V20 Flux Balance Analysis + algorithms on top

- Metabolic networks are scale-free
- Flux balance analysis

FBA-based algorithms:
- MOMA

- OptKnock

- NetworkReducer

- High Flux Backbone
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Metabolic networks are scale-free ©

Review of 2 contrasting network topologies.

Exponential Scale-free c
a, Representative structure of networks

generated by the Erdos—Rényi model.

b, For a random network, P(k) peaks

oo d

strongly at k = <k> and decays | b
log k

exponentially for large k.

log P(k)

¢, In the scale-free network most nodes
have only a few links, but a few nodes,
called hubs (dark), have many links.

d, P(k) for a scale-free network has no well-

defined peak, and for large k it decays as a

power-law, P(k) ~ k7, appearing as a

straight line with slope - on a log—log plot. Jeong et al. Nature 407, 651 (2000)
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Connectivity distributions P(k) for substrates

a, Archaeoglobus fulgidus (archae);

b, E. coli (bacterium);

¢, Caenorhabditis elegans (eukaryote)
d, The connectivity distribution
averaged over 43 organisms.

x-axis: metabolites participating in k
reactions

y-axis (P(k)): number/frequency of
such metabolites

log—log plot, counts separately the
incoming (In) and outgoing links (Out)
for each substrate.

ki, (k,,) corresponds to the number of
reactions in which a substrate
participates as a product (educt).
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Properties of metabolic networks

a, The histogram of the biochemical pathway
lengths, /, in E. coli.

b, The average path length (diameter) for each
of the 43 organisms.

N : number of metabolites in each organism

¢, d, Average number of incoming links (c) or
outgoing links (d) per node for each organism.

e, The effect of substrate removal on the
metabolic network diameter of E. coli.

In the top curve (red) the most connected
substrates are removed first. In the bottom
curve (green) nodes are removed randomly.

M =60 corresponds to 8% of the total number

of substrates in found in E. coli.
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b—d, Archaea (magenta), bacteria (green) and
eukaryotes (blue) are shown.

Jeong et al. Nature 407, 651 (2000)
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Flux balancing

Any chemical reaction requires mass conservation. ‘ ‘:_ DA ij 3
A

Therefore one may analyze metabolic systems

by requiring mass conservation. PAer»} % L

Only required: knowledge about stoichiometry of metabolic pathways.

For each metabolite X; : Steady state: concentrations are constant

=> flux in = flux out
dX; /dt = Vsynthesized — Vised
dAsB(t)
dt

+ Vtransported_in - Vtransported_out

— GAQB_LAQB — O
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Flux balancing

Under steady-state conditions, the mass balance constraints in a metabolic

network can be represented mathematically by the matrix equation:
S:v=0

where
- the matrix S is the stoichiometric matrix and
- the vector v represents all fluxes in the metabolic network,

including the internal fluxes and transport fluxes.
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12.5 Flux Balance Analysis (FBA)

Since the number of metabolites is generally smaller than the number of reactions
(m < n) the flux-balance equation is typically underdetermined.

-> There are generally multiple feasible S v
flux distributions that satisfy the mass balance constraints.

|
o

The set of solutions is confined to the nullspace of matrix S.
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Null space: space of feasible solutions

Consider
0 2 1 Sy _ (o
3 -1 1 =) 7 L0
X3
Corresponds to 20ota3 = 0 ___ 202 = -3
3ry —x2o+x3 = 0 200y = —uI3
_al
=> only one free parameter: x3 null space: 7 = _a
2a
Add inequalities for external fluxes
(here, e.g.:x3 = 0) flux 2

=> feasible solutions fora > 0 A null space

Generally: null space is a cone,
constraints select part of it

A€ solutions

flux 1
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Feasible solution set for a metabolic reaction network

The steady-state operation of the metabolic
network is restricted to the region within a
pointed cone, defined as the feasible set.

The feasible set contains all flux vectors that
satisfy the physicochemical constraints.

Thus, the feasible set defines the capabilities
of the metabolic network.

All feasible metabolic flux distributions lie
within the feasible set.

The extreme pathways (see V19) are the
corner rays of this cone.

Edwards & Palsson PNAS 97, 5528 (2000)
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True biological flux

To find the ,true” biological flux in cells (— e.g. Wittmann / UdS)
one needs additional (experimental) information,
or one may impose constraints

o <v.<f

on the magnitude of each individual metabolic flux.

The intersection of the nullspace and the region
defined by those linear inequalities defines a
region in flux space = the feasible set of fluxes.

In the limiting case, where all constraints
on the metabolic network are known, such
as the enzyme kinetics and gene
regulation, the feasible set may be reduced
to a single point. This single point must lie
within the feasible set.

20. Lecture SS 2018 Bioinformatics IlI
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E.coli in silico

Best studied cellular system: E. coll.

In 2000, Edwards & Palsson constructed an in silico representation of
E.coli metabolism.

