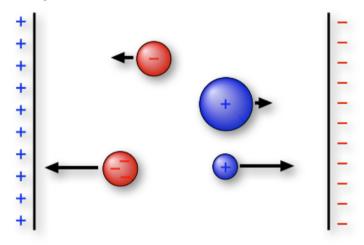

V 4 – Data for Building Protein Interaction Networks

- Detect PPIs by experimental methods
- Detect (predict) PPIs by computational methods
- Derive condition-specific PPIs by data integration

Tue, April 24, 2018

Different Roles of Protein Complexes



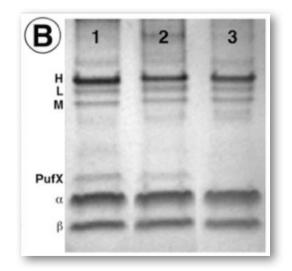
Complex formation may lead to increased diversity

Cooperation and allostery

Identification of proteins / components of a complex (1): gel electrophoresis

Electrophoresis: directed diffusion of charged particles in an electric field

higher charge, smaller


lower ch<mark>arg</mark>e, larger

slower diffusion

Put proteins in a spot on a gel-like matrix, apply electric field

- \rightarrow separation according to size (mass) and charge
- \rightarrow identify constituents of a complex

Nasty details: protein charge vs. pH, cloud of counter ions, protein shape, denaturation, ...

SDS-PAGE

For better control: denature proteins with detergent

Often used: sodium dodecyl sulfate (SDS)

 \rightarrow denatures and coats the proteins with a negative charge

- \rightarrow charge proportional to mass
 - \rightarrow traveled distance per time

 $x \propto rac{1}{\log(M)}$

 \rightarrow **SDS-p**oly**a**crylamide **g**el **e**lectrophoresis

After the run: **staining** to make proteins visible

For "quantitative" analysis: compare to **marker** (set of proteins with known masses)

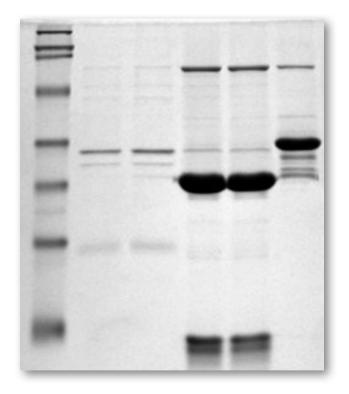


Image from Wikipedia, marker on the left lane

Protein Charge?

Protein charge at pH=7 $\cong \sum Lys + \sum Arg - \sum Asp - \sum Glu + \sum co - factors$

Main source for charge differences: pH-dependent protonation states

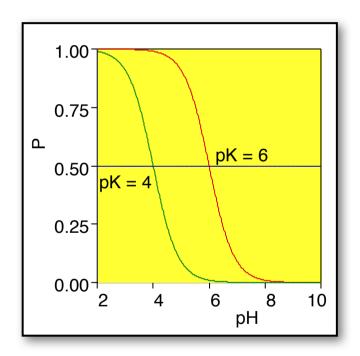
<=> Equilibrium between

- density (pH) dependent H⁺-binding and
- density independent H⁺-dissociation

Probability to have a proton:

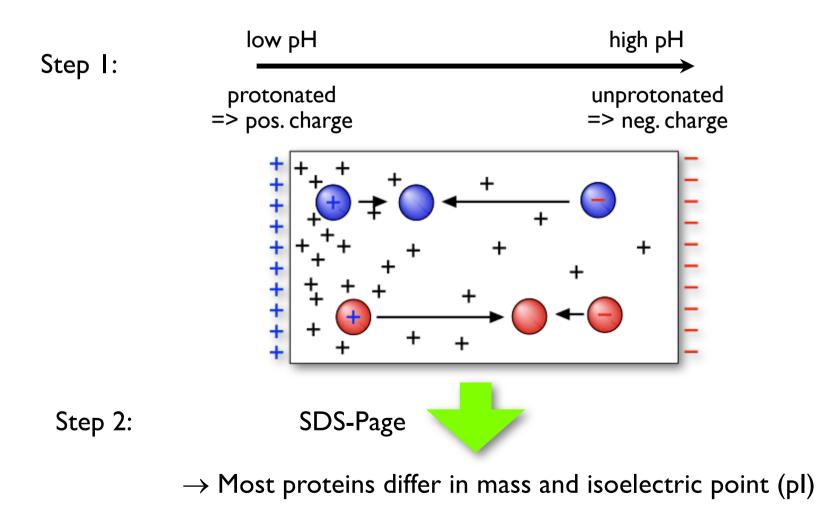
$$P = \frac{1}{1 + 10^{pH - pK}}$$

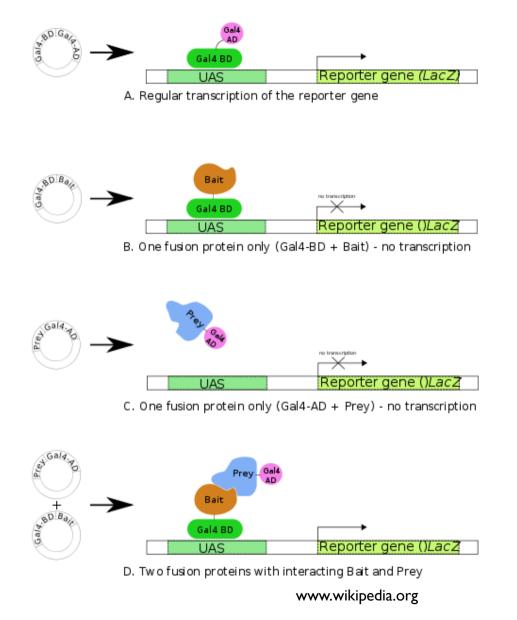
pKa = pH value for 50% protonation


Asp 3.7–4.0 ... His 6.7–7.1 ... Lys 9.3-9.5

Each H^+ has a + I e charge

 \rightarrow **Isoelectric point**: pH at which the protein is **uncharged**


 \rightarrow protonation state cancels permanent charges


2D Gel Electrophoresis

Two steps: i) separation **by isoelectric** point via pH-gradient ii) separation **by mass** with SDS-PAGE

Detect interactions: Yeast Two-Hybrid method

Discover binary protein-protein interactions (bait/prey) via physical interaction

Transcription factor consisting of binding domain (BD) + activator domain (AD) induces expression of reporter gene (LacZ or GFP)

> Disrupt BD-AD protein; fuse bait to BD, prey to AD

 \rightarrow expression only when bait:prey-complex formed

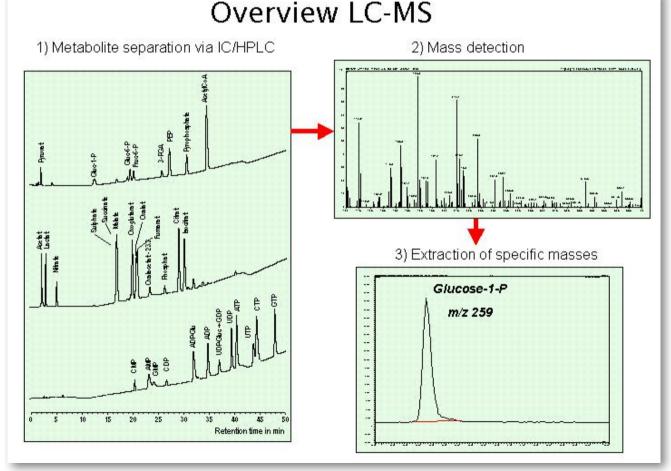
Reporter gene may be fused to green fluorescent protein.

