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V14  – Gene  Regulation

Tue,  June  5,  2018

- Co-expression  modules
- Motifs in  GRNs

- Master  Regulatory Genes  in  GRNs
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Module  detection  methods

Saelens et al. Nature Commun. 9, 1090 (2018)

Module detection is a cornerstone in the biological 
interpretation of large gene expression compendia.

Such modules are groups of genes with similar expression 
profiles, which also tend to be functionally related and co-
regulated.

Approaches:
(a) clustering  
(b) decomposition methods
(c) biclustering – local co-expression (also (b))
(d) direct network inference
(e) iterative network inference. 

(d) and (e) also model the regulatory relationships between the 
genes.
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Module  detection  methods

Saelens et al. Nature Commun. 9, 1090 (2018)
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Module  detection  methods:  performance

Saelens et al. Nature Commun. 9, 1090 (2018)

ICA method:
https://www.ece.ucsb.edu/wcsl/courses/ECE594/594C_F10Madhow/comon94.pdf
https://www.cs.helsinki.fi/u/ahyvarin/papers/NN00new.pdf

ICA-based decomposition methods work best in detecting
co-expression modules that overlap with known regulatory modules.
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Independent  Component Analysis  (ICA)  

Saelens et al. Nature Commun. 9, 1090 (2018)

ICA decomposes the expression data matrix X into a number of “components” (k = 
1,2,..K), each of which is characterised by an activation pattern over genes (Sk) 
and another over samples (Ak)

𝑋 = #𝑆%Ä𝐴% + 𝐸
)

%*+
in such a way that the gene activation patterns (S 1,S 2,. . .,SK) are as statistically 
independent as possible while also minimising the residual “error” matrix E

In the above formula, ⊗ denotes the Kronecker tensor product.

While ICA also provides a linear decomposition of the data matrix, the requirement 
of statistical independence implies that the data covariance matrix is decorrelated in a 
non-linear fashion, in contrast to PCA where the decorrelation is performed linearly. 
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Kronecker tensor product

www.wikipedia.org



Bioinformatics 3 – SS 18 V 14  – 7

ICA  model  of  gene  expression

Teschendorff AE, et al. (2007) PLoS Comput Biol 3: e161.

In the ICA model, the gene 
expression matrix is decomposed 
into the product of a “source” 
matrix S and a “mixing” matrix A.

K is the number of inferred 
independent components (IC) to 
which pathways and regulatory 
modules map. 

The columns of S describe the activation levels of genes in the various inferred 
independent components
The rows of A give the activation levels of the independent components across 
tumor samples. 
The product of S and A can be written as a sum over the IC submatrices 
IC-1,IC-2,...IC-K. 



Bioinformatics 3 – SS 18 V 14  – 8

ICA  model  of  gene  expression

Teschendorff AE, et al. (2007) PLoS Comput Biol 3: e161.

The IC–k–submatrix is obtained by multiplying the k-th column of S, Sk, with the k-
th row of A, Ak.
The genes with the largest absolute weights in Sk are selected and tested for 
enrichment of biological pathways, while the distribution of weights in Ak are tested 
for discriminatory power of phenotypes. 

Colour codes for heatmaps: 
red, overexpression; 
green, underexpression; 
blue, upregulation; 
yellow, downregulation.
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9.5  Network  Motifs

Nature Genetics 31 (2002) 64

RegulonDB +  hand-curated literature evidence
→ break down network into motifs
→   statistical significance of the motifs?
→ behavior of the motifs  <=>  location in the network?
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Detection  of  motifs
Represent transcriptional network as a connectivity matrix M
such that Mij = 1 if operon j encodes a TF that transcriptionally
regulates operon i and Mij = 0 otherwise.

Scan all n × n submatrices of M generated 
by choosing n nodes that lie in a connected 
graph, for n = 3 and n = 4.

Submatrices were enumerated efficiently by 
recursively searching for nonzero elements. 