There were 2 good reasons for this:
(1) genome of E.coli MG1655 was already completely sequenced,

(2) Because of long history of E.coli research, biochemical literature, genomic
information, metabolic databases EcoCyc, KEGG contained biochemical or
genetic evidence for every metabolic reaction included in the in silico
representation. In most cases, there existed both.

Edwards & Palsson
PNAS 97, 5528 (2000)
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Genes included in in silico model of E.coli

Table 1. The genes Induded In the £. coif metabollc genotype (21)

Edwards & Palsson

PNAS 97, 5528 (2000)
20. Lecture SS 2018

Central metabolism (EMP, PPP,
TCA cycle, electron transport)

Alternative carbon source

Amino acid metabolism

Purine & pyrimidine
metabolsm

Vitamin & cofactor metabolism

Lipid metabolism

Cellwall metabolism

Trarsport processes

aced, aceB, acef, acef, ackA, acnd, anB, acs adhE, agp, app8, appC, atpd, atpd, atpC, atpl), atpk, atpk,
atpG, atph, atpl, cpdA, opdB, cyddC, cypedl), cyol, oyoB, cyol, cyall did, ena, fha, fbp, fdhF, fdnG, fdol,
fand, fdoGz, fdol, fddl, frdA, frdB, frdC, frddD, fumd, furnB, fumC galM gepd, gapC 1, gapC 2 gich,
gigh, glgC. gigP. gl gipd, qipB, gleC, gipl. GitA gnd, gpmd, gpmB, fyak, hyaB, byaC, hybA, hybC,
hycB, hyck, byck, byeG, icdA, lctD, IdhA, lpdh, malP, rcth, ndh, nuod, nuod, nuwok, nuck, nuol, nuol,
nocl, nuol, nuok, nuol, nuol, nuol, pekd, pfkA, pfiB, pfA, pflB, pBC pfD, pgi, pgk pth, pntd ppc,
ppsh, pta, purl, pyih, pyiF, 1pe, tpid, B, sdhd, wthB, schC, sdhb, sfeA, sudh, sucB, sucC, sucl) tal8,
thtA, thtB tpid, trxB zart pgl (30), mael (30)

adhl, acthE, agaY, agalZ, aldA, aldB, aldH, aval, aral 2D, bglX, cpsG, deoB, fruk, fucA, fud, fxck fucO,
galE, galk gall, galt), gatl, gatY, gk, gloK, greX, gntl, gpsA, lacZ, mank, melli, mtiD, nagh, nagh,
nand, pfkB, pgi pam, 1ok, rhad, rhaB, rhal), stiD, treC, xyld, xylB

adi akdH, ale, ansh, ansB, argh, argl argC, argD, argE, argf, argl, argH, argl avah, avolfl aroC, arol), arck,
arof, avol, avol, arck, arol, osd, asnd, asnB, aspA, aspC, avth, caddhi, cavA, carB, cysC, cy=d), cyst, opsh,
cyd, oysd, cysK, cysM, o, dacdh, dadX, dapA, dopB dapD, dapk, dapf, duih, gabD, gabT, gadd, gadl,
gdih, gik, gind, QitB, gith, gyA, goaG, hish, hisB, hsC hisD, ivsf, bisG, hisH, bisd, i, 8 G v,
iNE, VG 1, G2, vl oW, M, d, kDL IdCC, lewk, leuB, leuC, leul), ish, iysC metd, metB, meeC,
metE, metH, metk, matl, phed, prod, proB, proC, prsd, putd, sdakh, sdall serd, serB, sev(, sped, spef,
speC, spel), spek, spef, tdcB, tdh, thvA, thid thvC, tnad, mpd, rp8, opC tripd, npk tnd, A, il
y9iG, ygitd aleB (42), depC(43), pat (44), prr (44), sad (45), methyithiosdonosine nudeosidase (16),
S-mothykhioribose kinaze (46), S-methylthoriboze-i-phosphate isomerasze (46), adenosyl homocystainaze
(A7), 1-qystone desu¥hydrase (), guteminase A (M), giutaminase B (A4)

add, adk amn, ap¢, cdd, cmk, codA, ded deod, deol), dat, dut gmk, g, gk, guad, gual, gual, hpt
mutT, ndk, nrdA, nrdB, medD, vdE, oedE, purd, pur8, pwC, parD, purk, purk, purH, purk, parl, purM,
pwrll perT, pyeB, o€, pyelD, pyrk, pyrF, pyeG, pyeil pyrl tdk, thyh, trok udk, udp, upp, wshA, xapA, yicP,
CMP glycosyhise (48)

