V23 - Stochastic Dynamics simulations of a
photosynthetic vesicle

where bioinformatics meets biophysics
| Introduction: prelude photosynthesis

Il Process view and geometric model of a chromatophore vesicle
Tihamér Geyer & V. Helms (Biophys. J. 2006a, 2006b)

lll Stochastic dynamics simulations
T. Geyer, Florian Lauck & V. Helms (J. Biotechnol. 2007)

IV Parameter fit through evolutionary algorithm
T. Geyer, X. Mol, S. BlaB & V. Helms (PLoS ONE 2010)
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Content of final exam (March 3, 2017)

Lecture Slides Lecture Slides
relevant for exam relevant for exam

1 18-24 1-30
2 1-14, 18-20 14 1-19, 25-30, 33, 42
3 16-27 15 2,3, 6-8, 28, 30, 39
4 All 16 Main ideas of 1-16
5 1-32 17 1-34
6 24-37 18 1-14
7 None 19 18-41
8 1-18 20 17-23
9 1-15 21 None
10 6-18, 30 22 None
11 8-33 23 None
12 The main ideas of 24 None
1-14, 27-43 25 None

Relevant are also the assignments !
23. Lecture 55 2018 (theoretiC41"PAHS: Hot the programming parts) °



“Genomes To Life” Computing Roadmap (NIH/DOE)

Protein machine
Interactions

Molecule-based
cell simulation
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Bacterial Photosynthesis 101
ATPase

Photons Reaction Center chemical energy

light energy e —H —pairs

outside

inside

Light Harvesting

cytochrome b,

C | ubiquinon
omplexes
P cytochrome c, complex
o .
electronic excitation clectron carriers H* gradient;

transmembrane potential
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Photosynthesis — cycle view

The conversion chain: stoichiometries must match turnovers!

+
: -t H gradient, :
light energy elec.tro.mc e —H —pairs transmembrane chemical
excitation energy
voltage

outside

inside

2 cycles:

electrons protons
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LH1/LH2 / RC — a la textbook
Collecting photons

LH2: 8 o3 dimers

.. Pegiplasm |

downhill transport of
excitons
LH2 — LHI —RC

B800, B850, Car.

23. Lecture SS 2018 Hu et al, 1998



The Cytochrome bc, complex

the "proton pump"

Berry, etal, 2004

X-ray structures known

always forms a dimer

2H" per le ‘
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The F_F,-ATP synthase |

at the end of the chain: producing ATP from the H+ gradient

ATPase

per turn:

10—-14 H" — 3ATP

‘ | ATP 2 4 H' ‘

Capaldi,Aggeler, 2002
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The F,F,-ATP synthase

" ..mushroom like structures

‘Iimited throughput of the ATPase

observed in AFM images..."

ATPase is "visible"
| ATPase per vesicle

rate of ATP—synthesis , ATP/(CRF, - s)

500

PHou = 8.2 £0.05

"binding"
/O‘;,:E;ng—;;—°
L3

200 |- ‘/

%

"Arrheniud"s

100 |- 0;‘;‘{00

cc,zlnﬂ

o
°/64°

0 1 e | 1 5

i &
0 50 100 150 200 250

protonmotive force, mV

Charge flow

Feniouk et al, 2002
per turn: 10—14 H™ per 3 ATP

ATPase from | ATP/s H'/s
chloroblasts <400 1600
E. coli <100 400

‘ | ATP 2 4 H'
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The electron carriers

Cytochrome c: carries electrons from bc; to R
e heme in a hydrophilic protein shell

e 3.3 nm diameter, water-soluble

Ubiquinone UQ10:
carries electron-proton pairs
from RC to bc;

e long (2.4 nm) (ﬁ

hydrophobic C

nyarophobic B C " " C—CH, CH,
isoprenoid tail, [ [

membrane— H3CO—C\C/C———(CHZ—CH:C—CHZ)IO—H
soluble I

O

taken from Stryer

23. Lecture SS 2018 Bioinformatics I11 10



Tubular membranes — photosynthetic vesicles

?

