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Dynamic Modelling: Rate Equations +
Stochastic Propagation
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Mass Action Kinetics

Most simple dynamic system: inorganic chemistry

Consider reaction A+ B <=>AB

<=>
N
Interesting quantities: o
(changes of) densities of A, B, and AB
.. _ _nhumber of particles Ny d
density = unit volume Al = Vv E[A] (7)

1 mol = 1 Mol / Liter = 6.022 x 102x (0.1 m)= =0.6 nm=3

This means that proteins cannot reach 1 mol concentrations. Why?

Association: probability that A finds and reacts with B
=> changes proportional to densities of A and of B

How to put this

into formulas?

Dissociation: probability for AB to break up
=> changes proportional to density of AB

22. Lecture SS 2018 Bioinformatics Il



Mass Action i
Again: A+ B <=>AB

Objective: mathematical description for the changes of
[Al, [B], and [AB]

Consider [A]:

Gain due to dissociation AB =>A+ B Loss due to association A+ B => AB
d
E[A] =Gy — Ly

AB falls apart A has to find B

=> Ga depends only on [AB] => [ o depends on [A] and [B]

G =k, [AB] Ly = ks [A] [B]
phenomenological d..
proportionality E[A] =k [AB] — ky[A][B]
constant
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Mass Action !!!

A+B<=>AB
. d
For[A]:  we just found: E[A] = k,[AB] — k¢[A][B]
For [B]:  for symmetry reasons i[B] = i[A]
| y y dt"  dt
. d d
For [AB]: exchange gain and loss E[AB] = _E[A] =k¢|A][B] — k. |AB|

with [A](to), [B](to), and [AB](to) => complete description of the system

time course = initial conditions + dynamics
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A Second Example

Slightly more complex: A+ 2B <=>AB2

Association: e+ one A and two B have to come together
» forming one complex AB:2 requires two units of B

Ly = ky [A][B][B] = ky [A][B]? Ly = 2k [A][B]”
Dissociation: one AB2 decays into one A and two B

Gs = k,[AB))] Gy = 2k, [AB))

Put everything together

d

d 2
57 Al =k [ABa] — kr[A][B] o
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Some Rules of Thumb

A+ 2B <=>AB2 "Ais produced when ABz2 falls apart or
is consumed when AB2 is built from one A and two B"

Sign matters: Gains with "+", losses with "-"

Logical conditions: "...from A and B"

“and” corresponds to "x"  “or” corresponds to "+"

Stoichiometries: one factor for each educt (=> [B]?)
prefactors survive

Mass conservation: terms with "-" have to show up with "+", too

CWA =B - ABR  S(B=2904]  C[AB]=-S[A
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A Worked Example

Lotka-Volterra population model

R1: A+ X => 2X prey X lives on A
R2: X+Y =>2Y predator Y lives on prey X
R3: Y => B predator Y dies stoichiometric
matrix S
Rates for the reactions Changes of the metabolites
dR;
—=kAX
a
dR;
— =k XY
a
dR;
—=kY
a
=> change of X: @ = +
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Setting up the Equations

i ([ R/ o0
With = — = | dRy/dt and S=
dt O 1 -1
dR3/dt 0 0 1 /
A
—X = — =35 —R —=3 S§;i—
we get dt  dt|Y dt of t z," ! dt
%/ \
amounts speeds of
_ processed per the
Plug in to get: reaction reactions
dA dR, dX dR dR
—=—=—kAX i 1 _ 2 _ _
dB dR3 dY dR dR
—=+4+—=kY i 2 _ 58 _ _
a = a7 it~ Ta T a XY kY
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How Does It Look Like?

Lotka—Volterra: assume A= const, B ignored

=> cyclic population changes
; 2‘\ XY
X
P kiAX — ko XY il
1 —
dY
— = ko XY — k3Y
dt 2 3
ki =k2=k3s=0.3 0) !
0 20 100
time
Steady State: when the populations do not change anymore
dX dY ki k3 Steady state =
dr  dt 0 = Y= k_2A X = ky fluxes balanced

With k1 =k2=k3=0.3 and A=1 => X=Y=1
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From rates to differences

Reaction: A+B— AB
. dA
Rate equation: — = =—k-A-B=f(A(t),B(t))

! \

derivative of A(t) = some function

Taylor expansion for
displacement t around £, = 0:
dA > d2A t* d‘A
Alt t-— = —

Truncate this expansion after second term (linear approximation):

A(t) ~ A(0) + t-%(O) + o)

~A(0)+1- £ (A(0),B(0)) + O(t?)
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From rates to differences Il

Linear approximation to (true) A(t):

A(t) ~ A(0) + t%m) + oo

)
~ A(0) +1- £ (A(0),B(0)) +O(r)

\

initial condition increment error

For t —» 0 5

dA 2 d*A
t-—(0 —.—(0
dt() > 2 dt2() -

Use linear approximation for small time step At:

A(t+At) = A(t) + At- d—A(t) This is the so-called
dt Ilf (1] =
orward Euler” algorithm
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“Forward Euler” algorithm

General form:  X;(t+At) = Xi(t) + At- f(X;(t)) + O(Ar?)