acps, biod, biof biol), biok, wad, cyof, cyslz, enth, entl, entC, entD, ertf, entf, epd, fold, folC, foll), folf,
folk, folP, govi, govh govT, gitX, giwh, gor, gshd, gsh8 hernd, hemB hernC, heml) hark, herof, ham¥,
hemK, heml, hesoM, hemX, hemY, ivC, g lpdA, mend, menB menC, menl, menk, menf, menG, metf,
mutT, nadd, nadB, nad(, nadk, ntpd, pald,, pabB, pabC panB, panC, panl), pdxA, pdxB, pdaH, pdxl,
pdk, prcB, purl, ribA, ribB ribD, ribE, ribH ser C tiC, thif, thif, tiG, thitd, theC, ubid, wbiB, ubiC, wbiG,
ubit, ubiX, yaaC, ygiG, nadD (49), nadF (49), nadG (49), pank (50), pracA (49), pncC (49), thi8 (51), thiD (51),
thilkl (51), thil (51), chaM (51), thiV (51), wbi€ (52), ub¥ (82), arobinose-5-phosphate isomerasze 22),
phosphopantathonate-aystaine ligase (W), phosphopantothonate-cys teine decarboxylase (9),
phospho-pantetheine adenylyktronsfearase (W), dephosphoCol kinase (50), NMN glycohydrolase (49)

acch, acch, accl, atol, cdh, cdsd, cls, dokd, fabl), fabH, fadB, gpsd, spd ipB, popl, pgdh, pwd, pssA, pgpd
(53)

defils, dllB, gal¥, gall, gimS, giml, erB, kdsd, kdsB, kdtd, lpxh, lowB, lpxC, lpxD, mra¥, msb8 mwh, mwE
morC, murl), mark, murf, mwG, mul, ifaC, rfal), rfaf, tfaG, rfal rfal, ifal, ushA, gloM (54), lpod (85),
rfak (55), tetraacyidisacchoride 4" kinase (55), 3-deoxy-p-manno-octulosonic-acid §-phosphate
phosphatase (55)

arak, araf, aval, araH, agTl, avol, artl, art), artM, artf, artQ &rnQ, cadB, chad, chall chaC, cmth, cme8,
codB, crr, cpeA, cysA, cpsP ops T, ot oW ol detA, deud, deull dppA, dppB, dppC, dppl, dppf, fadl,
foch, frud, fruB, fuch, gabd, galf, gath, gatl gatC gk, ginF, ginQ) gipF, glpT, git), gk, git, gitf, gits,
gntT, gpt hisd hisM, hisP, i), bpt, kdpA, kdpB, kdpC, kgtR lacY, lamB, I, TG, Indd, Ired, WK, M,
1P, lysP, malE, malF, malG, malK, malX, manX, man¥, manZ, melB, mgll, mgiB, mgiC, mti4, mn, nagk,
nanT, nhad, nhal, nupC, nupG, oppd, oppB, oppC, oppl), opp¥, pank, pheF, pith, pits, puC, potA, poté,
potC, potD, potk, potf, potG, potH, potl, prof, proV, proW, proX, psth, p=8, pstC, pstS, pesh, ptsG, pesi
ptsh, ptsP purB, putP, rbsh, rbsB, rhsC, rbsD, rhaT, saph, sapB sapD, sbp, sdaC, st ], stéh 2, sl tdeC,
naB, red, el trkA trkG, triH, tx, P, ugpd, ugpB, el LopE, wak, xapd, xylE, xplF, xplG, ayiH,
fruF (56), gntS (57), motD (43), pnuE (49), sar (56)

Bioinformatics Il
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E.coli in silico — Flux balance analysis

Define «; = 0 for irreversible internal fluxes,
a; = -oo for reversible internal fluxes (use biochemical literature)
Transport fluxes for PO,%-, NH;, CO,, SO,%, K*, Na* were unrestrained.

For other metabolites 0 <v, <v"™™ except for those that are able to leave the
metabolic network (i.e. acetate, ethanol, lactate, succinate, formate, pyruvate etc.)

Find particular metabolic flux distribution in feasible set by linear programming.

LP finds a solution that minimizes a particular metabolic objective —Z
(subject to the imposed constraints) where e.qg.

/= Zc v—<c V>

In FBA, c; are the (known) coefficients of the optimization goal.

20. Lecture SS 2018 Bioinformatics Il Edwards & Palsson,

PNAS 97, 5528 (2000) '3



E.coli in silico — Flux balance analysis

In the case of biomass maximization, vector ¢ is
an all-zero vector except for a one (1.0) in the
position corresponding to the biomass reaction:

ZIZCi'Vi =(1

What is the biomass reaction?

(Montezano et al.) used the
mixture on the right that reflects
the actual composition of cells of
Mycobacterium tuberculosis.

20. Lecture SS 2018

0.214 PROTEIN
0.036 RNA

0.022 DNA

0.050 SMALLMOLECULES
0.006 PE

0.016 TAGbio
0.040 PIMs

0.1836 LAM

0.208 MAPC

0.035 P-L - GLX
0.007 CL

0.054 LM

47 ATP

1.0 BIOMASS + 47 ADP + 47 PI

Bioinformatics IlI
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Montezano et al (2015) PLoS
ONE 10(7): e0134014.
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Linear programming

Linear programming is a technique for the
optimization of a linear objective function,
subject to linear equality and inequality
constraints.

lts feasible region is a convex polytope, which
is a set defined as the intersection of finitely
many half spaces, each of which is defined by a
linear inequality.

Its objective function is a real-valued linear
function defined on this polyhedron.