2004

where are the bc, complexes and the ATPase

)

Bahatyrova et al.

Jungas et al, 1999

11

Bioinformatics I11
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Chromatophore vesicle: typical form in Rh. sphaeroides

Lipid vesicles
30—-60 nm diameter
H* and cyt c inside

average
chromatophore surface
vesicle, 45 nm &: 6300 nm?

Vesicles are really small!
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Photon capture rate of LHC’s

relative absorption spectrum sun's spectrum at ground
of LHI/RC and LH2 (total: | kW/m?)

LM2 peripheral antenna complex ." | II

LH1/RC core antenna complex

Relative absorbance

multiply
1 Gerthsen, 1985
Cogdell etal, 2003 y
+ Bchl extinction coeff. capture rate: 0.l swgen

normalization (cg, = 2.3 A?)
Franke, Amesz, 1995

typical growth condition:

2 Feniouk et a
18 W/m?2  Feniouk et al, 2002 LHI: 16 * 3 Bchl 14Y/s
LH2: 10 * 3 Bchl 10y/s
13
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electron micrograph
and density map

Sy

Siebert et al, 2004
125 * 195 A2, y = 106°

23. Lecture SS 2018

LH1/LH2 / RC — native

per
Area per. vesicle
(45 nm)

LH1
monomer 146 nm?
(hexagonal)

LH1 dimer 234 nm?

LH2
monomer

37 nm?

LH1, + 6 LH2 456 nm? 11

Chromatophore surface
vesicle, 45 nm @: 6300 nm?

Bioinformatics I11
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Photon processing rate at the RC

Which process limits the RCs turnover?

Unbinding of the quinol

25 Ms  Milano et ol 2003

+ binding, charge transfer
~ 50 ms per quinol (estimate)

with 2e- H* pairs per quinol

40-50y/s per RC

| RC can serve | LH ~ 22 QH,/s
+ 3 LH2
=44Yy/s
LHI, + 6 LH2 £ 456 nm*> —> || LHI dimers including 22 RCs

on one vesicle

480 Q/s can be loaded @ 18W/m? per vesicle

23. Lecture SS 2018 Bioinformatics I11 15



Modelling of internal processes at reaction center
Nec X ReclKer, Ko, K37 )

N e
P+:QH™ == c27:P+:QH2 ==y QH2 =
bl | New | e
on
—» E P+:Q— e c2—:P+:QH= c2:P:QH c2:P
red
——#‘TKET kgl:li_\ kCE c2 /
on koﬁ’ kcE
PZle P off
_ R | __
kon \‘ | {
c2— (&) / \

All individual reactions with their individual rates k together determine the overall
conversion rate Ry of a single RC.

Thick arrows : flow of the energy from the excitons through the cyclic charge state
changes of the special pair Bchl (P) of the RC.
Rounded rectangles : reservoirs
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bc, Placement — Diffusional limits?

Roundtrip times
maximal capacity of the carriers:

T=T +T_ +T
RC bc

! Diff
Cytochrome c;:
TRC = | ms TbcI =~ |2 ms TDiffz 3 Us
Tround-wip = 13 ms < 3 cyt C per vesicle

sufficient to carry e”'s
available: 22 cyt ¢ per vesicle

Quinol:
T . =350ms T . =23ms Tog= 1 ms Diffusion is not limiting
T . g =75ms <7 Q per vesicle :
round-trip . P , —> poses no constraints
sufficient to carry e’’s. -
on the position of bc,
available: 100 Q per vesicle
23. Lecture SS 2018 Bioinformatics III
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Parameters