Pros and Cons of Y2H

Advantages:

- in vivo test for interactions
- cheap + robust \rightarrow large scale (genome-wide) tests possible

Problems:


- investigates the interaction between
 - (i) overexpressed
 - (ii) fusion proteins in the
 - (iii) yeast
 - (iv) nucleus

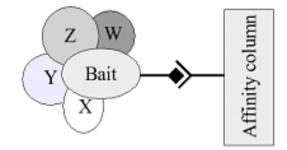
• spurious interactions via third protein

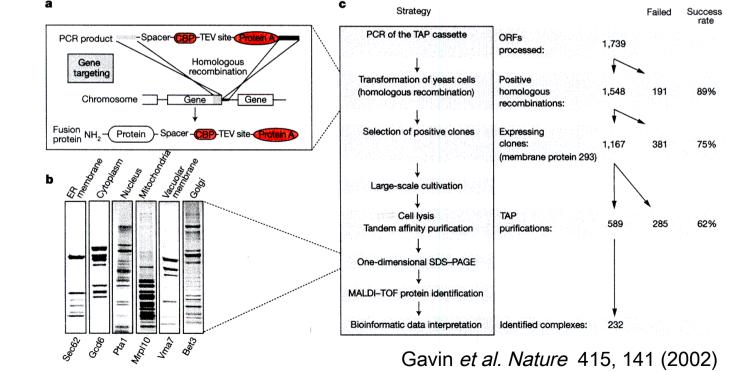
 \rightarrow many false positives (up to 50% errors)

Identify fragments of proteins / components of a complex (2): Mass Spectrometry

HPLC: high pressure liquid chromatography (first purification step) Then identify constituents of a (fragmented) complex by MS via their mass/charge patterns m / z

http://gene-exp.ipk-gatersleben.de/body_methods.html

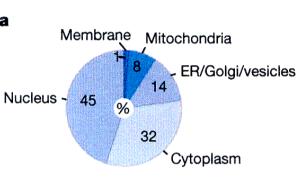

Detect interactions: Tandem affinity purification (also "pull-down")


Yeast 2-Hybrid-method can only identify binary complexes.

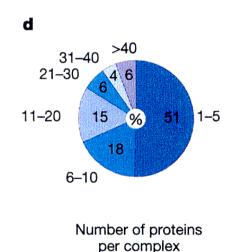
In **affinity purification**, a protein of interest (bait) is tagged with a molecular label (dark route in the middle of the figure) to allow easy purification.

The tagged protein is then co-purified together with its interacting partners (W–Z).

This strategy can be applied on a genome scale (as Y2H).

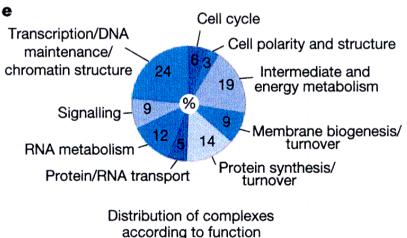


Identify proteins by mass spectrometry (MALDI-TOF).

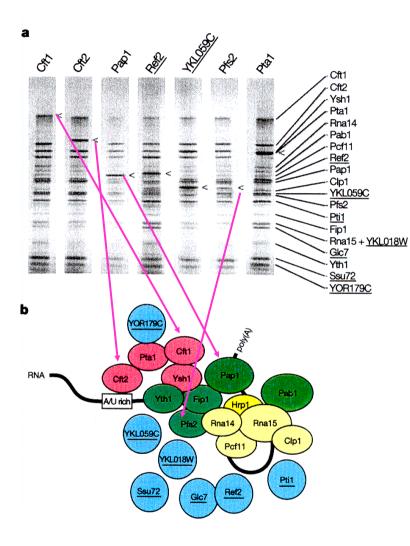

TAP analysis of yeast PP complexes

Identify proteins by scanning yeast protein **a** database for protein composed of fragments **N** of suitable mass.

(a) lists the identified
proteins according to
their localization
-> no apparent bias for
one compartment, but
very few membrane
proteins (should be
ca. 25%)



Subcellular localization of identified proteins


(d) lists the number of
proteins per complex
-> half of all PP complexes
have I-5 members, the
other half is larger
(e) Complexes are involved
in practically all cellular

processes

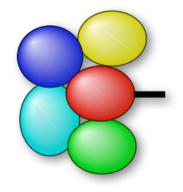
Gavin et al. Nature 415, 141 (2002)

Validation of TAP methodology

Check of the method:

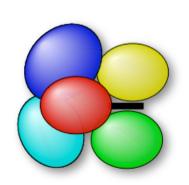
can the same complex be obtained for different choices of the attachment point (tag protein is attached to different components of complex shown in (b))?

