcellular Structures
Analysis of protein-protein binding

Algorithms on mathematical graphs

Protein-Protein Interaction Networks — Pairwise Connectivity
Protein-Protein Interaction Networks — Structural Hierarchies
Protein-DNA interactions

Gene Expression and Protein Synthesis

Gene Regulatory Networks

. Regulatory Noncoding RNA

Computational Epigenetics

Metabolic Networks

Kinetic Modeling of Cellular Processes
Stochastic processes in biological cells

Integrated Cellular Networks

Bioinformatics 3 —SS 18

Vi



Lecture — type of mathematics

Mathematical Object of Investigation  Analysis of Time- Treated in
concept Complexity dependent Chapter #
Mathematical protein-protein networks; Yes no 56,9, 10
graphs protein complexes; gene
regulatory networks
Stoichiometric metabolic networks* yes (count # of possible  no 12
analysis; matrix paths that connect two
algebra metabolites)
Differential signal transduction, energy No yes %13
Equations transduction, gene regulatory
networks
Equations of individual proteins, protein yes 14, 15
motion complexes
Correlation reconstruction of two- and No yes, when applied 2
functions, Fourier three-dimensional structures of on time-
transformation cellular structures and dependent data
individual molecules
Statistical tests Differential expression and No yes, when applied 8,9, 10
methylation; enriched network on time-
motifs dependent data
Machine learning  Predict gene expression, No no 8, 11

(linear regression, classify chromatin states
hidden Markov
model)
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Appetizer: A whole-cell model for the life cycle of
the human pathogen Mycoplasma genitalium (15.2)

A Whole-Cell Computational Model 100% 900+ 1900+ 28

of genes publications parameters processes

Predicts Phenotype from Genotype l l J J

Jonathan R. Karr,'# Jayodita C. Sanghvi,2# Derek N. Macklin,2 Miriam V. Gutschow,? Jared M. Jaccbs,?
Benjamin Belival, Jr.,2 Nacyra Assad-Garcia, John |. Glass,® and Markus W. Covert2*

1Graduate Program in Biophysics

2Department of Bioengineering

Stanford University, Stanford, CA 94305, USA

2. Craig Venter Institute, Rockville, MD 20850, USA

4These authors contributed equally to this work

“Correspondence: mcovert@stanford.edu

http://dx.doi.org/10.1016/.cell.2012.05.044

v v v v

Predictive Novel Biological Rational
capacity hypotheses discovery design

Cell 150,389-401 (2012)

Bioinformatics 3 — SS 18 Vi



Divide and conquer approach (Caesar):

split whole-cell model into 28 independent

submodels

External
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28 submodels are built / parametrized / iterated independently
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Update time & _

Cell variables

cell variables

Cell variables
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System state is described

by 16 cell variables

Colored lines: cell
variables affected by

individual submodels

Mathematical tools:
-Differential equations
-Stochastic simulations

-Flux balance analysis
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List S1. Primary sources of the M. genitalium reconstruction.

Data source

Content

Rernstein et af., 2002%%
BioCyc®

BREMNDA®™

CMR168

Devuerling et af., 2003%#
DrugBank®’

Eisen et af., 1000%!
Endo et af., 2007%!
Feist et af, 2007%*
Glass et af, 2006
Giiell et af, 2000%%
Gupta et af., 20074%
KEGG!

