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Static  vs.  Dynamic  Reconstruction

Different network topologies   → different time series
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Reconstruction of static networks?
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DREAM: Dialogue on Reverse Engineering 
Assessment and Methods

Aim: 
systematic evaluation of methods for
reverse engineering of network topologies
(also termed network-inference).

Problem: 
correct answer is typically not known
for real biological networks

Approach: 
generate synthetic data

Mathematical  reconstruction  of  Gene  
Regulatory  Networks

Marbach et al. PNAS 107, 6286 (2010)

Gustavo Stolovitzky/IBM
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Generation  of  Synthetic  Data

Marbach et al. PNAS 107, 6286 (2010)

Model transcriptional regulatory networks consisting of mRNA and proteins.

Current state of network :
vector of mRNA concentrations x and protein concentrations y. 

Considered is only transcriptional regulation, where regulatory proteins (TFs) 
control the activation of genes; no epigenetics, microRNAs etc.

The gene network is modeled by a system of differential equations
(equivalent toV11, slide 24).

mi : maximum transcription rate, 
ri :  translation rate,
fi(.) : so-called input function of gene i.
λi

RNA , λi
Prot : mRNA and protein degradation rates
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The input function describes the relative activation of a gene given the transcription-
factor (TF) concentrations y. 
Its value is between 0 (gene shut off) and 1 (gene maximally activated). 

We assume that binding of TFs to cis-regulatory sites on the DNA is
in quasi-equilibrium, since TF binding is orders of magnitudes faster
than transcription and translation (which take minutes).

In the simplest case, a gene i is regulated by a single TF j.

In this case, its promoter has only two states: 
either the TF is bound (state S1) or not bound (state S0).

The probability P(S1) that the gene i  is in state S1 at a particular moment
is given by the fractional saturation, which depends on the TF concentration yj

The  input  function  fi()

Marbach et al. PNAS 107, 6286 (2010)
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Excursion:  the  Hill  equation  (see  V9,  slide  33)

Goutelle et al. Fundamental & Clinical Pharmacology 22 (2008) 633–648

Let us consider the binding reaction of two molecules L and M:

The dissociation equilibrium constant KD is defined as:

where [L], [M], and [LM] are the molecular concentrations
of L and M and of the complex LM.

In equilibrium, we may take T as the total concentration of molecule L 

y is the fraction of molecules L that have reacted (bound)
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Excursion:  the  Hill  equation  (see  V9,  slide  34)

Substituting [LM]  by [L]  [M]  /  KD gives (  rearranged from )  

Back  to our case about TF  binding to DNA.  (slightly different  from V9)      
TF  j then takes the role of M.  Its concentration is yj.

The  probability P(S1)  that the gene i  is in  state S1 at  a  particular moment is
given by the fractional saturation,  which depends on  the TF  concentration yj

kij :  dissociation constant for TF  j at  the promoter of gene i
nij :  Hill  coefficient (describing cooperativity)  for this binding equilibrium.
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The  input  function  fi()

Marbach et al. PNAS 107, 6286 (2010)

P(S1) is large if the concentration yj of TF j is large 
and if the dissociation constant kij is small (strong binding).

The bound TF either activates or represses the expression of the gene. 

In state S0  the relative activation is α0. In state S1 it is α1. 

The input function fi(yj) is obtained from P(S1) and its complement P(S0).

The input function describes the mean activation of gene i as a function of
the TF concentration yj
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The  input  function  fi()

Marbach et al. PNAS 107, 6286 (2010)

This approach can be generalized
to an arbitrary number of regulatory inputs. 

A gene that is controlled by N TFs has 2N states: 
each of the TFs can be bound or not bound. 

Thus, the input function for N regulators is
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Synthetic  gene  expression  data

Marbach et al. PNAS 107, 6286 (2010)

Gene knockouts were simulated for the DREAM 
competition by setting the maximum transcription rate of the
deleted gene to 0,

gene knockdowns by dividing it by 2. 

Time-series experiments were simulated by integrating
the dynamic evolution of the network ODEs. 

10

For networks of size 10, 50, and 100, 
4, 23, and 46 different time series of 21 time points were provided. 

