V11 -
8. Function Annotation and Protein Synthesis

- Gene Ontology: annotate function to gene and gene
products, e.g. to differentially expressed genes

- Similarity of GO Terms

- Translation of Proteins
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The Gene Ontology (GO)

Ontologies are structured vocabularies.

biological

The Gene Ontology consists of / \
3 non-redundant areas: meecess = \
- Biological process (BP) /7 [

™ el compoms oot
- molecular function (MF) process s "rocess. prosess
- cellular component (localisation). \/\ \ \/

mac :::' -I:éll:l;ula r b'::p‘:m:r 'r‘ll:::lle{:_:?l’: :: =

Shown here is a part of the BP T ~ R
vocabulary. el |
At the top: most general term (root) —
Red: tree leafs (very specific GO terms) e

Green: common ancestor

Blue: other nodes.

PhD Dissertation

Arcs: relations between parent and child nodes
Andreas Schlicker (UdS, 2010)
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Simple tree vs. cyclic graphs

a b
Parent n n Boxes represent nodes;

/ \ / \ arrows represent edges.
Increasing
= H B
and/or
granularity
\/
~ HHEH HEE

a | An example of a simple tree, b |A directed acyclic

in which each child has only one  graph (DAG), in which each
parent and the edges are child can have one or more
directed. parents.

That is, there is a source (parent) The red-colored node has
and a destination (child) for each  multiple parents.The
edge. additional edge is colored

grey.

Rhee et al. (2008) Nature
Rev. Genet. 9: 509
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Gene Ontology is a directed acyclic graph

Parent c —
Biological
D i An example of the node
v 3 vesicle fusion
Increasing e e e ceanzzten’—jn the BP ontology with
ficit .
peor 1 lis_a multiple parentage.
granularity Vesicle-mediated |
transport
paﬂ_of\ / s s (Arrows point into the wrong direction.)
v Vesicle fusion
Child

Dashed edges : there are other nodes not shown between the nodes and the
root node.

Root : node with no incoming edges, and at least one leaf.

Leaf node :a terminal node with no children (vesicle fusion).

Similar to a simple tree,a DAG has directed edges and does not have cycles.

Depth of a node : length of the longest path from the root to that node.
Height of a node: length of the longest path from that node to a leaf.

Rhee et al. (2008) Nature
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relationships in GO

is all
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Gaudet, Skunca, Hu, Dessimoz
regulates Primer on the Gene Ontology,

https://arxiv.org/abs/1602.01876

Gene regulates relationship
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Where do the Gene Ontology annotations
come from?

Evidence Evidence code description Source of evidence Manually Current number
code checked of annotations*
IDA Inferred from direct assay Experimental Yes 71,050
IEP Inferred from expression pattern Experimental Yes 4,598
IGI Inferred from genetic interaction Experimental Yes 8,311
IMP Inferred from mutant phenotype Experimental Yes 61,549
Pl Inferred from physical interaction Experimental Yes 17,043
ISS Inferred from sequence or structural similarity  Computational Yes 196,643
RCA Inferred from reviewed computational analysis  Computational Yes 103,792
IGC Inferred from genomic context Computational Yes 4
IEA Inferred from electronic annotation Computational @ 15,687,382
IC Inferred by curator Indirectly derived from experimental or computational  Yes 5,167
evidence made by a curator
TAS Traceable author statement Indirectly derived from experimental or computational  Yes 44,564
evidence made by the author of the published article
NAS Non-traceable author statement No ‘source of evidence’ statement given Yes 25,656
ND No biological data available No information available Yes 132,192
NR Not recorded Unknown Yes 1,185

*October 2007 release

Rhee et al. Nature Reviews Genetics 9, 509-515 (2008)
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IEA: Inferred from Electronic Annotation

The evidence code IEA is used for all inferences made without
human supervision, regardless of the method used.

The |IEA evidence code is by far the most abundantly used
evidence code.

Guiding idea behind computational function annotation:

genes with similar sequences or structures are likely to be evolutionarily
related.

Thus, assuming that they largely kept their ancestral function, they
might still have similar functional roles today.