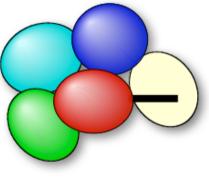
Yes, more or less (see gel in (a)).


< signs mark tag proteins in the gel lane

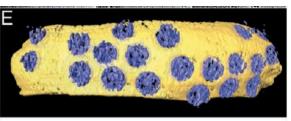
Gavin et al. Nature 415, 141 (2002)

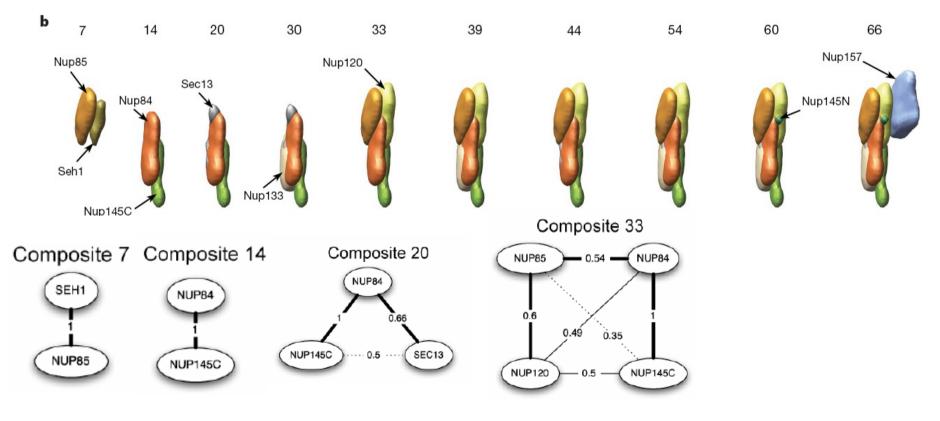
Pros and Cons of TAP-MS


Advantages:


- **quantitative** determination of complex partners *in vivo* without prior knowledge
- simple method, high yield, high throughput

Difficulties:


- tag may **prevent** binding of the interaction partners
- tag may change (relative) **expression** levels
- tag may be **buried** between interaction partners
 → no binding to beads



Protein interactions in nuclear pore complex

Figure (right) shows 20 NPCs (blue) in a slice of a nucleus. **Aim**: identify individual PPIs in Nuclear Pore Complex.

Below : mutual arrangement of Nup84-complex-associated proteins as visualized by their localization volumes in the final NPC structure. Nup84 protein shown in light brown.

Bioinformatics 3 – SS 18

SDS + MS:Composites involving Nup84

a above lanes: name of ProteinA-tagged protein and identification number for composite