For each time series, a different random initial condition
was used for the mRNA and protein concentrations.
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Synthetic  gene  expression  data

Marbach et al. PNAS 107, 6286 (2010)

Trajectories were obtained by integrating the networks from the
given initial conditions using a Runge-Kutta solver.

White noise (with zero auto-correlation) with a standard deviation of 0.05 
was added after the simulation to the generated gene expression data. 
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Synthetic  networks

Marbach et al. PNAS 107, 6286 (2010)

The challenge was structured as 3 separate subchallenges with networks of 10, 50, 
and 100 genes, respectively. 

For each size, 5 in silico networks were generated. These resembled realistic
network structures by extracting modules from the known transcriptional
regulatory network for E. coli (2x) and for yeast (3x).

Example network E.coli Example network yeast
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Evaluation  of  network  predictions

Marbach et al. PNAS 107, 6286 (2010)

(B) Example of a prediction by the best-performer team. 
The format is a ranked list of predicted edges, represented here by the vertical
colored bar. 
White stripes : true edges of the target network. A perfect prediction would have
all white stripes at the top of the list. 
Inset shows first 10 predicted edges: the top 4 are correct, followed by an incorrect
prediction, etc.  The color indicates the precision at that point in the list. E.g., after 
the first 10 predictions, the precision is 0.7 (7 correct predictions out of 10 
predictions). 

(A) True 
connectivity
of one of the
benchmark
networks of
size 10. 

(C) The network
prediction is evaluated by
computing a P-value that
indicates its statistical
significance compared to
random network
predictions.
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Similar  performance  on  different  network  sizes

Marbach et al. PNAS 107, 6286 (2010)

The method byYip et al. (method A) gave the best results for all 3 network sizes. 
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Error  analysis

Marbach et al. PNAS 107, 6286 (2010)

Left: 3 typical errors made in predicted networks.

We will now discuss the best-performing method byYip et al.
Only this method gives stable results independent of the indegree of the target
(right) 
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Synthetic  networks

Yip et al. PloS ONE 5:e8121 (2010)

Best performing team in DREAM3 contest

Applied a simple noise model and linear and sigmoidal ODE models.

Predictions from the 3 models were combined.

Mark Gerstein/Yale 
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Cumulative  distribution  function

www.wikipedia.org

The cumulative distribution function (CDF) describes the probability that a real-
valued random variable X with a given probability distribution P will be found at a 
value less than or equal to x. 

CDF of the normal distribution

Different normal distributions

The complementary cumulative 
distribution function (ccdf) or simply the 
tail distribution addresses the opposite 
question and asks how often the random 
variable is above a particular level. It is 
defined as

17
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Noise  model

Yip et al. PloS ONE 5:e8121 (2010)

If we were given:
xa

b : observed expression level of gene a in deletion strain of gene b, and
xa

wt*: real expression level of gene a in wild type xa
wt* (without noise)

we would like to know whether the deviation xa
b - xa

wt* is merely due to noise. 

è Need to know the variance σ2 of the (Gaussian) expression levels, 
assuming the noise is non systematic so that the mean μ is zero.

Later, we will discuss the fact that xa
wt*: is also subject to noise so that we are only

provided with the observed level xa
wt .

18
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Noise  model

Yip et al. PloS ONE 5:e8121 (2010)

The probability for observing a deviation at least as large as xa
b - xa

wt* due to
random chance is

where Φ is the cumulative distribution function of the standard Gaussian
distribution.

-> The deviation is taken relative to the width (standard dev.) of the Gaussian
which describes the magnitude of the „normal“ spread in the data.

-> 1 - CDF measures the area in the tail of the distribution.

-> The factor 2 accounts for the fact that we have two tails (one on the left and
right each).

19
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Noise  model

Yip et al. PloS ONE 5:e8121 (2010)

The complement of the above equation

is the probability that the deviation is due to a real (i.e. non-random) regulation
event.

One can then rank all the gene pairs (b,a) in descending order of pb→a.

For this we first need to estimate σ2 from the data.

20
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Noise  model

Yip et al. PloS ONE 5:e8121 (2010)

Two difficulties exist:

(1) the set of genes a that are not affected by the deleted gene b is
unknown. This is exactly what we are trying to learn from the data.