Gaudet, Skunca, Hu, Dessimoz
Primer on the Gene Ontology,
https://arxiv.org/abs/1602.01876.
Published in : Methods in Molecular Biology
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Significance of GO annotations

Very general GO terms such as “cellular metabolic process" are

annotated to many genes in the genome.
Very specific terms belong to a few genes only.

—> One needs to compare how significant the occurrence of a GO term is in a

given set of genes compared to a randomly selected set of genes of the same size.

This is often done with the hypergeometric test.

PhD Dissertation Andreas Schlicker (UdS, 2010)
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Hypergeometric test
min(n,K) (KW) (N—KW)

7 n—1

p-value = Z
= ()

n

The hypergeometric test is a statistical test.

It can be used to check e.g. whether a biological annotation 1t is statistically
significant enriched in a given test set of genes compared to the full genome.

N : number of genes in the genome

n : number of genes in the test set

K. : number of genes in the genome with annotation 1.
k.. : number of genes in test set with annotation 1.

The hypergeometric test provides the likelihood that k_or more genes that
were randomly selected from the genome also have annotation 1.
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Hypergeometric test

Select i = k. genes with annotation

The other n — i genes in the test
1 from the genome.

set do NOT have annotation .
There are K, such gines. There are N — K, such genes in
the genome.

min(n,K;) (Kﬁ) (N_K”) P

p-value = Z

(2)
’[:: kTr mn \
number of possibilities for
The sum runs from k. selecting n elements from a
elements to the maximal set of N elements.

possible number of elements.

This correction is applied if the
This is either the number of sequence of drawing the
genes with annotation 1T in the elements is not important.
genome (K,,) or the number of
genes in the test set (n).

http://great.stanford.edu/
Bioinformatics 3 — SS 18 http://www.schule-bw.de/ v 19 _ |0



| Example
min(n,K;) (KW) (N—KW)

) n—1
p-value = g

= ()

r Gene transcription start site

+—==—1 Curated/inferred gene regulatory domain
R Ontology annotation (e.g. “actin cytoskeleton”)

VY Genomic region (e.g. ChiP-seq peak)

8 It It
9y 9 Y[’ v vyy v v[Cyvy
Hypergeometric test over genes
: PR : N = 6 total genes

Is annotation 1T significantly enriched Ke =3 genes annotated with x

in the test set of 3 genes? n = 3 genes with an associated genomic region
Kn = 3 genes annotated and with a genomic region
P-value = 0.05

Yes! p = 0.05 is (just) significant.

http://great.stanford.edu/
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Comparing GO terms

The hierarchical structure of the GO allows to compare proteins annotated to
different terms in the ontology, as long as the terms have relationships to each
other.

Terms located close together in the ontology graph (i.e., with a few intermediate
terms between them) tend to be semantically more similar than those
further apart.

One could simply count the number of edges between 2 nodes as a measure
of their similarity.

However, this is problematic because not all regions of the GO have the same
term resolution.

Gaudet, Skunca, Hu, Dessimoz
Primer on the Gene Ontology,
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Information content of GO terms

The likelihood of a node t can be defined in 2 ways:

How many genes have annotationt  Number of GO terms in subtree below ¢
relative to the root node? relative to number of GO terms in tree

.occur(t . D(t
ceur(1) pgraph(f) — D(rE)(Zr)

Panno (f) —

occur(root)

The likelihood takes values between 0 and 1 and

increases monotonic from the leaf nodes to the root.

Define information content of a node from its likelihood:
IC(t) = —logp(t)

A rare node has high information content.

PhD Dissertation Andreas Schlicker (UdS, 2010)
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Common ancestors of GO terms

Common ancestors of

biological
process

two nodes t, and {, : / \

all nodes that are located

cellular metabolic

on a path from t, to root AND \
on a path from ¢, to root. /7 [

et coshar, compound e

ot i metabolic i

The most informative \;\ \ \/
common ancestor (MICA) o — piteobas
of terms t, und t, is their "rocess. peocess. nucleotide and
common ancestor with V
highest information content. .-;"“ protein

RNA metabolic

Typically, this is the closest

common ancestor. 5D Dissertation

Andreas Schlicker (UdS, 2010)
Bioinformatics 3 —SS 18 VIO -14



Measure functional similarity of GO terms
Lin et al. defined the similarity of two GO terms ¢, und t,
based on the information content of the most informative common ancestor (MICA)

2.IC(MICA)
IC(II) +1C(12)

SimRel(t1,12) =

If MICAs are close to the two GO terms, they receive a high similarity score.