Kerner et af., 20065*®
Krause et af., 2004
Lindahl et af, 2000%%
Morowitz et af., 1062°™
NCBI Gene® 77
Neidhardt et af, 1900%3
Peil, 200017
PubCherm®*
SABIO-RK!™
Solabia™*-""

Suthers et af., 200087
UniProt™

Weiner et af., 20001
Weiner et af., 2003°%

mRMNA half-lives

Genome annotation, metabolic reactions

Reaction kinetics

Genome annotation
Chaperone substrates
Antibiotics

DMNA repair

Chaperone substrates
Metabolic reactions

Gene esgentiality
Transcription unit structure
MN-terrminal methionine cleavage
Genome annotation, orthology
Chaperone substrates
Terminal organelle assembly
DMNA damage

Cell chemical composition
Genome annotation

Cell chemical composition
RMA modification
Metabolite structures
Reaction kinetics

Media chemical composition
Metabolic reactions
Genome annotation
Promoters

mRMNA expression

Vi



Growth of virtual cell culture

A 0o In{2) At
In{dilution factor)
0.2
5 - 1=82h
' 1X dilution
O 049 5X dilution Mean
gox iil|utl{)n 1= 9_-0___[]—-—
15

The model calculations were consistent with
the observed doubling time!
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Growth of three cultures
(dilutions indicated by
shade of blue) and a blank
control measured by
ODA550 of the pH
indicator phenol red.The
doubling time, t, was
calculated using the
equation at the top left
from the additional time
required by more dilute
cultures to reach the same

OD550 (black lines).
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DNA-binding and dissociation dynamics
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DNA-binding and dissociation dynamics of the oriC DnaA complex (red) and of RNA (blue) and DNA (green)
polymerases for one in silico cell. The oriC DnaA complex recruits DNA polymerase to the oriC to initiate replication,
which in turn dissolves the oriC DnaA complex. RNA polymerase traces (blue line segments) indicate individual
transcription events. The height, length, and slope of each trace represent the transcript length, transcription duration,

and transcript elongation rate, respectively.

Inset : several predicted collisions between DNA and RNA polymerases that lead to the displacement of RNA
polymerases and incomplete transcripts.
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Predictions for cell-cycle regulation

A 0 Distributions of the
Cell cycle )
Replication initiation duration of three cell-
Replication
) Cylokinesis cycle phases, as well as
T o that of the total cell-cycle
2 length, across 128
| simulations.
04 T
0 ] 10
Duration {h})

There was relatively more cell-to-cell variation in the durations of the replication
initiation (64.3%) and replication (38.5%) stages than in cytokinesis (4.4%) or the
overall cell cycle (9.4%).

This data raised two questions:

(1) what is the source of duration variability in the initiation and replication
phases; and

(2) why is the overall cell-cycle duration less varied than either of these phases!?

Bioinformatics 3 —SS 18 VI - 12



Single-gene knockouts : essential vs. non-essential
genes

B Essential Single-gene disruption

| Macromoleclle synthesis Cell cycle |
[ ]

Vembolo  RNA P omer  ONA ol ames  strains grouped into

_— | o~ phenotypic classes

(columns) according to
- - - / / —— their capacity to grow,
—_— e T synthesize protein, RNA,

and DNA, and divide
— j / [ _ f / (indicated by septum

\ \ length).

2.5+

Growth (fg h'")

Protein {fg)

RNA {fg)

122
DNA {fg)

06
2504

Septum {(hm)

NN N

04

OTime{w)
Each column depicts the temporal dynamics of one representative in silico cell of
each essential disruption strain class.

Dynamics significantly different from wild-type are highlighted in red.

The identity of the representative cell and the number of disruption strains in
each category are indicated in parenthesis.
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Literature

Lecture slides — available before the lecture
Suggested reading

=> check our web page
http://gepard.bioinformatik.uni-saarland.de/teaching/...

Textbooks
]
Volkhard Helms WWILEY-VCH Systems BiOIOgy SYSTEM S
Principles of o Kl Hone Lokros, St RFHerotG BIOLO GY
Computational
Cell BlOIOgy Properties of Reconstructed Networks
From Protein Complexes to Cellular Networks

Bernhard . Palsson

=> check computer science library

Bioinformatics 3 — SS 18 VI - 14



How to pass this course

Schein = you need to qualify for the final exam and pass it

Final exam:
written test of 180 min length about selected parts of the lecture
(slides will be defined 2 weeks before exam) AND about selected assignments

requirements for participation in final exam:
* 50% of the points from the assighments
* one assignment task presented @ blackboard in tutorial

Final exam will take place at the end of the semester.
In case you are sick (final exam) you should submit a medical certificate

to take the written re-exam (then this will be counted as first exam).