(2) the observed expression value of a gene in the wild-type strain, xa
wt,  is also 

subject to random noise.
Thus, it cannot be used as the gold-standard reference point xa

wt* in the
calculations

21
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Noise  model

Yip et al. PloS ONE 5:e8121 (2010)

22

Use an iterative procedure to progressively refine the estimation of pb→a. 

First, assume that the observed wild-type expression levels xa
wt are reasonable

rough estimates of the real wild type expression levels xa
wt*. 

For each gene a, the initial estimate for the variance of the Gaussian noise is set
as the sample variance of all the expression values of a in the different deletion
strains b1 - bn.



Bioinformatics 3 – SS 18 V 13  –

Noise  model

Yip et al. PloS ONE 5:e8121 (2010)

Repeat the following 3 steps for a number of iterations:

(1) Calculate the probability of regulation pb→a for each pair of genes (b,a) based
on the current reference points xa

wt. 

Then use a p-value of 0.05 to define the set of potential regulations: 
if the probability for the observed deviation from wild type of a gene a in a 
deletion strain b to be due to random chance only is less than 0.05, we treat b→
a as a potential regulation. 

Otherwise, we add (b,a) to the set P of gene pairs for refining the error model.

23
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Noise  model

Yip et al. PloS ONE 5:e8121 (2010)

(2) Use the expression values of the genes in set P to re-estimate the
variance of the Gaussian noise.

(3) For each gene a, we re-estimate its wild-type expression level by
the mean of its observed expression levels in strains in which the expression
level of a is unaffected by the deletion

After the iterations, the probability of regulation pb→a is computed using
the final estimate of the reference points xa

wt and the variance of the Gaussian
noise σ2 .

24
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Yip et al. PloS ONE 5:e8121 (2010)

For time series data after an initial perturbation, ODEs are used to model the
gene expression rates. 

The general form is:

with xi : expression level of gene i , 

fi (…): function that explains how the expression rate of gene i is affected by the
expression level of all the genes in the network, including the level of gene i itself.

Learning  ODE  models  from  perturbation  time  
series  data

25
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Learning  ODE  models  from  perturbation  time  
series  data  (slide  omitted)

Yip et al. PloS ONE 5:e8121 (2010)

Various types of function fi have been proposed. 

We consider two of them. The first one is a linear model

ai0 : basal expression rate of gene i in the absence of regulators, 

aii : decay rate of mRNA transcripts of i, 

S : set of potential regulators of i (we assume no self regulation, so i not element of S).

For each potential regulator j in S, aij explains how the expression of i is affected by the abundance

of j. 

A positive aij indicates that j is an activator of i , and a negative aij indicates that j is a suppressor of i

.

The linear model contains Ι S Ι + 2 parameters aij.

26
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Yip et al. PloS ONE 5:e8121 (2010)

The linear model assumes a linear relationship between the expression level of the regulators and

the resulting expression rate of the target.

But real biological regulatory systems often seem to exhibit nonlinear characteristics. The second

model assumes a sigmoidal relationship between the regulators and the target

bi1 : maximum expression rate of i , bi2 : its decay rate

The sigmoidal model contains Ι S Ι + 3 parameters.

Try 100 random initial values and refine parameters by Newton minimizer so that the predicted

expression time series give the least squared distance from the real time series.

Score: negative squared distance

Learning  ODE  models  from  perturbation  time  
series  data  (slide  omitted)
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Yip et al. PloS ONE 5:e8121 (2010)

• Batch 1 contains the most confident predictions (pb→a > 0.99) according to the noise model learned
from homozygous deletion data

• Batch 2: all predictions with a score two standard deviations below the average according to
all types (linear AND sigmoidal) of differential equation models learned from perturbation data

• Batch 3: all predictions with a score two standard deviations below the average according to all types of guided
differential equation models learned from perturbation data, where the regulator sets contain regulators
predicted in the previous batches, plus one extra potential regulator

• Batch 4: as in batch 2, but requiring the predictions to be made by only one type (linear OR sigmoidal) of the
differential equation models as opposed to all of them.