Schlicker et al. defined the following variant:
2-IC(MICA)
IC(II) +1C(12)

where the term similarity is weighted with the counter-probability of the MICA.

Simgel(t1,12) = (1 —=p(MICA))

By this, shallow annotations (low “depth” in the tree, slide #4) receive less
relevance than MICAs further away from the root.

PhD Dissertation Andreas Schlicker (UdS, 2010)
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Measure functional similarity of two genes

Two genes or two sets of genes A und B typically have more than 1 GO
annotation each. - Consider similarity of all terms j and j:

sij = sim(GO; ,GO%),Vi€ 1,..,N,Yj € 1,...M.

and select the maxima in all rows and columns:
N

1 1
rowScore(A,B) = Zi l glaéw Sijs GOscoreg‘Af‘ (A,B) = 5 (rowScore(A,B) + columnScore(A,B))
M
columnScore(A,B) = Z IEE:X Sij- GOscore®™A (A, B) = max(rowScore(A, B), columnScore(A, B))

Compute funsim-Score from scores for BP tree and MF tree:

1 [( BPscore >2+( MFscore ))2]

msim(A,B) = —-
funsim(A, B) 2 L\max(BPscore) max (MFscore

PhD Dissertation Andreas Schlicker (UdS, 2010)
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GO is inherently incomplete

The Gene Ontology is a representation of the current state of
knowledge; thus, it is very dynamic.

The ontology itself is constantly being improved to more accurately represent
biology across all organisms.

The ontology is augmented as new discoveries are made.

The creation of new annotations occurs at a rapid pace, aiming to keep
up with published work.

Despite these efforts, the information contained in the GO database is
necessarily incomplete.

Thus, absence of evidence of function does not imply absence
of function.

This is referred to as the Open World Assumption

Gaudet, Dessimoz,

Gene Ontology: Pitfalls, Biases, Remedies

Bioinformatics 3 - 55 18 https://arxiv.org/abs/1602.01876 VI0 17



Summary

The GO is the gold-standard for computational annotation of gene
function.

It is continuously updated and refined.

Hypergeometric test is most often used to compute enrichment of GO
terms in gene sets

Semantic similarity concepts allow measuring the functional similarity
of genes. Selecting an optimal definition for semantic similarity of 2 GO terms

and for the mixing rule depends on what works best in practice.

Functional gene annotation based on GO is affected by a number of biases.

Bioinformatics 3 —SS 18 VIO -18



Rates of mMRNA transcription and protein translation
ARTICLE

doi:10.1038/nature10098 P rote i n S
Global quantification of mammalian gene
expression control (3 SILAC light

SILAC: ,,stable isotope labelling by amino acids in cell culture® means that
P &by @ SILAC heavy
cells are cultivated in a medium containing heavy stable-isotope versions (t,tt0)

of essential amino acids.

When non-labelled (i.e. light) cells are transferred to heavy SILAC growth 0%§§2
medium, newly synthesized proteins incorporate the heavy label while .C%Qg
pre-existing proteins remain in the light form.
Pre-existing l Newly
proteins synthesized

Quantification of protein . H/Lratio Proteins

turnover and levels. Mouse L

fibroblasts were pulse-labelled % © H
Schwanhiuser et al. with heavy amino acids (SILAC). & O
Nature 473,337 (201 1) Protein turnover is quantified by = |

mass spectrometr'y.

m/z
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Rates of mMRNA transcription and protein translation

ARTICLE | Quantification of MRNA turnover and levels.
™ Mouse fibroblasts were pulse-labelled with the

Global quantification of mammalian gene nucleoside 4-thiouridine (4sU). nRNA

expression control turnover is quantified by next-generation

Bjérn Schwanhiusser', Dorothea Busse', Na Li', Gunnar Dittmar’, Johannes Schuchhardt?, Jana Wolf', Wei Chen' mRNAs