Re-exam: will take place in first week of the winter term 2018/19.
Everybody can take the re-exam (first exam failed or passed).

Bioinformatics 3 —SS 18 VI - |5



Assignments

Tutors: Thorsten Will, Duy Nguyen, Daria Gaidar ,
Markus Hollander

Tutorial: Tue, 12:15-13:45, E2 |, room 007

|0 assignments with 100 points each

Assignments are part of the course material (not everything is covered in lecture)

=> one solution for two students (or one)

=> hand-written or one printable PDF/PS file per email
=> content: data analysis + interpretation — think!
=> no 100% solutions required!!!

=> attach the source code of the programs for checking (no suppl. data)

=> present one task at the blackboard

Hand in at the following Fri electronically until 13:15 or
printed at the start of the lecture.

Bioinformatics 3 —SS 18 VI - |6



Some Graph Basics

Network <=> Graph

Formal definition:

A graph G is an ordered pair (V, E) of a set V of vertices and a set E of edges.

NX

undirected graph directed graph

If E=V®? => fully connected graph

Bioinformatics 3 —SS 18 VI - 17



Graph Basics I
Subgraph: Weighted graph:

G' = (V,E') isasubset of G=(V,E) Weights assigned to the edges

Practical question: how to Note: no weights for vertices
define useful subgraphs!?

Bioinformatics 3 —SS 18 VI - |8



Walk the Graph

Path = sequence of connected vertices
start vertex => internal vertices => end vertex

Two paths are independent (internally vertex-disjoint),
if they have no internal vertices in common.

Vertices u and v are connected, if there exists a path from u to v.
otherwise: disconnected

Trail = path, in which all edges are distinct

Length of a path = number of vertices || sum of the edge weights

How many paths connect the green to the
red vertex!

How long are the shortest paths?

Find the four trails from the green to the
red vertex.

How many of them are independent?

Bioinformatics 3 —SS 18 VI - 19



Local Connectivity: Degree/Degree Distribution

Degree k of a vertex = number of edges at this vertex
Directed graph => distinguish kin and kou

Degree distribution P(k) = fraction of nodes with k connections

k 0 | 2 3
k10 I 2 3 4 Ptki) | /7 517 0 117
Pk) | 0 37 17 17 27 Plkow) | 217 317 117 117
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Graph Representation e.g. by adjacency matrix

Adjacency matrix is a N x N matrix

with entries My,

My, = weight when edge between u and v exists,
0 otherwise

— symmetric for undirected graphs

+ fast O(/) lookup of edges
— large memory requirements

|
|
—_
- O O|H

— adding or removing nodes is expensive

Note: very convenient in programming
languages that support sparse multi-

© == O O O O|N

dimensional arrays
=> Perl

N OO O A WON =
o O O O =+ O
OO O O O =
O O = -

—

I
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Measures and Metrics

“Which are the most important or central vertices in a network? “

Examples of
A) Degree
centrality,

C) Betweenness
centrality,

E) Katz centrality, Sy
. #¢ same graph.

www.wikipedia.org

book by Mark Newman / Oxford Univ Press
- Chapter 7: measures and metrics

Networks

- Chapter | I: matrix algorithms and graph partitioning

Bioinformatics 3 —SS 18 VI -
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Degree centrality

Perhaps the simplest centrality measure in a network is the
degree centrality that is simply equal to the degree of each vertex.

E.g. in a social network, individuals that have many connections
to others might have

- more influence,

- more access to information,

- or more prestige than those individuals who have fewer connections.