• Batch 5: as in batch 3, but requiring the predictions to be made by only one type of the differential equation
models as opposed to all of them

• Batch 6: all predictions with pb → a > 0.95 according to both the noise models learned from homozygous and
heterozygous deletion data, and have the same edge sign predicted by both models

• Batch 7: all remaining gene pairs, with their ranks within the batch determined by their probability of regulation
according to the noise model learned from homozygous deletion data

Group  predicted  interactions  into  classes

28
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Yip et al. PloS ONE 5:e8121 (2010)

Learning  ODE  models  from  perturbation  time  
series  data

29
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Yip et al. PloS ONE 5:e8121 (2010)

Interpretation:
A network with 10 nodes has 10 x 9 possible edges

Batch 1 already contains many of the correct edges (7/11 – 8/22).
The majority of the high-confidence predictions are correct (7/11 – 8/12).

Batch 7 contains only 1 correct edge for the E.coli-like network, but 9 or 10 
correct edges for theYeast-like network.

Prediction  accuracy

30
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Yip et al. PloS ONE 5:e8121 (2010)

Not all regulation arcs can be detected from deletion data (middle):

Left: G7 is suppressed by G3, G8 and G10
Right: G8 and G10 have high expression levels in wt.
Middle: removing the inhibition by G3 therefore only leads to small increase of G7 
which is difficult to detect.

However the right panel suggests that the increased expression of G7 over time is
anti-correlated with the decreased level of G3
®This link was detected by the ODE-models in batch 2

Can  all  regulations  be  predicted  equally  well?

31
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Yip et al. PloS ONE 5:e8121 (2010)

Another case:
Left: G6 is activated by G1 and suppressed by G5. G1 also  suppresses G5.
G1 therefore has 2 functions on G6. 
When G1 is expressed, deleting G5 (middle) has no effect.

Right: G6 appears anti-correlated to G1. Does not fit with activating role of G1.

But G5 is also anti-correlated with G6 ® evidence for inhibitory role of G5.

Problematic  dependencies  (II)

32
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How  does  one  generate  GRNs?

33

…(1) „by hand“  based on  individual  experimental  observations

(2) Infer GRNs  by computational methods from gene expression data (see
reference below)
Unsupervised methods are either based on  correlation or on  mutual  
information.  (We will  not  cover supervised methods here).
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Correlation-based unsupervised methods

34

Correlation-based network inference methods assume  that  correlated  
expression  levels  between  two  genes  are  indicative  of  a  regulatory  interaction  
(note  however  slide  42  in  lecture  V9).

Correlation  coefficients  range  from  -1  to  1.
A  positive correlation coefficient indicates an  activating interaction,  
whereas  a  negative coefficient  indicates  an  inhibitory  interaction.  

The  common  correlation  measure  by  Pearson is  defined  as

where  Xi and  Xj are  the  expression  levels  of  genes  i and  j,  
cov(.,.)  denotes  the  covariance,  and  s is  the standard deviation.
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Rank-based  unsupervised  methods

35

Pearson’s  correlation  measure  assumes  normally  distributed  values.
This  assumption  does  not  necessarily  hold  for  gene  expression  data.  

Therefore  rank-based  measures  are  frequently  used.  
The  measures  by  Spearman  and  Kendall  are  the  most  common.  

Spearman’s  method  is  simply  Pearson’s  correlation  coefficient  for  the  ranked  
expression  values

Kendall’s  t coefficient  :

where  Xri and  Xrj are  the  ranked  expression  profiles  of  genes  i  and  j.  

Con(.)  denotes  the  number  of  concordant  value  pairs  (i.e.  where  the  ranks  for  
both  elements  agree).  dis(.)    is  the  number  of  disconcordant  value  pairs  in  Xri
and  Xrj .    Both  profiles  are  of length  n.
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WGCNA

36

WGCNA  is  a  modification  of  correlation-based  inference  methods  that  
amplifies  high  correlation  coefficients by  raising  the  absolute  value  to  the  
power  of  b (‘softpower’).

with  b ³ 1.  

Because  softpower  is  a  nonlinear  but  monotonic  transformation  of  the  
correlation  coefficient,  the  prediction  accuracy  measured  by  AUC  will  be  no  
different  from  that  of  the  underlying  correlation  method  itself.
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Z-score

37

Z-SCORE  is  a  network  inference  strategy  by  Prill et  al.  
that assumes the availability of knockout experiments that 
lead to a change in other genes. 