For n = 3, the only significant motif is the feedforward loop.
For n = 4, only the densely overlapping regulation motif is significant.
SIMs and multi-input modules were identified by searching 
for identical rows of M.

Shen-Orr et al. Nature Gen. 31, 64 (2002)

Connectivity matrix for causal regulation of 
transcription factor j (row) by transcription factor i
(column). Dark fields indicate regulation. 
(Left) Feed-forward loop motif. TF 2 regulates TFs 3 
and 6, and TF 3 again regulates TF 6. 
(Middle) Single-input multiple-output motif. 
(Right) Densely-overlapping region.
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Motif  Statistics

Listed motifs are highly overrepresented compared to randomized networks

No cycles (X →  Y → Z → X) were identified,  
but this was not statistically significant in
comparison to random networks

Shen-Orr et al., Nature Genetics 31 (2002) 64

Compute a p-value for submatrices representing each type of connected 
subgraph by comparing # of times they appear in real network vs. in random 
network.
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For  a  stringent  comparison to randomized networks,  one generates
networks with precisely the same  
- number of operons,  
- interactions,  
- TFs and
- number of incoming and outgoing edges for each node
as in  the real  network (here the one from E.  coli ).  

One starts with the real  network and repeatedly swaps randomly chosen
pairs of connections (X1  → Y1,  X2  → Y2 is replaced by X1  → Y2,  X2  → Y1)  
until the network is well randomized.  

Generate  Random  Networks

Shen-Orr et al., Nature Genetics 31 (2002) 64
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This  yields networks with precisely the same  number of nodes with
p incoming and q outgoing nodes,  as the real  network.

The  corresponding randomized connectivity matrices,  Mrand,  
have the same  number of nonzero elements in  each row and column
as the corresponding row and column of the real  connectivity matrix M:  

and

Generate  Random  Networks

Shen-Orr et al., Nature Genetics 31 (2002) 64

#𝑀𝑟𝑎𝑛𝑑12 =
1

#𝑀12
1

#𝑀𝑟𝑎𝑛𝑑12 =
2

#𝑀12
2
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FFL  dynamics

In a coherent FFL:
X andY activate Z

Delay between X and Y → signal must persist longer than delay
(see lecture 12, slide 31)
→ reject transient signal,  react only to persistent signals
→ enables fast shutdown

Dynamics:
• input activates X
• X activates Y (delay)
• (X && Y) activates Z

Helps with decisions based on fluctuating signals.

Shen-Orr et al., Nature Genetics 31 (2002) 64
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Motif  2:    Single-Input-Module
Set of operons controlled by a single 
transcription factor
• same sign
• no additional regulation
• control is usually autoregulatory

(70% vs. 50% overall)

Example for this in E. coli:
arginine biosynthetic operon argCBH
plus other enzymes of arginine 
biosynthesis pathway.

Mainly found in genes that code for parts of a protein complex or 
metabolic pathway
→ produces components in comparable amounts (stoichiometries).

Shen-Orr et al., Nature Genetics 31 (2002) 64
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SIM-Dynamics

If different thresholds exist for each regulated operon:
→ first gene that is activated is the last that is deactivated
→  well defined temporal ordering (e.g. flagella synthesis) + stoichiometries

Shen-Orr et al., Nature Genetics 31 (2002) 64
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Motif  3:    Densely  Overlapping  Regulon

Dense layer between groups of TFs 
and operons
→ much denser than network 

average (≈ community)

Main "computational" units of the regulation system

Usually each operon is regulated 
by a different combination of TFs.

Sometimes:  same set of TFs for group of operons → "multiple input module"

Shen-Orr et al., Nature Genetics 31 (2002) 64
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Network  with  Motifs

• 10 global TFs regulate
multiple DORs

• FFLs and SIMs at output
• longest cascades: 5 
(flagella and nitrogen systems)

Shen-Orr et al., Nature Genetics 31 (2002) 64
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9.6  Key  pathway miner algorithm
The key-pathway miner algorithm solves the problem of finding key
pathways at the level of labeled graphs (Alcaraz 2012).