Bioinformatics 3 —SS 18
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1.2 Biological Background

Central Paradigm of Molecular Biology However, there exist

feedback loops
DNA —# RNA — Protein —#- L0c1OWPe -
rotein (Symptoms) (transcription factors,

microRNAs)

Central Paradigm of Structural Biology

Genetic Molecular Biochemical Phenotype

: . —>
Information =~ Structure Function (Symptoms)

Central Paradigm of Molecular Systems Biology

Genetic Molecular Biochemical Phenotype
Information =~ Structure \ Function (Symptoms)
Molecular
Interactions
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1.2 Cellular components

We will mostly use 3 different levels of description:

Inventory lists and lists of processes:
Proteins in particular compartments
Proteins forming macromolecular complexes
Biomolecular interactions
Regulatory interactions
Metabolic reactions

Structural descriptions:
Structures of single proteins
Topologies of protein complexes
Subcellular compartments

Dynamic descriptions:

Cellular processes ranging from nanosecond dynamics for the association of two
biomolecules up to processes occurring in  seconds and minutes such as the cell division of
yeast cells.

Bioinformatics 3 — SS 18 VI -
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1.2 Biomolecules

Macromolecules: proteins
nucleic acids
polysaccharides
lipids.

Building blocks of macromolecules:
sugars as the precursors of poly-saccharides
amino acids as the building blocks of proteins
nucleotides as the precursors of DNA and RNA
fatty acids which are incorporated into lipids.

Interestingly, in biological cells, only a small number of the theoretically synthesizable
macromolecules exist at a given point in time.

At any moment during a normal cell cycle, many new macromolecules need to be synthesized
from their building blocks and this is meticulously controlled by the complex gene

expression machinery.

Even during a steady-state of the cell, there exists a constant turn=-over of macromolecules.

Bioinformatics 3 —SS 18 VI - 26



1.2 Biomolecules

Metabolic intermediates (metabolites):

The molecules in a cell have complex chemical structures and must be
synthesized step-by-step beginning with specific starting materials that may be
taken up as energy source.

In the cell, connected chemical reactions are often grouped into metabolic
pathways.

Molecules of miscellaneous function:
vitamins
steroid or amino acid hormones
molecules involved in energy storage (e.g. ATP)
regulatory molecules (e.g. cyclic AMP)
metabolic waste products such as urea.
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1.2 Compartments

Organization into various compartments greatly simplifies the temporal and
spatial process flow in eukaryotic cells.

At each time point during a cell cycle only a small subfraction of all potential
proteins are being synthesized (and not yet degraded).

Many proteins are only available in very small concentrations, possibly with
only a few copies per cell.

However, due to localizing these proteins to particular spots in the cell, e.g. by

attaching them to the cytoskeleton or by partitioning them into lipid rafts, their
local concentrations may be much higher.
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1.2 Compartments

Compartments of a typical animal cell:

(1) nucleolus

(2) nucleus

(3) ribosome

(4) vesicle

(5) rough endoplasmic
reticulum (ER)

(6) Golgi apparatus

(7) Cytoskeleton

(8) smooth ER

(9) mitochondria

(10) vacuole

(I'l) cytoplasm
(12) lysosome
(13) centrioles

www.wikipedia.org
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1.2 Organisms

Organism Length Number of Number of RNA genes Number of

of protein- transporter
genome coding proteins
[Mb] genes

Prokaryotes 0.6 476 43 53

Mycoplasma

genitalium G37

Bacillus subtilis BSN5 4.2 4145 113 552

Escherichia coli (E. 4.6 4890 93 665

coli) APECOI

Eukaryotes |.3 6002 425 341

Saccharomyces

Cerevisae S288C

Drosophila 12 13929 3209 662

melanogaster

Caenorhabditits 100.2 20093 24969 669

elegans

Homo sapiens 3150 20338 19201 1467

Bioinformatics 3 —SS 18 VI - 30



1.3 Cellular Pathways

basic unit motifs

. 9
Transcription factor '/'/ \\
o ® @é@@)