A linear programming algorithm finds a point in
the polyhedron where this function has the
smallest (or largest) value if such a point exists.

20. Lecture SS 2018 Bioinformatics IlI

www.wikipedia.org

A pictorial representation of a
simple linear program with

2 variables (x and y-axes) and 6
inequalities (borders).

The set of feasible solutions is
depicted in yellow and forms a
polygon, a 2-dimensional
polytope.

The linear cost function is
represented by the red line and
the arrow: The arrow indicates the
direction in which we are
optimizing.

15



Linear programming
Linear programs are problems that can be expressed in canonical form as
maximize c¢'x
subjectto Ax<b
and x>0
where x represents the vector of variables (to be determined),

¢ and b are vectors of (known) coefficients,
A is a (known) matrix of coefficients, and (.)" is the matrix (vector) transpose.

The expression to be maximized or minimized is called the objective function
(c™x in this case).

The inequalities Ax < b and x = 0 are the constraints
which specify a convex polytope over which the objective function is to be optimized.

www.wikipedia.org

20. Lecture SS 2018 Bioinformatics IlI
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Integer linear programming

If all unknown variables are required to be integers, then the problem is called an
integer programming (IP) or integer linear programming (ILP) problem.

In contrast to linear programming, which can be solved efficiently,
integer programming problems are in many practical situations NP-hard.

The branch and bound algorithm is one type of algorithm to solve ILP problems.

www.wikipedia.org

20. Lecture SS 2018 Bioinformatics IlI
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(Black) Flux distribution for the wild-type.

(Red) zwf- mutant. Biomass yield is 99% of
wild-type resuilt.

(Blue) zwf- pnt- double mutant. Biomass
yield is 92% of wildtype result.

Note how E.coli in silico circumvents
removal of one critical reaction (red arrow)
by increasing the flux through the
alternative G6P — PGP reaction.

Edwards & Palsson PNAS 97, 5528 (2000)

20. Lecture SS 2018 Bioinformatic




E.coli in silico

Examine changes in the metabolic capabilities caused by hypothetical gene
deletions.

To simulate a gene deletion, the flux through the corresponding enzymatic
reaction is restricted to zero.

Compare optimal value of mutant (Z,,,i.t) to the ,wild-type” objective Z
Z

mutant

Z
to determine the systemic effect of the gene deletion.

Edwards & Palsson
PNAS 97, 5528 (2000)

20. Lecture SS 2018 Bioinformatics IlI
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Gene deletions in central intermediary metabolism

14 -

Maximal biomass yields o 5
12 A 8o Saa 8 8 &
on dlicose for o N 2 ilnanvasbeledilattattotasdetitis
possible single gene :
deletions in the central ~ § °# .33 5 Ef{
metabolic pathways NE 06 1 . SRR
(gycolysis, pentose 0.4
phosphate pathway 02 g Q(
(PPP), TCA, respiration). ,, /s 8¢%83 8

The results were generated in a simulated aerobic environment with glucose as the carbon
source. The transport fluxes were constrained as follows: glucose = 10 mmol/g-dry weight
(DW) per h; oxygen =15 mmol/g-DW per h.

The maximal yields were calculated by using FBA with the objective of maximizing growth.
Yellow bars: gene deletions that reduced the maximal biomass yield of Z, ., t0 less than

95% of the in silico wild type Z,.

Edwards & Palsson PNAS 97, 5528 (2000)

20. Lecture SS 2018 Bioinformatics IlI
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Interpretation of gene deletion results

The essential gene products were involved in

- the 3-carbon stage of glycolysis,

- 3 reactions of the TCA cycle, and

- several points within the pentose phosphate pathway (PPP).

The remainder of the central metabolic genes could be removed
while E.coli in silico maintained the potential to support cellular growth.

Edwards & Palsson PNAS 97, 5528 (2000)
20. Lecture SS 2018 Bioinformatics Il
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E. coli in SiIiCO . Val idation Table 2. Comparison of the predicted mutant growth

characteristics from the gene deletlon study to published
experimental results with single mutants

+ and — means growth or no growth. - SRR L L
ace, +i+ +I+ A
+ means that suppressor mutations have el
been observed that allow the mutant ° o o
. +/+
strain to grow. oy
cyo +i+
eno! —i+ —i+ o o b
fba —i+
4 virtual growth media: fbp AT S S
frd +/+ +i+ +i+
glc: glucose, gl: glycerol, succ: ® v g
succinate, ac: acetate. o o e
idh —)— -/
mdhtt +1+ +i+ +i+
. ndh +/+ +i+
In 68 of 79 cases, the prediction was
: . r pfk! —/+
consistent with exp. predictions. pait HE -
pgk —-/- o b o b /-
® pal +/+
pntAB +i+ +i+ +i+
Red and yellow circles: predicted o s
. . +1+
mutants that eliminate or reduce growth. o e
rpi = ' - -
sdh4BCD +i+ —/:— b
Edwards & Palsson ® P o o o
PNAS 97, 5528 (2000) o oL
f +1+ +I+ +/+

20. Lecture SS 2018 Bioinformatics IlI
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Summary - FBA

FBA analysis constructs the optimal network utilization simply using the
stoichiometry of metabolic reactions and capacity constraints.