& Matthias Selbach! Seq uen Ci ng-

The 4sU-labeled RNA fraction is thiol-specifically biotinylated
l 400uM 4sU (2 h)

generating a disulfide bond between biotin and the newly

transcribed RNA. @

l RNA isolation and
T . biotinylation
"Total cellular RNA' can then be quantitatively separated into Y

labeled (‘'newly transcribed’) and unlabeled ('pre-existing’) RNA m&

2 W,
with high purity using streptavidin-coated magnetic beads. NN "’700,8
S
/\ ‘?ra%/)
Separation

Fina.lly, labeled .RNA is recover.ed.from .the beads. by simpl.y \\E N )@\
adding a reducing agent (e.g. dithiothreitol) cleaving the disulfide . e
Pre-existing Newly synthesized Total

bond and releasing the newly transcribed RNA from the beads. RNA RNA RNA

Radle, ] Vis Exp. 2013; (78): 50195. \ l /

Solexa sequencing

Bioinformatics 3 — SS 18 Schwanhauser et al. Nature 473,337 (201 1) V 10 —20



Rates of mMRNA transcription and protein translation
84,676 peptide sequences were identified by MS and assigned to 6,445 unique

proteins.

5,279 of these proteins were quantified by at least 3 heavy to light (H/L) peptide

ratios belonging to these proteins.

Top: high-turnover protein

L H H
. 0. © t, (1.5 h) . t, (4.5 h) ® 100. 1a(135h) o
Mass spectra of peptides  _ Rrm2 Rrm2 Rrm2
. . 2 80 (APTNPSVEDEPLLR) 80§ | (APTNPSVEDEPLLR) 803 (APTNPSVEDEPLLR)
for twWo prote|ns (X-aXIS: S 3 H/L ratio = 0.24 i o H/Lratio=1.26 1 H/Lratio=12.8
£ 603 603 60 3
mass over charge ratio). 2 4! 1} 40: 40
© § :
€ 20 | I 20 20 cL>
H 3 l 1 1 | ; 1 I L 1 '} O- l L1 T | T |
Over time, the heavy to ) 770 772 774 776 770 772 774 776 770 772 774 776
. . m/z m/z m/z
light (H/L) ratios ) ) {, (135 h)
. Hist1h1
2 80 Hist1hic 80: Hist1hic 80: H/L ratio = 0.63 H
@ (SEAAPAAPAAAPPAEK) : (SEAAPAAPAAAPPAEK) : o)
You should understand 2 60 H/L ratio = 0.05 60 H/L ratio = 0.19 60
2 40 403 H 403
these spectra! 5 - l o -
e 20 H 20 I 204 ‘
o- ' - ?.‘ 03+ - l‘ -0 ' l A D I . e
746 748 750 746 748 750 752 746 748 750 752
miz miz m/z
Schwanhauser et al. Nature 473,337 (2011) Bottom: low=turnover
protein, slow synthesis, long half-
Bioinformatics 3 — SS 18 VIO -2
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Consider ratio r of protein with heavy amino Py Pl’OtEln half'"fes

r=—=
: : : : . i
acids (P) and light amino acids (P)): 25and decay rates
Assume that proteins labelled with light amino , .
acids decay exponentially with degradation rate _ typ=4.5h
: _ = bgnt T 157 R?=0.99
constant kdp : P.f_ = P[,e o 2 Hist1hic
£ t,,=62.1h
Express (Py) as difference between total number val R2=099
of a specific protein P,,, and P;: G/e
0 Ll I l
. A t, t, t,
PH (t) _ ’Dtota.f(t) f L (t) Harvesting time point
Assume that P, doubles during duration/of one Consider m intermediate time points:
cell cycle (which lasts t,, ): 2 log, @, + 1), log. 2
k — =1 _ e
— — tit dp m :
P,t)y=P, ., (H)-P{t)=FR2"/-F (), 31 .
o Pu R !
¢ = Pr = PL~"""‘ —1 From kg, we get the desired half-life:
; log, 2 o
Pu | 1 — ﬁg# T = 9e . because this gives
P P k
- & kg, t22c2 oa. L
take In on both sides P; = Pye Kapt _ Poe P Fip = Pyelo93 — ;p{]
: . \ ) Q. ~ L £t 4
In(ratio+ 1) =1n P—“Zf — Inefart L In27 = kgpt + In 2%
L .
In (ratio + 1) = kdp[+[LG2 _ t><(kd,, n ltn2) 1 ratio + 1)1 = tzx(kdp N lth) The same is done to compute