protein throughput Ht total number rate determined from explained

per protein  equivalents per avg. in section

(natural units) per protein vesicle of
[1/s] 45 nm diameter

LH2 10~/ s 20 60 absorption spectra + IITA
LHI dimer 2 % 1d~/s 36 10 + light intensity of 18 W/m? IITA
RC 22 QH2/s 88 20 (QH2 (un)binding 1B
bcl dimer < 2 x 42 ¢c2/s 168 3...10 measured activity at ApH =0 [Ic
ATPase < 100 ATP/s 400 1 measured throughput 1D
cytochrome ez Ble /s 160 20 {un)binding at the bel VA(IIB, I C)
ubiquinone 10%2(e—HtWs 40 100 {un)binding at the RC and the bel VA (IIIB, 11 C)

23. Lecture SS 2018
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reconstituted LH1 dimers in planar lipid membranes
explain intrinsic curvature of vesicles

%@@m

Drawn after AFM images of
Scheuring et al of LH1 dimers
reconstituted into planar lipid
membranes.

Values fit nicely to the proposed arrangement of
LH1 dimers, when one assumes that they are stiff
enough to retain the bending angle of 26° that they
would have on a spherical vesicle of 45 nm
diameter and taking into account the length of a
single LH1 dimer of about 19.5 nm.
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Proposed setup of a chromatophore vesicle

A h I 11
yellow arrows: diffusion of the tthe ,poles
: . green/red: the ATPase
protons out of the vesicle via the iaht blue: the be comblexes
ATPase and to the RCs and bc1s. 9 ' p

Increased proton density close to the ATPase

suggests close proximity of ATPase and bc,
complexes.

= blue: small LH2 rings (blue)

¥ blue/red: Z-shaped LH1/RC dimers form a

linear array around the “equator” of the vesicle,
determining the vesicle’s diameter by their
intrinsic curvature.

Geyer & Helms, Biophys J. (2006)
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Summary

Integrated model of binding + photophysical + redox processes
inside of chromatophore vesicles

Various experimental data
fit well together

Equilibrium state.

How to model
non-equilibrium processes?

23. Lecture SS 2018

3 4
# (2xpare o factes)

Bicphysical Journal Volume & July 2010 &7-75 (74

Photosynthetic Vesicle Architecture and Constraints on Efficient
Energy Harvesting

melih Sener,® Johan Strampfer, ¥ John A Timney,® Arvi Freiberg, ™ C. Neil Hunter,® and Klaus Schuttent?$»

tReckinan lrstilute for Advanced Science and Technology, ¥Depanment of Physics, and *Cemerior Bigphysics and Compuational Biology,
University of linois a1 Ursana-C hampaign, Urbana, llinots; TDepa rinent of Molezular Biology and Biotechnology, University of Shediield,
Sheflield, United Kingdom; and lvstivie of Physics and **hstilute of Molezular and Cell Biology, University of Taru, Tardu, Estonia
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Photosynthesis: textbook view

ATP ATPase

Bioinformatics I11
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Viewing the photosynthetic apparatus as a conversion chain

NATF'aae X HATPase
_.F I

Thick arrows : path through which the photon energy is converted into chemical
energy stored in ATP via the intermediate stages (rounded rectangles).

Each conversion step takes place in parallely working proteins.
Their number N times the conversion rate of a single protein R
determines the total throughput of this step.

v : incoming photons collected in the LHCs

E : excitons in the LHCs and in the RC

e "H* electron—proton pairs stored on the quinols

e~ for the electrons on the cytochrome c,

pH : transmembrane proton gradient

H* : protons outside of the vesicle (broken outine of the respective reservoir).

23. Lecture SS 2018 Bioinformatics I11 23



Stochastic dynamics simulations: Molecules & Pools model

titratable
groups

)

H* inside

Round edges: pools for metabolite molecules
Rectangles: protein machines are modeled explicitly as multiple copies
fixed set of parameters

integrate rate equations with stochastic algorithm

23. Lecture SS 2018 Bioinformatics I11 24



Stochastic simulations of cellular signalling

Traditional computational approach to chemical/biochemical kinetics:

(a) start with a set of coupled ODEs (reaction rate equations) that describe the
time-dependent concentration of chemical species,

(b) use some integrator to calculate the concentrations as a function of time given
the rate constants and a set of initial concentrations.