For E.coli, the in silico results are mostly consistent with experimental data.

FBA shows that the E.coli metabolic network contains relatively few critical gene

products in central metabolism.
However, the ability to adjust to different environments (growth conditions) may be

diminished by gene deletions.

FBA identifies ,the best® the cell can do, not how the cell actually behaves under a
given set of conditions. Here, survival was equated with growth.

FBA does not directly consider regulation or regulatory constraints on the
metabolic network. This can be treated separately.

Edwards & Palsson PNAS 97, 5528 (2000)

20. Lecture SS 2018 Bioinformatics IlI
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12.5.1 Gene knock-outs: MOMA algorithm

As just shown, FBA can also predict phenotypes associated with genetic
manipulations.

The effects of a gene knockout is realized in FBA calculations by simply setting the
entries of the stoichiometric matrix related to the respective protein to zero and
then obtaining an optimal flux.

This approach assumes that the mutant bacteria also adopt an optimal metabolic
state,

although these artificially generated strains have not been exposed to the typical
evolutionary pressure that formed the metabolic profile of the wild-type.

Segre D, Vitkup D, Church GM (2002)
PNAS 99, 15112-15117.

20. Lecture SS 2018 Bioinformatics IlI
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12.5.1 Gene knock-outs: MOMA algorithm

To characterize the flux states of mutants, Church and collagues formulated the
method MOMA =  ,minimization of metabolic adjustment”.

MOMA applies the same stoichiometric constraints as FBA but does not assume
that gene knock-out mutants will show optimal growth flux.

FBA of knockout A
‘ (optimal) :
FBA of wild type

|dea behind MOMA: in the beginning, a mutant 27 ~_ (optimal)

will likely possess a suboptimal flux distribution
that lies in between the wild-type optimum (a)
and the mutant optimum (b).

\objective

w"

/ &

MOMA of knockout
(suboptimal)

MOMA approximates this intermediate

feasible space

feasible space :
(DJ of wild type (D

suboptimal state by assuming that the flux of knockout

A 1
>
values in the mutant will initially take on values Vi

that match those of the wild-type optimum as closely as possible.

Segre D, Vitkup D, Church GM (2002)

20. Lecture SS 2018 Bioinformatics Il PNAS 99’ 15112-15117. o5



12.5.1 Gene knock-outs: MOMA algorithm

To predict a metabolic phenotype, MOMA determines a flux vector v in the flux
space @ of a mutant with smallest Euclidian distance from a given flux vector w for
the wild-type organism.

This means that:; N N

D(W, X) = z(Wl — vi)z = le — ZWL'UL' + .')Clz
\ =1 \ =1
should be minimized. Minimizing D is equivalent to minimizing the square of D.

Constant terms (the wild-type flux w?) can be left out from the objective function.

Segre D, Vitkup D, Church GM (2002)

20. Lecture SS 2018 Bioinformatics 1ll PNAS 99, 1 51 1 2'1 51 1 7.
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12.5.1 Gene knock-outs: MOMA algorithm

With Q as the n X n unit matrix and L set to —w, this criterion is equivalent to a
quadratic programming problem where the aim is to minimize:

1
f(x)=L- v+EvTQV
under a set of linear constraints.

The vector L of length N and the N X N matrix Q define the linear and quadratic
part of the objective function, respectively, and v’ represents the transpose of v.

Thus, the task of minimizing D is reduced to the task of minimizing
1
fw) =—-w-x+ ExTx.

Flux predictions made by MOMA were
reported to show good correlation to experimental findings.

Segre D, Vitkup D, Church GM (2002)
PNAS 99, 15112-15117.

20. Lecture SS 2018 Bioinformatics IlI
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12.5.1 OptKnock algorithm

In genetic strain optimization, the aim of maximizing the yield of a particular
chemical compound can also be formulated as a linear programming problem, just
like in FBA.

There exist several bi-level strain design approaches that employ mixed-integer
programming (MIP) to find the mutations required to obtain the largest synthesis
yields of a chemical.

Such bi-level MIP methods involve an “outer” problem and an “inner” problem.

In the outer problem, an engineering objective function (selection of optimal
mutant strains) is optimized.

In the inner problem a cellular objective function is optimized such as maximizing
the total flux via FBA and linear programming.

As one representative of this class of algorithms, we will discuss the OptKnock
algorithm

Burgard AP, Pharkya P, Maranas CD
(2003) Biotechnology and Bioengineering
84, 647-57.

20. Lecture SS 2018 Bioinformatics IlI
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12.5.1 OptKnock algorithm

The aim of OptKnock is to over-produce desired chemicals, e.g. in E. coli. Given a
fixed amount of glucose uptake, the cellular objective can be to maximize the
yield of biomass.