In2 mRNA half-lives (not shown).
In(ratio+ 1)t = t? x kap + t_)

Bioinformatics 3 — 55 18 Schwanhiuser et al. Nature 473,337 (201 1) VIo -22



a 1,000

Counts

0
-d
[=)
o
o
L

Protein half-life (h)

800+

600 -

4004

200+

MRNA and

i b
mRNA
median: 9 h Protein
1 median: 46 h *2
-
O
JJ-[ O
1 10 100 1,000
Average cellular half-life (h)
d

101

mRNA half-life (h)

protein levels and half-lives

1,000 4
mRNA
800 |[] median: 17
Protein
600 median: 16,000
400 -
200+
0

1 10 1001,00010% 105 10° 107
Average copies per cell

1 10 100 1,000
mRNA copies per cell

(right) mRNA and protein levels showed

reasonable correlation (R2 = 0.41)

(left) However, there was practically no

correlation of protein and mRNA half-lives.

Bioinformatics 3 —SS 18

a, b, Histograms of mRNA
(blue) and protein (red) half-
lives (a) and levels (b).

Proteins were on average 5
times more stable (46h vs. 9h)
and 900 times more abundant
than mRNAs.

Schwanhauser et al. Nature 473,337 (2011) V10 =23
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translation
A widely used minimal description of
the dynamics of transcription and A» mRNA Kar X [mRNA]) dR
. . . : — — VSI‘ — kdrR
translation includes the synthesis and | dt
degradation of mMRNA and protein, ; dp
respectively ks, X [NRNA] q proteinkdp X [proteln]> W — kSpR —k - P

The mRNA (R) is synthesized with a constant rate v, and
degraded proportional to their numbers with rate constant k.

The protein level (P) depends on the number of mRNA:s,
which are translated with rate constant k.

Protein degradation is characterized by the rate constant kg,

The synthesis rates of mMRNA and protein are calculated
from their measured half lives and levels.

. _ Schwanhauser et al. Nature 473,337 (2011)
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Computed transcription and translation rates

Top
Average cellular transcription rates predicted

by the model span two orders of magnitude.

The median is about 2 mRNA molecules per hour
(very slow!).

An extreme example is the protein Mdm2 of which
more than 500
mMRNAs per hour are transcribed.

Bottom

The median translation rate constant
is about 40 proteins per mRNA

per hour

Schwanhauser et al. Nature 473,337 (2011)
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Calculated translation rate

constants are not uniform
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Maximal translation constant

Abundant proteins are translated about 100 times

more efficiently than those of low abundance

Translation rate constants of abundant proteins

-
Q

saturate between approximately 120 and 240

-t
A

proteins per mRNA per hour.

K, (Proteins per mKNA per hour)
o o
B o

The maximal translation rate constant in . ' : : : :
. 100 1,000 104 105 10 107
mammals is not known. Protein copies per cell

The estimated maximal translation rate constant
in sea urchin embryos is 140 copies per mRNA
per hour, which is surprisingly close to the
prediction of this model.

Schwanhauser et al. Nature 473,337 (2011)
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Summary

Transcription and translation are tightly regulated processes in cells because the
cells need

(2) to make sure that the right mRNASs and proteins are being synthesized
which are needed for the particular cell state or cell fate, and

(b) to make sure that no unnecessary molecules are synthesized which
would be costly in terms of resources.

How transcription and translation processes are regulated is still subject of
intense research.

Recently, the SILAC method and the ribosome profiling method (where
processing ribosomes are stalled by application of small-molecule inhibitors, and
the mRNA sequences the ribosomes bind to get sequenced) have enabled
researchers to pinpoint the precise kinetics of expressing individual genes and of
translating individual mRNA:s.
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