Key pathways: connected sub-networks where most of the components are
active/expressed/methylated in most conditions.

The algorithm can either output only the best solution found or multiple top
solutions.

For a labeled graph G = (V, E, d) of vertices V and edges E, there also exists
a labeling function d: V→ |N.

.

Alcaraz et al. (2012), 
Integrative Biology 4, 756-764.
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9.6  Key  pathway miner algorithm
Let k, l∈ |N.

The (k, l)-KeyPathway problem determines a connected subset U ⊆ V of
maximal cardinality which contains at most k elements u∈ U with d(u) ≤ l.

Any set U fulfilling these two conditions is termed a (k, l)-component.

Any vertex v∈ V for which d(v) ≤ l is termed an exception vertex.

Vertices of the graph represent biological entities (e.g. genes or proteins);
edges stand for interactions between two such entities, e.g. a protein–protein
interaction.

The labels on a vertex v denote the number of situations were v is
active/expressed/methylated etc.

.

Alcaraz et al. (2012), 
Integrative Biology 4, 756-764.
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9.6  Key  pathway miner algorithm
In a preprocessing stage, one generates an auxiliary labeled graph C(G, l) that serves to
reduce the problem size and to help in steering the algorithm to more promising 
regions of the search space. 

C(G, l) is the l-component graph that is deduced from G in the following way:
- The vertex set of C(G, l) contains all exception vertices of G. 

- Two exception vertices are linked by an edge in C(G, l) if they are connected by a 
path in G which does not contain exception vertices as inner vertices. 

- For any subset U⊆ V of exception vertices, S(U) is defined as the set of all vertices v
∈ V that can be reached in G from an element of U without visiting an exception
vertex that does not belong to U. 

Intuitively, one simply needs to select a connected set of k exception vertices U in 
C(G, l) to construct a (k, l)-component of G, namely S(U).

.

Alcaraz et al. (2012), 
Integrative Biology 4, 756-764.
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9.6  Key  regulator genes
For this, the Key-pathway miner algorithm applies a greedy principle. For every
vertex u, a set Wu is iteratively constructed that begins with Wu = {u}. 

At every iteration step, one adds a vertex v from C(G, l) to Wu that is adjacent to Wu

in C(G, l) and which maximizes |S(Wu∪ {v})|. 

The iterations are stopped when |Wu| = k. The algorithm returns S(Wu) of maximal 
size found for some u. 

Alcaraz et al. (2012), 
Integrative Biology 4, 756-764.

.

Largest subnetwork identified as down-regulated in 
the caudate nucleus of huntington disease patients
found by the key pathway miner algorithm for k = 2. 
Red nodes represent exception nodes, 
squared nodes: genes of the Huntington's disease
KEGG pathway, 
nodes with dashed borders : HTT modifiers, nodes
with italic font : part of the calcium signaling
pathway.
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Identification of Master  regulatory genes

Idea: find a set of dominator nodes of minimum size that controls all other 
vertices.
In the case of a GRN, a directed arc symbolizes that a transcription factor regulates 
a target gene. 

In the figure, the MDS nodes {A,B} are the dominators of the network. Together, 
they regulate all other nodes of the network (C, E, D). 

Nazarieh et al. BMC Syst Biol 10:88 (2016) 

A  vertex  u dominates
another  vertex  v  if  there  
exists  a  directed  arc  
(u,v).
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Identification of Master  regulatory genes

The nodes of a MDS can be spread as isolates nodes over the entire graph. 
However, e.g. the set of core pluripotency factors is tightly connected (right).

Idea: find a connected dominating set of minimum size (MCDS).