The effects of gene deletions are modeled by incorporating binary variables y; that
describe whether reaction j is active or not into the FBA framework:

1 if reaction flux v, is active

Yi =0 if reaction flux v; is not active, Vj € M

The constraint:
min max :
v] ’y]Sv]SUJ 'y],VJEM
guarantees that reaction flux v; is set to zero only in cases where variable y; is

Zero.

When y; is equal to 1, v; can adopt values between v/™" and v/max.

The authors determined v/™" and v/"# by minimizing and subsequently maximizing
every reaction flux subject to the constraints from the primal problem.

Burgard AP, Pharkya P, Maranas CD

N _ (2003) Biotechnology and Bioengineering
20. Lecture SS 2018 Bioinformatics IlI 84, 647-57.
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12.5.1 OptKnock algorithm

The best gene/reaction knockouts are determined by a bilevel optimization.

If biomass formation is the cellular objective, this may be modeled mathematically as the
following bilevel mixed-integer optimization task:

maximize Vopemicar (OptKnock — outer problem)
whereby y; is subject to y; € {0,1} Vj € M, ZjeM(l — yj) < K and
[maximize Vpjomass (Primal — inner problem)

M
whereby v; is subject to Z S;jvi=0

_ J=1
vpts + vglk - vglc—uptake
vatp = vatp—main

target

Vbiomass = Vpiomass
min max :
v; Vi SV S v, Vi, Vj € M]
K : maximal number of gene knockouts allowed.

The vector v holds both internal and transport reactions.

v; : flux of reaction j Vq

Vs - Uptake of glucose through phosphotransferase system , v : synthesis of glucose by glucokinase.

Vatp_ main - lOWer flux threshold keeping ATP level constant in non-growth-conditions

target
biomass

Ic_uptake IMplements the glucose uptake scenario.

: minimum level of biomass production.

20. Lecture SS 2018 Bioinformatics IlI
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12.5.1 OptKnock algorithm

Solving this two-stage optimization problem in a reasonable time can be
challenging due to the high dimensionality of the flux space (the system
implemented by the authors contained over 700 reactions) and the two nested
optimization problems.

To overcome this, the authors turned the linear programming problem into an
optimization problem.

Palsson and co-workers applied OptKnock to genome-scale metabolic models of
E. coli wild-type and mutants followed by adaptive evolution of the engineered
strains.

They managed to design bacterial production strains that produced more lactate
than wild-type E. coli (Fong et al. 2005).

Burgard AP, Pharkya P, Maranas CD
(2003) Biotechnology and Bioengineering
84, 647-57.
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Compress genome-scale models: Network Reducer

Detailed genome-scale metabolic models contain thousands of metabolites and
reactions. Their interpretation and application of the EP method is difficult.

Thus, one wishes to reduce genome scale models to ,,core* models of lower
complexity but having the same key elements and/or key functional features.

One such method is the network reduction algorithm NetworkReducer.
It can simplify an input large-scale metabolic network to a smaller subnetwork
whereby desired properties of the larger network are kept (Erdrich et al. 2015).

As in FBA, one consider vectors v of net reaction rates that fulfil S - v = 0.

The fluxes v satisfying this equation form the null space of S. Its dimensionality

may also be termed the number of degrees of freedom (dof) and is given by
dof = n —rank(S)

where n is the number of reactions in the system.

20. Lecture SS 2018 Bioinformatics IlI
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Specifications of Network Reducer

(a) PM : set of ,protected metabolites” that must be kept in the reduced network.
(b) PR : set of ,protected reactions” that must be kept in the reduced network.

(c) Protected functions (e.g. production of a chemical) and phenotypes are
characterized by appropriate inequalities.

(d) The reduced network may not have fewer degrees of freedom (dof) than a
minimum number: dof = dof, ;.

(e) A specified minimal number of reactions must be kept (n = n,,;,).

A key property of the algorithm is how it treats desired (protected) functions and
phenotypes.

20. Lecture SS 2018 Bioinformatics IlI
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Network Reducer

Each protected functionality (there are s of them in total) is formulated by a
respective set of linear equalities/inequalities,

Dyv <di, k=1..s.

The network reduction algorithm first checks the feasibility of the protected
reactions in the input network.

Then, a loop tries to iteratively discard non-protected reactions unless this violates
any of the desired conditions (a) - (e).

To decide on the order of this process, the algorithm computes for each removable
(non-protected) reaction j the feasible flux ranges.

Let F* denote the flux range of reaction i under the protected function k, k= 1...s.

From this, the union F; of all flux ranges is formed:
F; = Up=1 Ff

20. Lecture SS 2018 Bioinformatics IlI
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Network Reducer
Essential reactions possess an entirely positive or entirely negative flux range
Fx for any of the desired functionalities k.

Such essential reactions are deleted from the list of removable reactions.

From the current set of removable reactions, the next candidate reaction to be
discarded is the reaction with overall smallest flux range F..

It can be safely assumed that a considerable amount of flux variability remains in
the network after deleting this reaction.

After discarding a reaction, one needs to test the feasibility of the protected
functions (condition (c)), protected reactions and of protected metabolites.