Successful applications : studies of yeast cell cycle, metabolic engineering,
whole-cell scale models of metabolic pathways (E-cell), ...

Major problem: cellular processes occur in very small volumes and frequently
involve very small number of molecules.

E.g. in gene expression processes a few TF molecules may interact with a single
gene regulatory region.

E.coli cells contain on average only 10 molecules of Lac repressor.

23. Lecture SS 2018 Bioinformatics I11 25



Include stochastic effects

(Consequence1) — modeling of reactions as continuous fluxes of matter is no
longer correct.

(Consequence2) Significant stochastic fluctuations occur.

To study the stochastic effects in biochemical reactions, stochastic formulations of
chemical kinetics and Monte Carlo computer simulations have been used.

Daniel Gillespie (J Comput Phys 22, 403 (1976); J Chem Phys 81, 2340 (1977))
introduced the exact Dynamic Monte Carlo (DMC) method
that connects the traditional chemical kinetics and stochastic approaches.

23. Lecture SS 2018 Bioinformatics I11 26



Basic outline of the direct method of Gillespie

(Step i) generate a list of the components/species and define the initial distribution
attime t= 0.

(Step ii) generate a list of possible events E; (chemical reactions as well as
physical processes).

(Step iii) using the current component/species distribution, prepare a probability
table P(E,) of all the events that can take place.
Compute the total probability

P =Y P(E)

tot

P(E,) : probability of event E; .

(Step iv) Pick two random numbers r; and r, € [0...1] to decide which event E, will
occur next and the amount of time 7 after which E, will occur.

Resat et al., J.Phys.Chem. B 105, 11026 (2001)
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Basic outline of the direct method of Gillespie

Using the random number r, and the probability table,
the event E , is determined by finding the event that satisfies the relation

S P(E)<rP, <S P(E)

The second random number r, is used to obtain the amount of time t between the
reactions 1

TZ—PTIH(’Z)

tot

As the total probability of the events changes in time, the time step between
occurring steps varies.

Steps (iii) and (iv) are repeated at each step of the simulation.

The necessary number of runs depends on the inherent noise of the system and
on the desired statistical accuracy.

Resat et al., J.Phys.Chem. B 105, 11026 (2001)
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reactions included in stochastic model of chromatophore
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Stochastic simulations of a complete vesicle

Model vesicle: 12 LH1/RC-monomers
1-6 bc, complexes
1 ATPase

120 quinones
20 cytochrome c,

integrate rate equations with:
- Gillespie algorithm (associations)

- Timer algorithm (reactions); 1 random number determines when reaction occurs

simulating 1 minute real time requires 1.5 minute on one opteron 2.4 GHz proc

23. Lecture SS 2018 Bioinformatics I11
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simulate increase of light intensity (sunrise)

during 1 minute,

light intensity is slowly
increased from 0 to 10 W/m?
(quasi steady state)

— there are two regimes
- one limited by available light
- one limited by bc, throughput

23. Lecture SS 2018

[ATP/s]

low light intensity:

linear increase of
ATP production

with light intensity

Bioinformatics I11

| [W/m?]

high light intensity:
saturation is reached

the later the higher the
number of bc1 complexes

31



oxidation state of cytochrome c, pool

: . . ;
reduced 7

onidizgd | | |
6 » 9
| [W/m™]
low light intensity: high light intensity
all 20 cytochrome c, RCs are faster than bc,,
are reduced by bc, C,S wait for electrons

23. Lecture SS 2018 Bioinformatics I11



23. Lecture SS 2018

oxidation state of cytochrome c, pool

| T
=~ reduced
NG "N =5
w N\ == =< Dbc
N = '31-
bc1 . .

oxidized- S . .