(Left) the respective set of MCDS nodes (black and gray). 
Here, node C is added in order to preserve the connection 
between the two dominators A and B to form an MCDS

Core pluripotency network,
Kim et al. Cell (2008)
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ILP  for minimum dominating set

Nazarieh et al. BMC Syst Biol 10:88 (2016) 

Aim: we want to determine a set D of minimum cardinality such that for each 
v ÎV, we have that v Î D or that there is a node u Î D and an arc (u,v) Î E.

Let  d-(v) be the set of incoming nodes of v such that (u,v) Î E,
xu and  xv are  binary  variables  associated  with  u and  v.

We  select  a  node  v as  dominator  if  its  binary  variable  xv has  value  1,  
otherwise  we  do  not  select  it.  

With the GLPK solver, the runtime was less than 1 min for all considered networks.
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ILP  for minimum connected dominating set
A minimum connected dominating set (MCDS) for a directed graph G = (V,E) is a 
set of nodes D Í V of minimum cardinality that is a dominating set 
and  additionally  has  the  property  that  the  graph  G[D] induced  by  D is  weakly  
connected,  i.e.  such  that  in  the  underlying  undirected  graph  there  exists  a  
path  between  any  two  nodes  of  D that  only  uses  vertices  in  D.

This  time  we  will  use  two  binary  valued  variables  yv and  xe .
yv indicates  whether  node  v is  selected  to  belong  to  the  MCDS.
xe for  the  edges  then  yields  a  tree  that  contains  all  selected  vertices  and  no  
vertex  that  was  not  selected.

Nazarieh et al. BMC Syst Biol 10:88 (2016) 

This guarantees that the number of edges 
is one less than the number of vertices. 
This is necessary (but not sufficient) to 
form a (spanning) tree.
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ILP  for minimum connected dominating set

Nazarieh et al. BMC Syst Biol 10:88 (2016) 

Second constraint 
→ selected edges imply a tree.
(Note  that  this  defines  an  exponential  number  of  constraints  
for  all  subgraphs  of  V!)

Third  constraint  
→ node  set  forms  dominating  set.

For dense graphs, this yields a quick solution. 
However, for sparse graphs, the running time may be considerable. 
Here we used an iterative approach for the second constraint.
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Example MDS

(Left) this toy network includes 14 nodes and 14 edges.

(Right) The dark colored nodes {J, B, C, H, L} are the dominators of the network 
obtained by computing a MDS. 

Nazarieh et al. BMC Syst Biol 10:88 (2016) 
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Example MCDS

(Left) The nodes colored blue make up the largest connected component 
(LCC) of the underlying undirected graph. 

(Right) MCDS nodes for this component are {J, D, B, C, G, H}. 

Nazarieh et al. BMC Syst Biol 10:88 (2016) 
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Example MCDS

(Left) The green colored nodes are elements of the largest connected 
component underlying the directed graph. 

(Right) The two nodes {B, C} form the MCDS for this component. 

Nazarieh et al. BMC Syst Biol 10:88 (2016) 
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MCDS  of the strongly connected component

(Left) The nodes colored orange show the LSCC in the network. 

(Right) The node A is the only element of the MCDS

Nazarieh et al. BMC Syst Biol 10:88 (2016) 
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Studied networks:  RegulonDB (E.coli)
This GRN contains 1807 genes, including 202 TFs and 4061 regulatory interactions. 
It forms a general network which controls all sorts of responses which are needed 
in different conditions. 

Due to the sparsity of the network, 
its MDS contains 199 TFs.

Figure: Connectivity among the genes in the MCDS of the 
LCC of the E.coli GRN. 
The red circle borders mark the MCDS genes identified 
as global regulators by Ma et al. (see lecture V12, slide 7). 
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Periodic genes  in  cell cycle network of yeast
Take regulatory data from Yeast Promoter Atlas (YPA). 
It contains 5026 genes including 122 TFs. 

From this set of regulatory interactions, we extracted a cell-cycle specific 
subnetwork of 302 genes that were differentially expressed along the cell cycle of 
yeast (MA study by Spellman et al. Mol Biol Cell (1998)).