If any of these conditions is not fulfilled, then the reaction that was just deleted is
reinserted and labeled as non-removable.

Then one continues with the reaction having the second smallest overall range of

fluxes F;.

20. Lecture SS 2018 Bioinformatics IlI
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Network Reducer

After deleting a reaction, the flux ranges are recomputed in the next iteration.

The main loop of network pruning terminates when no additional reaction can be
removed without violating any of conditions (a) - (e).

Finally, unconnected metabolites in the reduced network that do not participate
in any of the remaining reactions are deleted from the network.

In a post-processing step, the network can be (optionally) compressed further
without loosing degrees of freedom.

For example, reaction sets or enzyme sets belonging to a linear chain of reactions
can be combined into a single reaction with collapsed stoichiometries.

Compression does not affect protected reactions and metabolites.

20. Lecture SS 2018 Bioinformatics IlI
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Application of NetworkReducer

Klamt and co-workers
applied NetworkReducer to
a genome-scale metabolic
model of E. coli with 2384
reactions.

The algorithm pruned this
model to a reduced model
with 105 reactions.

This is close to a manually
constructed core model of
E.coli that contains 88
reactions.

20. Lecture SS 2018

# reactions
# internal
metabolites
# external
metabolites
degrees of
freedom

IJ max
(aerobic)

l" max
(anaerobic)

E. coli
genome-
scale
model
2384
1669

305

753

0.9290 h~*

0.2309 h-*

E. coli
pruned
model

455
438

33
26
0.9288 h™*

0.2309 h-*

Taken from Erdrich et al. (2015).

Bioinformatics IlI

E. coli
pruned and
compressed
model

105

85

33
26
0.9288 h™1

0.2309 h-1

E. coli
core
model of
Orth et al.
88

69

17

24

0.8739 h1

0.2117 h™1
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Overall flux organization of E.coli metabolic network

a, Flux distribution from FBA for optimized biomass
production on succinate (black) and glutamate (red)
substrates.

Solid line : power-law fit
d, Experimentally determined fluxes for reactions of
the central metabolism of E. coli.

Clear power-law behaviour.
Best fit with P(v)oc v* with o = 1.

Both computed and experimental flux distribution
show wide spectrum of fluxes.
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Almaar et al., Nature 427, 839 (2004)
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Response to different environmental conditions

Is the flux distribution independent of b 10—
environmental conditions? =

5107

a
Black: Flux distribution for optimized biomass on & L
pure succinate substrate. § 107

2104}
Red / green / blue : § 105k
Flux distributions when an additional 10%, 50%, or 1ol

10° 10* 10% 10= 10" 10°

80% of randomly chosen subsets of the 96 input Optimized flux, v

channels (substrates) are added to succinate.

The flux distribution was averaged over 5,000
independent random choices of uptake
metabolites.

— Yes, the flux distribution is independent of
the external conditions. Almaar et al., Nature 427, 839 (2004)
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Use scaling behavior to determine local connectivity

The observed flux distribution is compatible with two different potential local flux

structures:
(a) a homogenous local organization would

imply that all reactions producing

(consuming) a given metabolite have comparable fluxes

(b) a more delocalized ,high-flux backbone (HFB)" is expected if the local flux
organisation is heterogenous such that each metabolite has a dominant source

(consuming) reaction.
e W
Y(k,i)=>" v > @ —

: koo T
J=1 21:1 Vil 4;(k) mk

(b)\\A//"

@ —

\
AN

L)

All fluxes vj; are the same, say V. One flux dominates -> replace

sum by this flux v,,a-

Bioinformatics IlI
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Characterizing the local inhomogeneity of the flux net

FBA-computed kY(k) as a function of k, averaged
over all metabolites shows linear dependence

k x Y(k) oc k%73 with slope 0.73.

This is true for incoming and outgoing reactions.

— an intermediate behavior is found between
the two extreme cases discussed before.

— the large-scale inhomogeneity observed |
overall flux distribution is also valid at the }lével of
the individual metabolites.

The more reactions consume (prgduce) a given
metabolite, the more likely a single reaction carries
most of the flux, see inset (FAD).

Bioinformatics IlI
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a 100

10.096 FAD 5,5
0.096
(8.1e% @ w—p
, 8.1e®

ﬂru substrate

k Y(K)

e Gluin ]
= Gluout |
4 Succ in

v Succ out -

— y=0.73

100

Inset shows non-zero
mass flows producing
(consuming) FAD on a
glutamate-rich substrate.

Almaar et al., Nature 427, 839 (2004)
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Clean up metabolic network

Use simple algorithm that removes for each metabolite systematically all reactions
but the one providing the largest incoming (outgoing) flux distribution.

This algorithm uncovers the ,high-flux-backbone® of the metabolism.

Bioi . Almaar et al., Nature 427, 839 (2004)
ioinformatics I
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High-flux backbone of E.coli metabolic network

P
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161ACMRCACH \CP.
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(b)

\
Qo O Qi O @ @ @ B

Directed links: Metabolites A and B are connected with an arc from A to B if the reaction with

glutamate rich medium

succinate rich medium

maximal flux consuming A is the reaction with maximal flux producing B.
Shown are all metabolites that have at least one neighbour after completing this procedure.