The assumption is that the knocked-out gene i in experiment k 
affects more strongly the genes that it regulates than the others. 

The effect of gene i on gene j 
is captured with the Z-score zij:

assuming that the k-th experiment is a knockout of gene i,
μXj and σXj are respectively the mean and standard deviation 
of the empirical distribution of the expression values xjk of gene j. 
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Unsupervised methods based on  mutual  
information

38

Relevance networks (RN)  introduced  by  Butte  and  Kohane measure  the  
mutual  information (MI)  between gene expression profiles to  infer  
interactions.  

The  MI  between  discrete  variables  (here:  genes)  Xi and  Xj is  defined  as

where  p(Xi  ,  Xj)  is  the  joint  probability  distribution of  Xi   and  Xj
(both  variables  fall  into  given  ranges)  and  

p(Xi  )  and  p(Xj )  are  the  marginal  probabilities of  the  two  variables  
(ignoring  the  value  of  the  other  one).
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RELNET

39

The RELNET is the simplest method based on mutual information. 

For each pair of genes, the mutual information Mij is estimated and 
the edge between genes i and j is created 
if the mutual information is above a threshold. 

Although mutual information is more general than Pearson correlation, 
in practice both give similar results.

Bellot  et  al.  BMC  Bioinformatics  (2015)  16:312  
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CLR

40

The Context Likelihood or Relatedness network (CLR) method 
is an extension of RELNET.

CLR derives a score that is associated to the 
empirical distribution of the mutual information values.

The score between gene i and gene j is:

with the mean μMi and standard deviation σMi of the empirical distribution of the 
mutual information between these genes and other genes, 

Bellot  et  al.  BMC  Bioinformatics  (2015)  16:312  
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ARACNE

41

Motivation behind the 
“Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE)”:
imany similar measures between variables may be due to indirect effects. 

In order to avoid such indirect effects, the algorithm relies on the 
“Data Processing Inequality” (DPI).

In every triplet of genes,
DPI removes the weakest edge having the lowest mutual information 

Bellot  et  al.  BMC  Bioinformatics  (2015)  16:312  
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PCIT

42

The “Partial Correlation coefficient with Information Theory (PCIT)” algorithm 
combines the concept of partial correlation coefficients with information 
theory to identify significant gene-to-gene associations.

Similarly to ARACNE, PCIT extracts all possible interaction triangles and 
applies DPI to filter indirect connections, but instead of mutual information it uses 
first-order partial correlation as interaction weights. 

The partial correlation tries to eliminate the effect of a third gene l on the
correlation of genes i and j.

Bellot  et  al.  BMC  Bioinformatics  (2015)  16:312  
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C3NET

43

The Conservative Causal Core NETwork (C3NET) consists of 2 main steps. 

(1) Pairwise mutual information is computed. 
Then, non-significant connections are eliminated, according to a chosen significance 
level α, between gene pairs. 

(2) One selects the most significant edge for each gene: it has the highest 
mutual information value among the neighboring connections for each gene.

→ the highest possible number of connections that can be reconstructed by C3NET 
is equal to the number of genes under consideration. 

C3NET does not aim at reconstructing the entire network underlying gene 
regulation but mainly tries to recover the core structure.

Bellot  et  al.  BMC  Bioinformatics  (2015)  16:312  
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Feature  selection  approaches

44

A GRN reconstruction problem can also be seen as a feature selection
problem. 
For every gene, the goal is to discover its true regulators among all other genes or 
candidate regulators. This approach can integrate knowledge about
genes that are not TFs and therefore reduce the search space.

Typically, this approach only focuses on designing a significance score s(i, j) that leads 
to a good ranking of the candidate regulations, such that true regulations tend to be 
at the top of the list since an edge is assigned between i and j if the evidence s(i, j) is 
larger than a threshold.

With the feature selection approach, the scores s(i, j) for all the genes are jointly 
estimated with a method that is able to capture the fact that a large score for a link 
(i, j) is not needed if the apparent relationship between i and j
is already explained by another and more likely regulation.