2 /n .y
relative error: £ — Ar°/2-X x At 1st order algorithm
At X'
relative error decreases with |st power of step size At
b X () b X
i —F % I I U U O U U L
At ! At/2 5

Black: ideal dynamic trajectory, red: dynamics integrated by forward Euler algorithm
Right side: integration time steps are half of left side -> smaller error
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Example: chained reactions

Reaction: A— B — C

Time evolution:

concentrations

0 10 20 30 40
time
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relative error

kag=0.1, kgc=0.07

Relative error vs. At
att=10:

0.17
Atl'l
0.017

C

0.0017

0.1 04 1 4
time step At

runtime a (At)™
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Example Code: Forward Euler

® O 6  « BspCode_Euler.py A=>B => C

Initial values

1.8
0.8
6.8

Om¥F &
wnn

# Rate constants lterate:
ki =8.1

kZ = 8.87

Alt+At) = A(t) + At- %(t)

# main loop

while(t < 20.8):
# derivatives
dRl = k1 * A
dRZ2 = kZ * B

# add up changes .
A += dt * (-dR1) Important:
B += dt * {dR1 - dRZ)

C += dt * dR2

o et t first calculate all derivatives,
b st then update densities!

# output
print t, A, B, C

(E’ 4>
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concentrations

What is the “correct” time step?

C
0.507
0.00 Y T T
0 10 20 30 40
time
Note I:

read “«” as “a few percent”
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A=—B—=—C

Approximation works for:

IAA| = ‘At— = |—kap-A-At| < A

=> At<<

max (k)

Here: kap =0.1, kgc=0.07
= At < 0.17'=10

Bioinformatics Il 15



From Test Tubes to Cells

Rate equations <=> description via densities B ':":-::’:::'.':'.".'E'}::'{:'E"E;l
density = indistinguishable particles
volume element

=> density is a continuum measure,
independent of the volume element

"half of the volume => half of the particles"

When density gets very low
=> each particle matters

Examples:
~10 Lac repressors per cell, chemotaxis,
transcription from a single gene, ...
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Density Fluctuations

N=10

O T 1.67
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N =100
6

N =10000
6
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Spread: Poisson Distribution

Stochastic probability that k events occur follows the Poisson distribution
(here: event = "a particle is present"):

A k=0,1,2, ...
Pk = Fe A > 0 is a parameter
Average: (k) = Z k pr=A Variance: g2 — Z pi (k— (k))2 —
c=VA
Relative spread (error): % _ % _ L
ko (k) VA

=> Fluctuations are negligible for "chemical” test tube situations
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Reactions in the Particle View

A
e

Consider association:

A+B => AB

Continuous rate equation:

Number of new AB in volume V during At:

ANyp

Density “picture”

reaction rate kag =>

22. Lecture SS 2018

d

dlAB| ., .
dtN v

kin —2 2By At
ABV V
kABAt

Particle “picture”
reaction probability Pas

Bioinformatics Il
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Consider:

A+B => AB

Change in the number of AB:
ANjp = Pyp Nj Np

Units: Continuous case
dAB _M_ol
dt | Is

Stochastic case

[Nag] = [Na] = [Ng]

22. Lecture SS 2018

Units!

A\
— AB
B/%
Association probability:
kap At
Pap = A;
dAB
—— = ksgAB
Mol [
Al = |[B] = — <=> [kag| =
Al = [B] = = kas) = 17
=1 <=> [Psg] = 1
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Direct Implementation
A+B => AB