Background colours : known biochemical pathways.
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FBA-optimized high-flux backbone on glutamate-rich medium
Blue colored Metabolites (vertices) have . . /ﬂ?w%ﬂt‘ﬁoji: r ;:-s :I

at least one neighbour in common in ;, Y L.:f/a @.:f; | ® H:i:#gf.,

glutamate- and succinate-rich substrates. k\ %k.r@_‘r‘w%%im 2 \?‘1 EL 'CD

Red colored nodes have no common %Z e, § ”.\‘“ ﬂm"“ ) ":“‘m’@ﬁt&;::

neighbors (,rewiring) @ mm.h. f” T ®
émmmmmg « \ - m""*@“’:m

Reactions (lines) are coloured
blue if they are identical in glutamate-and @

—M—o@oo—o

succinate-rich substrates, #Aﬁk*k**ﬁ g . l;‘f“;”;::";io&@w
green if a different reaction connects the J& %’*’i‘ﬁtg - P
same neighbour pair, and '“*:\“*ng:&m‘m { ium'f - e e
red if this is a new neighbour pair T .M&T'fw ... ®

(,rewiring®).

Black dotted lines indicate where the disconnected pathways, e.g., folate biosynthesis (4), would
connect to the cluster through a link that is not part of the HFB.

Thus, the red nodes and links highlight the predicted changes in the HFB when shifting E. coli
from glutamate- to succinate-rich media.

Dashed lines indicate links to the biomass growth reaction.

Bioi : Almaar et al., Nature 427, 839 (2004)
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FBA-optimized high-flux backbone on glutamate-rich medium

ian @uocion
O O @5y /.p
O 0 0 0 O '/uﬁ?A:c‘:m’.oHF e

4a Lo WAL S T SN F‘
‘viuwl @ f;w—IAsuc %’ET_E.'M\."&_.&T&HP

s
?CMP 41,
g ‘wﬁ %ﬁ'i:%“i‘&
e O e S STV i S i 4]
"”"T“"m?‘\ AciOr Qo b t @) .
140ACP gi‘.;mp s

(18) Murein Biosynthesis

(19) Cell Envelope Biosynthesis
(20) Histidine Biosynthesis

(21) Pyrimidine Biosynthesis

(22) Membrane Lipid Biosynthesis
(23) Arginine Biosynthesis

(24) Pyruvate Metabolism

(25) Glycolysis
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\‘ZU .UCAF .FPMAL.'(SWHVAL .E'IVM. 'AOQ.AC

ﬁ"m‘m‘m’m;ﬁm

%059,

(1) Pentose Phospate

Methionine Biosynthesis
(15) Branched Chain Amino Acid
Biosynthesis
(16) Spermidine Biosynthesis
(17) Salvage Pathways

Almaar et al., Nature 427, 839 (2004)
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Interpretation

Only a few pathways appear disconnected.

This indicates that although these pathways are part of the HFB, their end product
is only the second-most important source for another HFB metabolite.

Groups of individual HFB reactions largely overlap
with traditional biochemical partitioning of cellular metabolism ©

Bioi . Almaar et al., Nature 427, 839 (2004)
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How sensitive is the HFB to changes in the environment?

T . b 100 e

Fluxes of individual reactions on ol o o ]

. . . E® e DOE

glutamate-rich and succinate-rich 102} e :;?

medium. ALY ‘°N°“'ba°kb°";/ ]

@ 104) ;

8 Y :

. _ B 10—5% s g

Black squares: reactions belonging to 3 '
the HFB, oot

Cuals w@| i

blue dots : remaining reactions 102

10€ 107 10° 10

T T TR T T
Glutamate flux (v])
Green squares : reactions in which the Only reactions in the high-flux territory

direction of the flux is reversed. undergo noticeable difference

Type |: reactions turned on in one
conditions and off in the other.

Reactions with negligible flux changes
follow the diagonal (solid line).

Type ll: reactions remain active but show
an orders-in-magnitude shift in flux under
the two different growth conditions.

Some reactions are turned off in only
one of the conditions (shown close to
the coordinate axes).
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Flux distributions for individual reactions

Shown is the flux distribution for
4 selected E. coli reactions on a
50% random medium.

Reactions with small fluxes have

unimodal/gaussian distributions

(a and c).
Shifts in growth-conditions only
lead to small changes of their flux

values.

Off-diagonal reactions have
multimodal distributions (b and
d), showing several discrete flux
values under diverse conditions.
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Summary
Metabolic network use is highly uneven (power-law distribution) at the global

level and at the level of the individual metabolites.

Whereas most metabolic reactions have low fluxes, the overall activity of the
metabolism is dominated by several reactions with very high fluxes.

E. coli responds to changes in growth conditions by reorganizing the rates of
selected fluxes predominantly within this high-flux backbone.

Apart from minor changes, the use of the other pathways remains unaltered.
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