6 , 9
| [W/m®]

more bc, complexes
can load more
cytochrome c,s

Bioinformatics I11
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total number of produced ATP

—_ 1

blue line: > =

e

iilumination 300 b 002s 0l1s 0ps 0-53/ 15 W/m?:
: Ve 3

200 £ / .

R 3 W/m?~ 3

> / E

< - _

H: C ] ]

0 1 2 3 4 6 7

time [s]

low light intensity: any interruption stops ATP productio

high light intensity: interruptions are buffered up to 0.3 s duration

23. Lecture SS 2018 Bioinformatics I11
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#c2

red

30

C, pool acts as buffer

0.02s 01s 02s 05s

time [s]

At high light intensity, c2 pool is mainly oxidized.

If light is turned off, bc1 can continue to work (load c2s, pump protons, let ATPase
produce ATP) until c2 pool is fully reduced.

23. Lecture SS 2018
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What if parameters are/were unknown ?

Bridging the Gap: Linking Molecular Simulations and
Systemic Descriptions of Cellular Compartments

2.0

Tihamér Geyer*, Xavier Mol, Sarah Blaf3, Volkhard Helms 5 A flash © PUFC/g
Center for Bioinformatics, 5aarland University, Saarbrikcken, Germany g © PUFAX/g
PLoS ONE (2010) ~ 10
:
5
choose 25 out of 45 system parameters .
Ce . "5 0 5 1040 80 120 160 200
for optimization. time [ms]
0.0——M,
- |B |
take 7 different non-equilibrium time-resolved E
experiments from Dieter Oesterhelt lab g@m
(MPI Martinsried). o PUFC/g
flash | o PUFAX/g
'02 T T T T
-5 0 5 10 15 20
time [ms]
Biochemistry 1998, 34, 15235—15247 15235

Role of PufX Protein in Photosynthetic Growth of Rhodobacter sphaeroides.
1. PufX Is Required for Efficient Light-Driven Electron Transfer and
Photophosphorylation under Anaerobic Conditions’

Wolfgang P. Barz,** Francesco Francia,! Giovangi Yenturoli,)' B. Andrea Melandri," André Verméglio,* and
23. Lecture SS 2018 Bioin orma%@&[x[gemmeh*,: 36
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Parameters not optimized

Parameter Value Description
bey ko HYon) 1010 nyn 571 rate for proton uptake from the cytoplasm by bey
berdade Qe==>Fel) | 2.3*10% g1 rate for electron transfer from Qo to Fel
beylad ec1=>¢2) 108 g1 electron transfer rate from ¢1 to bound cytochrome ¢2
bey e Qo=>bL) 104 gt electron transfer from Qo to b1 heme
bey ol e br=>by) 104 g1 electron transfer from br to du heme
AbV 2.65 * 10% nm? inner volume of the vesicle
&b A 5.28 * 10% nm? membrane area (Q pool ,,volume™)
AP Chn 10e effective charge of a free proton in the vesicle
AD Crm 1.0e effective charge of a proton on the titratable groups
AP Cprot -10e effective charge of an e~ translocated through an RC
AP Caed -05e effective charge of a reduced cytochrome ¢2
AP Chox 05e effective charge of an oxidized cytochrome ¢2
PR::Np a0 number of titratable groups in the vesicle
PR::pK 5.0 pK of the titratable groups
Neae 10 mumber of ditmeric core complexes (2 RC+ 1 LHC)
Abe1 10 nutmber of cytochrome bey cormplexes
N aTpase 1 number of ATPases
M 20 total number of cytochrome ¢z
MNa 200 total number of quinones