e o6 « Stochastic_AB.py

e 06 @ Continuous_AB.py

# Stochastic association of A + B => AB
# contirjuous association of A and B

import random

# parameter
tEnd = 5.8

dt = 8.81
volume = 186.8

# parameter
tEnd = 5.8

dt = 8.81
volume = 188.8

# rate and probability
kAB = 1.8 # pate and probability
prob = KRB * dt / volume KRB = 1.8

prob = kAB * dt / volume

# jnitial conditions: particle numbers
A = 1688 # initial conditions
B = 1668 A = 1668
AB = @ B = 10008
AB = @
# convert to densities
A = Afvolume # main loop
B = B/volume t=08.8
AE = AB/volume print t, "“t", Afvolume, "“t", Bfvolume, "“t", AB/volume
# main loop while{t<{tEnd):
t=90.0 . . dRE = @
print t, "\t", A, "AWt", B, "\t", AB # check for every pair A, B
. for ia in xrange{A):
while{t<{tEnd}: for ib in xrange{B):
dAB = dt * kAB * A * B r = random.randomf{ }
if {r < prob):
AB += dAB dAB+=1
A -= dAB ABE += dAB
B -= dAB A -= dAB
B -= dAB
# jncrement time and output
t += dt # jncrement time and output
print £, "“t", A, "\t", B, "“t", AB t += dt

print £, "“t', Afvolume, "“t", Bfvolume, "“t", AB/volume

(E’ AlLaV/ (E’ R R

Note: both versions are didactic implementations
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Example: Chained Reactions

A=>B=>C
Rates: dA dB dC
= kA — =kiA—kyB ——=kB
dt : dr 2 dr 2

Time course from continuous rate equations (benchmark):

AN

ki =k2=0.3 (units?)
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Stochastic Implementation

A=>B=>C Ao = 1000 particles initially

ki =k2=10.3 Values att =7 (1000 runs)

=> Stochastic version exhibits fluctuations

22. Lecture SS 2018 Bioinformatics Ill 23



Less Particles => Larger Fluctuations

Ao =100 shown are 4 different runs
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Even Less Particles




Spread vs. Particle Number

Poisson:
relative fluctuations o< 1/v/N

Repeat calculation 1000 times
and record values att= 7.

Fit distributions with Gaussian
(Normal distribution)

(x— <x >)2]

g(x) = exp [— /A,

<A>=0.13, wa = 0.45
<B> = 0.26, we = 0.55
<C>=0.61, wc = 0.45
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Stochastic Propagation

Naive implementation: Features of this implementation

+ very simple
FClr e\ésgztzlze;tep: + direct implementation of the

For every possible pair of A, underlying process
B:

get random number r € [0, 1) — costly runtime O(N?)

1f r < Pas: _ . .

events++ — first order approximation

AB += events — one trajectory at a time
A, B —= events

=> how to do better???

/ AN

Determine complete
probability distribution propagation
=> Master equation => Gillespie algorithm

More efficient
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A Fast Algorithm

Daniel T. Gillesple

Exact Stochastic Simulation of Coupled Chemical Reactions

Danlel T. Gillespie*

Research Department, Naval Weapons Center, China Lake, California 93555 (Received May 12, 1977)

Publication costs assisted by the Naval Weapons Center

There are two formalisms for mathematically describing the time behavior of a spatially homogeneous chemical
system: The deterministic approach regards the time evolution as a continuous, wholly predictable process
which is governed by a set of coupled, ordinary differential equations (the “reaction-rate equations”); the stochastic
approach regards the time evolution as a kind of random-walk process which is governed by a single dif-
ferential-difference equation (the “master equation”). Fairly simple kinetic theory arguments show that the
stochastic formulation of chemical kinetics has a firmer physical basis than the deterministic formulation, but
unfortunately the stochastic master equation is often mathematically intractable. There is, however, a way
to make exact numerical calculations within the framework of the stochastic formulation without having to
deal with the master equation directly. It is a relatively simple digital computer algorithm which uses a rigorously
derived Monte Carlo procedure to numerically simulate the time evolution of the given chemical system. Like
the master equation, this “stochastic simulation algorithm™ correctly accounts for the inherent fluctuations
and correlations that are necessarily ignored in the deterministic formulation. In addition, unlike most procedures
for numerically solving the deterministic reaction-rate equations, this algorithm never approximates infinitesimal
time increments dt by finite time steps At. The feasibility and utility of the simulation algorithm are demonstrated
by applying it to several well-known model chemical systems, including the Lotka model, the Brusselator, and
the Oregonator.

D. Gillespie, J. Phys. Chem. 81 (1977) 2340-2361
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Gillespie — Step 0

Consider decay reaction: A => @ (this model describes e.g. the radioactive decay)

Probability for one reaction in (t, t+At) with A(t) molecules = A(t) k At

Naive Algorithm:
A = AO
For every timestep:
get random number r ¢
[0, 1)
if r < A*k*dt:
A= A-1
It works, but: A’k*dt << 1 for reasons of (good) accuracy

=> many many steps where nothings happens

=> Use adaptive stepsize method?
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Gillespie — Step 1
ldea: Figure out when the next reaction will take place!