								5	0		_									
s		15 Jup85	14 Nup84	25 Sec13	20 Nup84	30 Nup84	33 Nup84	39 Nup84	44 Seh1	45 Nup84	51 Nup120	53 Nup145C	54 Nup133	57 Nup85	60 Nup84	63 Nup85	66 Nup157	68 Nup133	71 Nup157	79 Seh1
Molecular mass standards (kDa) ¹¹⁰ ¹¹⁰ ¹¹⁰ ¹¹⁰			·			11 11	•	•		•		•••								
21				Sec31													Nup157		Nup157	Ura2 Nup159 Iml1 / Yol138 Nup192 / Nup188 Nup170
				Sec31A Sec31A		Nup133		Nup133			Nup120	Nup133	Nup133	Nup133	Nup133	Nup157 Nup133	Nup133	Nup133 Nup116	Pom152 Nup133	Nup170 Pom1527 Ydr128 Nup133 Ybl104
identity of	N	lup85	Nup84	Sec31∆ / Sec24	Nup84	Nup84	Nup84 Nup120	Nup84 Nup120	Nup120	Nup84 Nup120		Nup145C Nup120	Nup120	Nup85 Nup120	Nup84 Nup120	Nup85 Nup120	Nup120	Nup120	Nup120	Nsp1 Nup120
co-purifying	lup85		Nup145C	Nup84 / Nup145C. Sec23	/ Nup145C	Nup145C	Nup85 / Nup145	Nup85 / C Nup145C	Nup85 / Nup84 Nup145C	Nup85/ Nup1450	Nup85/ Nup84 Nup145C	Nup85 Nup84	Nup85/ Nup84 Nup145C	Nup84/ Nup145C	Nup85 / Nup145C	Nup84/ Nup145C	Nup85/ Nup84 Nup145C	Nup85 / Nup84 Nup145C / Nup82	Nic96 Nup85 / Nup84 Nup145C	Nic96 Nup85 / Nup84 Nup145C / Nup82
proteins															Nup145N	Nup145N Mex67	Nup145N	Nup145N	Nup145N	
	ieh1		Cdc19	Sec13					Seh1			lgG	Cdc19		T (1)					Seh1 Cdc19
	s	leh1	Tef1 Adh1	Tef1 Adh1						Seh1	Seh1	Seh1	Seh1	Seh1	Tef1 Seh1	Seh1	Seh1	Tef1 Seh1	Tef1 Seh1	Tef1 Eno2 Adh1
			Tdh3	Adri	Sec13	Sec13			Sec13	Sec13	Sec13	Sec13	Sec13	Sec13	Sec13	Sec13	Sec13	Sec13	Lsp1 Sec13	Tdh3 Sec13

Blue: PrA-tagged proteins,
Black: co-purifying nucleoporins,
Grey: NPC-associated proteins,
Red: and other proteins (e.g. contaminants)

Affinity-purified PrA-tagged proteins and interacting proteins were resolved by **SDS–PAGE** and visualized with Coomassie blue. The bands marked by filled circles at the left of the gel lanes were identified by **mass spectrometry** (cut out band from the gel and use as input for MS).

V3 –

Indirect Evidence on PPIs: Synthetic Lethality

Apply two mutations that are viable on their own, but lethal when combined.

In cancer therapy, this effect implies that inhibiting one of these genes in a context where the other is defective should be selectively lethal to the tumor cells but not toxic to the normal cells, potentially leading to a large therapeutic window.

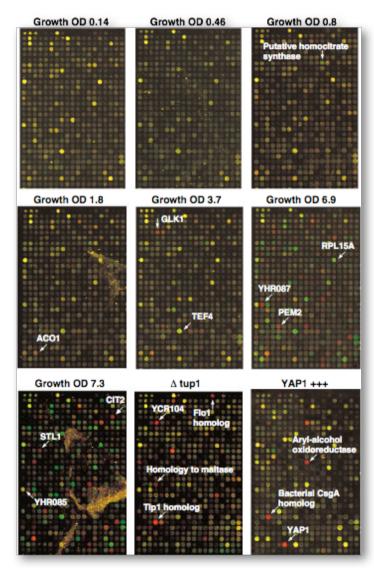
Gene X	Gene Y	
+	+	No effect
_	+	No effect
+	_	No effect
_	_	Death

http://jco.ascopubs.org/

Synthetic lethality may point either to:

- physical interaction of proteins (they are building blocks of a complex)
- both proteins belong to the same pathway
- both proteins have the same function (redundancy)

Indirect Evidence on PPIs: Gene Coexpression


All constituents of a complex should be present at the same point in the cell cycle \rightarrow test for correlated expression

Co-expression is not a direct indication for formation of complexes (there are too many co-regulated genes), but it is a useful "filter"-criterion. Standard tools: DNA micro arrays / RNA-seq

DeRisi, Iyer, Brown, Science **278** (1997) 680:

Diauxic shift from fermentation (growth on sugar) to respiration (growth on ethanol) in S. cerevisiae