Nazarieh et al. BMC Syst Biol 10:88 (2016) 
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MCDS  of cell cycle network of yeast
Tightly interwoven network of 17 TFs 
and target genes that organize the cell 
cycle of S. cerevisiae. 

Shown on the circumference of the 
outer circle are 164 target genes that 
are differentially expressed during the 
cell cycle and are regulated by a TF in 
the MCDS (shown in the inner circle). 

The inner circle consists of the 14 TFs 
from the heuristic MCDS 
and of 123 other target genes that are 
regulated by at least two of these TFs

Nazarieh et al. BMC Syst Biol 10:88 (2016) 
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Studied networks:  PluriNetwork
PluriNetWork was manually 
assembled as an 
interaction/regulation 
network describing the 
molecular mechanisms 
underlying pluripotency.

It  contains  574 molecular 
interactions, stimulations and 
inhibitions, based on a 
collection of research data 
from 177 publications until 
June 2010, involving 274 
mouse genes/proteins.

Som A, et al. (2010) PLoS ONE 5: e15165. 
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MCDS  of mouse pluripotency network
Connectivity among TFs in the 
heuristic MCDS of the largest strongly 
connected component of a GRN for 
mouse ESCs. 

The red circle borders mark the 7 TFs 
belonging to the set of master 
regulatory genes identified 
experimentally.

The MCDS genes were functionally 
significantly more homogeneous than 
randomly selected gene pairs of the 
whole network (p = 6.41e-05, 
Kolmogorov-Smirnow test).

Nazarieh et al. BMC Syst Biol 10:88 (2016) 
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Overlap with most central nodes
Percentage overlap of the genes of the 
MDS and MCDS with the list of top 
genes (same size as MCDS) according 
to 3 centrality measures. Shown is the 
percentage of genes in the MDS or 
MCDS that also belong to the list of 
top genes with respect to degree, 
betweenness and closeness centrality

Nazarieh et al. BMC Syst Biol 10:88 (2016) 

MDS nodes tend to be central in the network (high closeness) and belong to the 
most connected notes (highest degree).

When considering only outdegree nodes in the directed network, most of the 
top nodes of the MCDS have the highest overlap with the top nodes of the 
degree centrality and the betweenness centrality 
(→ connector  nodes). 
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Breast cancer network

Hamed et al. BMC Genomics 16 (Suppl5):S2 (2015) 

Analyze breast cancer data 
from TCGA →
ca.  1300  differentially  
expressed  genes.

Hierarchical clustering of co-
expression network yielded 
10 segregated network 
modules that contain 
between 26 and 295 gene 
members.

Add regulatory info from 
databases Jaspar, Tred, 
MSigDB. 

(b) – (d) are 3 modules.
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Breast cancer network
The MDS and MCDS sets of the nine modules 
contain 68 and 70 genes, respectively. 

Intersect the proteins encoded by these genes with the targets 
of anti-cancer drugs. 

20 of the 70 proteins in the MCDS are known drug targets 
(p = 0.03, hypergeometric test against the network 
with 1169 genes including 228 drug target genes). 

Also, 16 out of the 68 proteins belonging to the MDS genes 
are binding targets of at least one anti-breast cancer drug.

Nazarieh et al. BMC Syst Biol 10:88 (2016) 
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|MDS|  £ |MCDS|

Number of MCDS genes determined by the heuristic approach or by the ILP 
formulation and in the MDS. 
Shown are the results for 9 modules of the breast cancer network

Nazarieh et al. BMC Syst Biol 10:88 (2016) 
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Summary
Today:

• Network motifs:  FFLs,  SIMs,  DORs are overrepresented
→ different functions, different temporal behavior

• network co-expression modules are best identified by ICA

Next lecture V15:

• MDS and MCDS identify candidate master regulatory genes
→ who reliable are they when applied to noisy and incomplete data?

• Epigenetics, analysis of DNA methylation data

• Key pathway miner algorithm determines key genes.