(In between the discrete events nothing happens anyway ... :-)

Suppose there are A(t) molecules in the system at time t

f(A(t), s) = probability that with A(t) molecules the next reaction takes place in
interval (t+s, t+s+ds) with ds=>0

g(A(t), s) = probability that with A(t) molecules no reaction occurs in (i, t+s)

Then: f(A(t),s)ds = g(A(t),s) A(t+s)kds
No reaction during (t, t+s):

f(A(t),s)ds = g(A(z),s) A(t)kds

probability for reaction in (t+s, t+s+ds)
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Probability for (No Reaction)

Now we need g(A(t), s)
Extend g(A(t), s) a bit:

g(A(t),s+ds) = g(A(t),s) [1 —A(t+s) kds]
Replace again A(t+s) by A(t) and rearrange:

o 9(A),s +ds) — g(A(t),8) _ dg(A(D)s) _
ds—0 ds ds

—A(t)k g((A(t), s)

With g(A, 0) =1 ("no reaction during no time")

=> Distribution of waiting times between discrete reaction events:
8(A(t),s) = exp[—A(t)ks]

Life time = average waiting time: so = L

kA(t)
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Exponentially Distributed Random Numbers

Exponential probability distribution:

8(A(r),s) = exp[—A(t)ks]

Solve r = exp[—A(t)ks] for s:

Simple Gillespie algorithm for the decay reaction A => @ :

A = AQ

WhileCA > 0):
get random number r £ [0, 1)
t =t + s(r)
A=A-1
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Gillespie vs. Naive Algorithm
Naive: Gillespie:

"What is the probability
that an event will occur
during the next At?"

"How long will it take until
the next event?”

=> small fixed timesteps => variable timesteps

=> 1st order approximation => exact

® Gillespi
* naive
- analytic

® Gillesp
* naive
- analytic
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Gillespie — Complete
For an arbitrary number of reactions (events):

(i) determine probabilities for the individual reactions: ai i=1, ..., N
total probability ao =2 a;

. . 1
(if) get time s until next event in any of the reactions: s = %m [_]
1

j—1 J
(iii) Choose the next reaction j from: Z o < Qg < Za,-
i=1 i=1

(iv) update time and particle numbers
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An Example with Two Species

Reactions: A+A = @ A+B £ g g 48 A g X pB

dA
Continuous rate equations: 7 = k3 — 2A2k1 — ABk,
Stationary state:

with ki =103 s ko =102 s ka=1.2 s ka =1 s
=> Ass = 10,Bss =10
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Gillespie Algorithm
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Stochastic Simulation

n
w,

= *solution of ODEsI |- . -solutfon of ODEsI

; l[ I oo
N’M &K i
% LW w .-I%fi?["ﬁj [f'[ """ “

! W‘M

40 60 80 100 ' 40 60 80 100
time [sec] time [sec]

n
v n
o

-b
o

»
2
3
8
<
S
3
E
=
S

number of B molecules

[$))
(¢4}

(=]
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Distribution of Stationary States

A+A =2 @ A+B =2 @ o = A o <p
ki=103s"! ka=102s"! ki=1.2s" ka=1s"!
Continuous model: > From long—time Gillespie runs:
‘; Ass =10, Bss =10 <A>=96, <B>=12.2
o]
o

n
[&)]

S
o

—

(=}
o
g

w

c
2 S
8 F
2 3
E B
@ 15 =
o @
3 5

=
E |
c 17

2]
o
o
o

+

5 10 15 20 25 30 24681012141618202224
number of A molecules number of A molecules

o

=
L
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Stochastic vs. Continuous

For many simple systems:
stochastic solution looks like noisy deterministic solution

Yet in some cases, stochastic description gives qualitatively different results

« swapping between two stationary states
* noise-induced oscillations
» Lotka-Volterra with small populations

* sensitivity in signalling

22. Lecture SS 2018 Bioinformatics Il

39



Two Stationary States

k1 ka
Reactions: 2A — 3A, D — A F. Schldgl, Z. Physik 253 (1972) 147—162
k2 k4
dA
Rate equation: o = klA2 — sz3 + k3 — k4A
With: ki =0.18 min™ k2 =2.5 x 107 min™ ks = 2200 min~' ka4 = 37.5 min™
Stationary states: As1 =100, As2 =400 (stable) Au = 220 (unstable)

=> Depending on initial conditions (A(0) <> 220),
the deterministic system goes into As1 or As2 (and stays there).