Bellot et  al.  BMC  Bioinformatics  (2015)  16:312  
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MRNET

45

The Minimum Redundancy NETworks (MRNET) method reconstructs a network 
using the feature selection technique known as Minimum Redundancy Maximum 
Relevance (MRMR), which is based on a
mutual information measure. 

In order to generate a network, the algorithm performs a feature selection for each 
gene (i∈[1, G]) on the set of remaining genes (j ∈[1, G] \ i ).

The MRMR procedure returns a ranked list of features that maximize the mutual 
information with the target gene (maximum relevance) and, at the same time, such 
that the selected genes are mutually dissimilar (minimum
redundancy). 

Bellot  et  al.  BMC  Bioinformatics  (2015)  16:312  
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MRNET

46

For every gene, the MRMR feature selection provides a score of potential 
connections where the higher scores should correspond to direct interactions. 

The indirect interactions should have lower scores because they are redundant with 
the direct ones. 

Then, a threshold is computed as in the RELNET method.

The MRNET reconstructs a network using a forward selection strategy, 
which leads to subset selection that is strongly conditioned by the first selected 
variables. 

Bellot  et  al.  BMC  Bioinformatics  (2015)  16:312  
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Genie3

47

The GEne Network Inference with Ensemble of trees (Genie3) algorithm uses the 
random forests feature selection technique to solve a regression problem for 
each of the genes in the network. 

In each of the regression problems, the expression pattern of the target gene
should be predicted from the expression patterns of all TFs.

The importance of each TF in the prediction of the target gene is taken as an 
indication of an apparent regulatory edge. 

Then these candidate regulatory connections are aggregated over all genes to 
generate a ranking for the whole network.

Bellot  et  al.  BMC  Bioinformatics  (2015)  16:312  
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GRN  benchmark

48

Real data suffers from drawbacks. 

(1) the different algorithms are tested based on only partial knowledge of the 
underlying network, where a false positive could be a still undiscovered true positive. 

(2) the intensity of noise is uncontrollable → assessing a method’s robustness to 
varying intensities of noise cannot be done easily with real data. 

Bellot  et  al.  BMC  Bioinformatics  (2015)  16:312  
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Workflow

49

Bellot  et  al.  BMC  Bioinformatics  (2015)  16:312  
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Generation  of  synthetic  data

50

Bellot  et  al.  BMC  Bioinformatics  (2015)  16:312  

GNW The GNW simulator generates network structures by extracting parts of 
known real GRN structures capturing several of their important structural 
properties. To produce gene expression data, the simulator relies on a system of non-
linear ODEs.

SynTReN The SynTReN simulator generates the underlying networks by selecting 
sub-networks from E. coli and Yeast organisms. Then the experiments are obtained by 
simulating equations based on Michaelis-Menten and Hill kinetics under different 
conditions.
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Computational  runtimes
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Different methods have very different runtimes.

Genie3 is the slowest method.

Z-score is the fastest method, followed by CLR.
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Methods  generate  at  most  18%  correct  links
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Listed are „Area Under Precision Recall” values obtained in an undirected evaluation 
on the top 20 % (AUPR20 %) of the total possible connections for each data source
The AUPR20 % values have different ranges for each data source. 
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Aggregated  ranking  of  methods
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CLR is the best on the majority of the 
datasets, but it does not
obtain the best results across all the 
different data sources
and kinds of data. 

In the case of complete knockout
data, the best-performing methods are 
the Zscore followed by PCIT and 
GeneNet. 

Genie3 and MRNET exhibit 
competitive performances. However, 
these methods are not as fast as CLR 
in terms of computation time.
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Summary
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Network  inference is a  very important active research field.

Inference  methods  allow  to  construct  the  topologies  of  gene-regulatory  
networks  solely  from  expression  data.
Also  functional interpretation of exp.  data,  guiding inhibitor design  etc.

Current  GRN  models  are  limited by  
(1) incomplete  knowledge  about  TF  → target  gene  relations
(2) about  the  regulatory  effects  (activation  vs.  repression)

(3)  Performance  on  real  data  is  lower  than  on  synthetic  data  
because  regulation  in  cells  is  not  only  due  to  interaction  
of  TFs  with  genes,  
but  also  depends  on  epigenetic  effects  (DNA  methylation,  
chromatin  structure/histone  modifications,  and  miRNAs).