Table S1: Model Parameters Not Included in the Optimization Process

Bioinformatics I11
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Parameter optimization through evolutionary algorithm

input files

]

all parameter
sets

Vv vty

[ #1 |z #2|=|#3]|= === 2[#N]
sorted scores

¢ 3N/4
filter: dik = dylobal filter: dik = diocal

l (#]= (72 - -

filtered best scores

N/4 @ _l L I L I L L L | L L L
. 06F AAAAT
&4 < keepgd— % ‘,‘.AQQQ 0‘..00g
i [ x‘.o'.o,'ooon"'o."
z Sn4qf%e —
<N/4 mutate <e#—— o B i
g? g * [s} M. =3 |[]
— = @ p2|e A N_=8 [
-“ Tl . NE =11 |
templates J D -l 1 1 1 1 I 1 1 1 1 I 1 1 1 1 l 1 1 1 1 l-
0 5 10 15 20

generaton
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25 optimization parameters

Analyze 1000 best
parameter sets among
32.800 simulations:

(P)=exp[{log P]

> =<{(log P—<log P})">
Pryin = exp[<log P> —o]
Pax = exp[{log P>+

23. Lecture SS 2018

parameter
LHC:c

LHC:Ng

LHC:4p(E)
RCikon(B)

Rk on(HD

Rk, (Q)
RC:k#(QH2)
RCikon(c2red)

Rk 4(c20x)
bet:ken(QH 2@ Qo)
bel:kefflQ@Qo)
byl [QQ, - =Q)
bel:ken(QEQi)
hel:keffQH2@QI)

by ke (QH2:Q, - = Q,)

Bey ik n(c20X)
beyikeslc2red)
hel:keffH+@Q0)
byl dFeS:h = =)
bey kg (FeSic — =h)
byl (e:by — =0
(TR

AU,

Ad:Ady,

PR::pK

units

my/e
m¥/pH

<F»

622

131

18 *10*
24 *10°
14 *10°
60 *10*
87

2.2 *10°
22 +10°
1.2 *10*
283

49 *10*
67 *10°
86

38 *10*
a4 *10°
60 *10°
24 + 104
39 *10°
28 *10°
77 *10°
102

103

484

Prine-Ponax
6.02...6.42
0.81... 213
{(1.1..3.8) *10°
(1.2..45) ~10°
{(1.3...1.6) * 10°
{4.4..8.1) * 10
70...108
(7.3...11.5) = 10°
(1.6..3.0) * 10°
0.79...1.7) = 10*
26.3...30.4
(3.6..6.7) * 10°
(4.5..10) * 10°
68...110
(2.6...5.5) * 10°
(6.3...14) * 10°
(3.3...11) * 10*
{1.3..4.3) * 10*
(3.1..5.1) *10*
2.2..3.6) * 10°
(50...12) * 10*
83...114

2.5...1
7.6...13.7
3.9...5.9

Ponind

0.94
0.38
0.2%
0.27
0.81

0.54
0.65
0.63
0.53
0.46
0.86
0.54
045
0.62
047
047
0.30
0.30
0.61

0.61

042
0.73
0.85
0.55
0.66

Bioinformatics I11
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Sensitivity of master score
Decay rate of excitons

in LHC
06| A I | o6 B . | ol ©
@ - ' @ - () H
S 04 : g 04 [ me 8 0.4/ -
g ' : - : e
02+ — St 0.2 -:‘ .® : -
0 el 1 Ll 0 [ W [ R T
0.1 1 10 100 107 10° 10° 10°
LHC o [m° W' &™) LHC:k (E) (s be,::k (FeS:c==b) 5]
Absorption cross section Kinetic rate for hinge
light harvesting complex motion of FeS domain in
bc1 complex

Some parameters are very sensitive, others not.
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Three
best-scored
parameter sets

Score of individual parameter set j
for matching one experiment:

Ci
> (x(#) —f(li))2

l=

x(t): simulation result
f(t): smooth fit of exp. data

Master score for one
parameter set: defined as
product of the individual

2
scores §; 5
8 14 ‘
23. Lecture SS 2018 B101nformat;eé, 1112 -

A®D [arb. units]

goey
L C .Oz....f::t:“:rk
- . B P O——
152 o
: o o~
03 2/ A7_cyte
F £
/
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cytochrome c oxidation [arb. units]

cytochrome ¢ oxidation

6 8
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o]
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| =y
S
.
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S .
Q
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5 «
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Different experiments yield different sensitivity

[ A8_A®D
09 A9_cyl
B1_Q
(D 3
9_) 4
8 06 .
2 |
3 S
2 03} . “importance score”:
= ] Sum of the sensitivities
of S—— il P..in /Pmay Of all relevant

a0:zU [mV/e] parameters

Table 2. Importance scores and correlation coefficients between the master score and the respective individual scores of the
experimental scenarios denoting the relative importance of each of the experiments for the parameter value optimization,

expariment AZ oytc AY AD AS AD A2 cytc B1 Q Bs P B& cytc BC1
importance score 44 Ty 58 a7 28 52 89 55
correlation Q03 044 022 0328 083 017 0.31 04

The importance scores are determined as the sums of the sensitivities of all relevant parameters against the individual scores (see table 52 for all the individual values).
The correlation coefficients are obtained from a linear fit of the master score against the respective individual score.

Analysis could suggest new
experiments that would be

most informative!
23. Lecture SS 2018 Bioinformatics II1 4?2



Summary

Only 1/3 of the kinetic parameters previously known.

Stochastic parameter optimization converges robustly into the same
parameter basin as known from experiment.

Two large-scale runs (15 + 17 parameters) yielded practically the same
results.

If implemented as grid search, less than 2 points per dimension.

It appears enough to know 1/3 — 1/2 of kinetic rates about a system to be
able to describe it quantitatively (IF connectivities are known).
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Review — algorithms / methods etc in Bioinfo lll

“There is no such thing as a free lunch’”.

Alvin Hansen, economist (1953)
There exist several “No Free Lunch Theorems” for optimization problems.
E.g. Wolpert & Macready (1997) showed:

For any search/optimization algorithm, any elevated performance over one
class of problems is exactly paid for in performance over another class.
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Review — simulation / analysis methods

peaks, motifs

Used where Pro Con
Enrichment methods | Annotate gene | Proper statistical Not causal,
function, histone | analysis mechanistic

reasons remain
unclear

Graph algorithms

Modules in PPI
networks, PP
complexes,
MCDS algo for
key genes in
GRNs,
Cut-sets in
metabolic
networks

- graph layout
provides intuitive
view of network
topology,

- ILPs give optimal
solutions,

- heuristic
algorithms can be
fast

- ILPs very time-
consuming,

- heuristic
solutions may be
not accurate,

- graph algorithms
suffer from noisy
data

23. Lecture SS 2018
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Review — simulation / analysis methods

Used where

Pro

Con

Pearson correlation

Gene co-

Quantitative measure

Suffers from

expression, outliers (V21);
DNA co- correlations are
methylation not causal
Rank-based Gene co- Avoids outlier Sensitive to small
correlation expression problems variations, large
variations may be
condensed into
small rank
differences
Bayesian network Anywhere Integrates arbitrary Not causal (but
(here: PPls) | data; automatic this can be
weighting of included)
likelihnoods
Boolean network GRNs Finite state space, Values restricted

understand system
completely, causal

to boolean levels
(but can be
generalized)
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Review — simulation / analysis methods

Used where Pro Con
FBA Metabolic Gives one optimal | None (?)
networks solution
EFMs / EPs Metabolic Full insight into Already medium-
networks metabolic sized systems
capabilites of have 10.000s +
system EFMs
ODE Metabolic Quantiative, time- | Needs many
systems, dependent parameters, not
Signaling models, simple suitable for small
systems systems can be particle numbers
solved analytically,
simple numerical
implementation
Stochastic Metabolic Capture stochastic | Not deterministic
simulations systems effects of few (different solution
particles, each time); costly
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