22. Lecture SS 2018 Bioinformatics Il 40



Two States — Stochastic

-—=stochastic
- deterministic

o
8
3
S

»
S
S
o

n
8
n
(o]
L

1] w
8 8
8 3
2 2
g 300 2 300
5 5
@ )
o L
£ £
— — |
= =

1,
] )

1 . ‘ 40 60
time [min] time [min]

=> Fluctuations can drive the system from one stable state into another

22. Lecture SS 2018 Bioinformatics Ill 41



Self-Induced Stochastic Resonance
System oA+B & 3A g <=2 A o £ B

Compare the time evolution from
initial state (A, B) = (10, 10) | — stochastic

in deterministic and stochastic - deerministe
simulations.

=> deterministic simulation
converges to and stays at fixed
point (A, B) = (10, 1.1e4)

0
2
>
3]
2
o]
E
<
©
e
@
2
£
=]
c

40
time [min]

=> periodic oscillations in the
stochastic model

22. Lecture SS 2018 Bioinformatics Ill 42



Stochastic dynamics of PP complex assembly

BPLOS |sapupmonat  October 22,2015

GO —»

| 64x64 Fictiti -
PP| —y Sub-Volume d'gn"]é;‘ijn‘t'jm;lml.:mL~
HESEARCI:! AF{TIC.LE ' ' . Abuﬁ;joatneclg » PPHC}%PHDDI
Qualitative and Quantitative Protein E i

Complex Prediction Through Proteome-Wide
Simulations

. : 1 - : e cpl 34x ]
Simone Rizzetto', Corrado Priami'*“*, Attila Csikasz-Nagy Simulated

$1 282 53
1 The Microsoft Research-University of Trento Centre for Computational Systems Biology, Rovereto, Italy, Complexes @ \A ‘Sﬁ
2 Department of Mathematics, University of Trento, Povo (TN), Italy, 3 Department of Computational
Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all Adige, Italy, 4 Randall
Division of Cell and Molecular Biophysics and Institute for Mathematical and Molecular Biomedicine, King's S4 = S5
College London, London, United Kingdom @
PN ,g!

Stochastic simulations, Eiedubriy SEETRTY:

4096 compartments on 2D lattice, LA IIT A
association rates set to 100, s
dissociation rates set to 1 rae

CUDA implementation of Gillespie algorithm A< I

i Weighted IPCA

Quantitative
prediction G e
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Gillespie-type simulation of PP complex assembly

Protein complex  Experimental SiComPre
abundance predicted

abundance & .e w ﬁ w & * = Ottt s
1! Kornberg's mediator (SRB) complex

HIbOSOlee 1 87,000 50,000 @ Mitochondrial ribosomal small subunit
Q 29 -f ¢ U1 snRNP complex
RNA polymerase | 1,500 2,200 * % ’y ﬁ & 4 *%“’ 5?;‘ & % @ t 8 e an
¢@),(@] e &~ Commitment complex

® ” @ 191225 regulator
@ % % % % $ # & *. ° & & % & B DNA-directed RNA polymerase Il complex
%%) g @ SAGA complex
1! mRNA cleavage and poly. specificity factor c.

& @ g- '; ,& RBRE & ﬁ s o

RNA polymerase 150 144 [ ‘ RSC complex

B DNA-directed RNA polymerase Il complex

RNA polymerase Il 3,000 3,900

N % ERAERRSEEE o
Nuclear Pore 200 462 e o ol 8 Multi-elF complex
Comp|e)( a‘ ‘a. ;‘ * .” ..# w Q_;‘E:,TE/ ()(x%d’ :Nucleolarn.bo:::ssepcomplex. .
Eisosome 75 80,372 o 0 °®, ® o0 Soe8e o0 % ':;:Z:?:p::wm complex
Nucleosome 57,000 90,300 . 3 : ""' el '”' 3’23 Ay ofn ool 2ol Slesl VLW ot :D;S oot o B
] L) . e H complex
Anaphase- 3,000 1,406 :.:. .3 ... ....:.. ¢ .::. .:... i :: ‘0 H :... ’.: N :;C\uor::a B-INCENP protein kinase complex
Promoting
Complex
Yeast Human Bortezomib
B common
B Yeast specific

B Missing in Bortezomib

I Human specific

Fig 4. Variations in SiComPre predicted anaphase promoting complexes. The predicted structures of the APC complex in yeast, human and human
after Bortezomib treatment. The reported overlap scores were calculated by comparing to the reference protein complexes discussed above. The lower
score observed for the yeast is due to the larger APC complex size found in yeast [9].
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Summary

» Mass action kinetics
=> solving (integrating) differential equations for time-dependent behavior

=> Forward-Euler: extrapolation, time steps

« Stochastic Description
=> why stochastic?
=> Gillespie algorithm
=> different dynamic behavior
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