SIM
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binding site O

After Babu (2004)

Bioinformatics 3 —SS 18

modules

@

A 3
@
-$
-

O

Vi

- 3l



1.3 Major Metabolic Pathways
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1.3 Cellular Pathways
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Glycolysis pathway of E. coli
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1.4 Ontologies & Databases
- Gene Ontology (chapter 8)

- KEGG (http://www.genome.jp/kegg/)

- Reactome

- BRENDA (https://www.brenda-enzymes.org/)
- DAVID (https://david.ncifcrf.gov/)

- Protein Databank (www.rcsb.org)
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Summary
What you learned today:

=> networks are everywhere

—> how to get the "Schein" for BI3
= What is the lecture content
—> Basic biological background

Next lectures:
- Random graphs vs. scale-free networks (assignments | + 2)
- Structures of protein complexes
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Additional slides (not used)
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Towards Eigenvector Centrality

Let us start by defining the centrality of vertex x; as the sum of the centralities

I
Xi = ZAU.X]
J

where A; is an element of the adjacency matrix.

of all its neighbors:

(This equation system must be solved recursively until convergence.)

Remember the multiplication of a matrix with a vector below ...

a b c x
A=|p q |, B=1y]|,
u v ow z
a b c T ar + by + cz
ABz(p q r yl=\|pr+qyt+rz |,
u v w Z uzT + vy + wz

en.wikipedia.org
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Towards Eigenvector Centrality

Let us start by defining the centrality of vertex x; as the sum of the centralities

r
Xi = ZAUX]
J

where A; is an element of the adjacency matrix.

of all its neighbors:

We can also write this expression in matrix notation as
X> = A X where X is the vector with elements x; .

Repeating this process to make better estimates gives after t steps
the following vector of centralities:

x(t) = At x(0)

Bioinformatics 3 — SS 18 Vi
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Eigenvector Centrality

Now let us write X(0) as a linear combination of the eigenvectors v, of the
(quadratic) adjacency matrix!
x(0) = );c;v; with suitable constants c;

Then X(t) = At Zi CiVi

Because v, are eigenvectors of A,A v, = k; v. with the eigenvalue k; .
Let k, be the largest eigenvector.

t
t t ki .
X(t) = A Zi CiV; = Zi C; ki Vi = k1 Zi Ci lk_l] \'4 Here, we divide by k.,
18 +—= and multiply by k; in
the front.

Since k; / k; < | foralli=j,all terms in the sum decay exponentially as t

becomes large, only the term with i = j remains unchanged.
In the limit t — oo, we get for the centrality vector X(t) = ¢, k,* v,

! Remember from linear algebra that a quadratic matrix with full rank can be diagonalized.
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Eigenvector Centrality

This limiting vector of the eigenvector centralities is simply proportional
to the leading eigenvector of the adjacency matrix.

Equivalently, we could say that the centrality X satisfies

AXx=k x
This is the eigenvector centrality first proposed by Bonacich (1987).
The centrality x; of vertex i is proportional to the sum of the centralities of
its neighbors:

x; =kt i Aijx; Divide above eq. by k,

This has the nice property that the centrality can be large either because a vertex

has many neighbors or because it has important neighbors with high centralities
(or both).

Bioinformatics 3 —SS 18 VI - 4



Problems of the Eigenvector Centrality

The eigenvector centrality works best for undirected networks.

For directed networks, certain complications can arise.

In the figure on the right,
vertex A will have eigenvector
centrality zero.

Hence, vertex B will also have
centrality zero.

Bioinformatics 3 —SS 18

Figure 7.1: A portion of a directed net-
work. Vertex A in this network has
only outgoing edges and hence will
have cigenvector centrality zero. Ver-
tex B has oulgoing odges and one in-
going edge, but the ingoing one orig-
nates at A, and hence vertex B will also
have centrality zero
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Katz Centrality

One solution to the issues of the Eigenvector Centrality is the following:

We simply give each vertex a small amount of centrality “for free”,
regardless of its position in the network or the centrality of its neighbors.

— we define x; = a);A;jx; +p where a and 3 are positive constants

In matrix terms, this can be writtenas X =oAx + 3 |

where 1 is the vector (1,1,1,...)T . By rearranging for x we find
Ix-och=BI (where we used I X = x)
T-aA)x=p1

I-ca A" (I-aA)x=0-aA)'pI (multiply both sides with (I - at A )"
x=F(A-aA)'l

When setting 3 =1, we get the Katz centrality (1953) x=(1-a A )"
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Computing the Katz Centrality

The Katz centrality differs from the ordinary eigenvector centrality by having
a free parameter o, which governs the balance between the eigenvector term and the
constant term.

However, inverting a matrix on a computer has a complexity of O(n’) for a graph with n
vertices.

This becomes prohibitively expensive for networks with more than 1000 nodes or so.
It is more efficient to make an initial guess of x and then repeat

X'=aAx + 1
many times. This will converge to a value close to the correct centrality.

A good test for convergence is to make two different initial guesses and run this until the
resulting centrality vectors agree within some small threshold.
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Towards PageRank

The Katz centrality also has one feature that can be undesirable.

If a vertex with high Katz centrality has edges pointing to many other vertices,
then all those vertices also get high centrality.

E.g. if a Wikipedia page points to my webpage,
my webpage will get a centrality comparable to Wikipedia!

But Wikipedia of course also points to many other websites,
so that its contribution to my webpage “should” be relatively small
because my page is only one of millions of others.

-> we will define a variation of the Katz centrality in which the

centrality | derive from my network neighbors is proportional
to their centrality divided by their out-degree.

Bioinformatics 3 —SS 18
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PageRank

This centrality is defined by

A CZZ Al]k out+:8
At first, this seems problematic if the network contains vertices with zero outdegree.

However, this can easily be fixed by setting k*** = | for all such vertices.

In matrix terms, this equation becomes
x=o0AD'x+I

where 1 is the vector (1,1,1,...)" and D the diagonal matrix with D; = max(k*, |)
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PageRank

By rearranging we find that
x=B(l-aAD')"I
Because 3 plays the same unimportant role as before, we will set B = 1.
Then we get x=(l-cAD')'1=DD-aA)'l expand with D

This centrality measure is commonly known as PageRank,
using the term used by Google.

PageRank is one of the ingredients used by Google
to determine the ranking of the answers to your queries.

a is a free parameter and should be chosen less than |. (Google uses 0.85).
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Closeness centrality

An entirely different measure of centrality is provided
by the closeness centrality.

Suppose d; is the length of a geodesic path (i.e. the shortest path)
from a vertex i to another vertex j.
Here, length means the number of edges along the path.

Then, the mean geodesic distance from j, averaged over
all vertices j in the network is

1
l; ==X;dij

n

The mean distance |, is not a centrality measure in the same sense
as the other centrality measures.

It gives low values for more central vertices and
high values for less central ones.
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Closeness centrality

The inverse of | is called the closeness centrality C

It has become popular in recent years to rank film actors
according to their closeness centrality in the network
of who has appeared in films with who else.

Using data from www.imdb.com the largest component of the network includes
more than 98 % of about half a million actors.
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Closeness centrality

The highest closeness centrality of any actor is
0.4143 for Christopher Lee.

The second highest centrality has
Donald Pleasence (0.4138).

The lowest value has the Iranian actress Leia Zanganeh (0.1154).
— the closeness centrality values are crammed in a very small interval [0,0.4143]

Other centrality measures including degree centrality and eigenvector centrality typically
don‘t suffer from this problem.They have a wider dynamic range.

Pictures from wikipedia
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