 \rightarrow Identify groups of genes with similar expression profiles

Interaction Databases

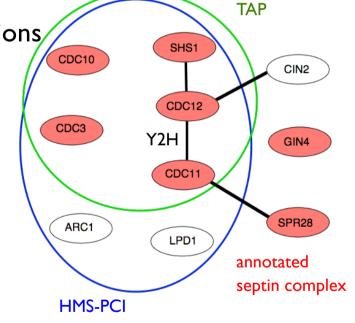
Bioinformatics: make experimental data available in databases

3.2 Experimental High-Throughput Methods for Detecting Protein-Protein Interactions

Table 3.1 Some public databases compiling data related to protein interactions: (P) and (D) stand for proteins and domains (the number of interactions reflects the status of June 2007).

	URL	Number of interactions	Туре	Proteins /domains
MIPS	mips.gsf.de/genre/proj/mpact	4300	curated	
BIND	bond.unleashedinformatics.com	200000	curated	Р
MINT	160.80.34.4/mint/	103800	curated	Р
DIP	dip.doe-mbi.ucla.edu	56000	curated	Р
PDB	www.rcsb.org/pdb	800 complexes	curated	
HPRD	www.hprd.org	37500	curated	P, D
Scoppi	www.scoppi.org	102000	automatic	D
UniHI	theoderich.fb3.mdc-berlin.	209000	integrated data	Р
STRING		interactions of 1500000 proteins	integrated data from genomic context, high-throughput experiments, coexpression, previous knowledge	
iPfam	www.sanger.ac.uk/Software/ Pfam/iPfam	3019	data extracted from PDB	D
YEAST protein complex database	yeast.cellzome.com	232 complexes	experimental	Р
ABC	service.bioinformatik. uni-saarland.de/abc	13000 complexes	semiautomatic	Р

Initially low overlap of results


For **yeast**: ~ 6000 proteins => ~18 million potential interactions rough estimates: \leq 100000 interactions occur

- \rightarrow I true positive for 200 potential candidates = **0.5%**
- \rightarrow **decisive** experiment must have **accuracy** << 0.5% false positives

Different experiments detect different interactions For yeast: 80000 interactions known in 2002 only 2400 were found by ≥ 2 experiments

Problems with experiments:

- i) incomplete coverage
- ii) (many) false positives
- iii) selective to type of interaction and/or compartment

von Mering (2002)

Y2H: yeast two hybrid screen TAP: tandem affinity purification HMS-PCI: protein complex identication by MS

Criteria for reliability of detected PPIs

Guiding principles to judge experimental results on PPIs (incomplete list!):

I) check **mRNA** abundance of detected PPIs:

most experimental techniques are biased towards high-abundance proteins. If this is the case, results for low-abundance proteins are not reliable.

2) Check localization to cellular **compartments**:

- most methods have their "preferred compartment"
- if interacting proteins belong to the same compartment
 => results are more reliable

3) co-functionality

it is realistic to assume that members of a protein complex should have closely related biological functions -> check whether interaction proteins have overlapping annotations with terms from Genome Ontology (GO)

In-Silico Prediction Methods

Sequence-based:

- gene clustering
- gene neighborhood
- Rosetta stone
- phylogenetic profiling
- coevolution

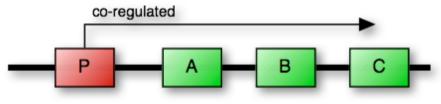
- "Work on the parts list"
- \rightarrow fast
- \rightarrow unspecific
- \rightarrow high-throughput methods for pre-sorting

Will be covered today

Structure-based:

- interface propensities
- protein-protein docking
- spatial simulations (e.g. MD)

"Work on the parts"

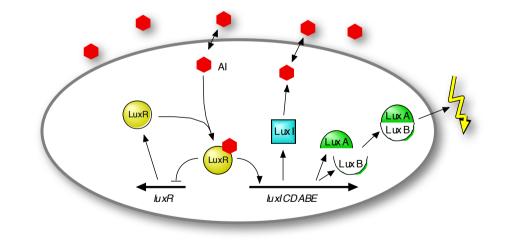

- ightarrow specific, detailed
- \rightarrow expensive
- \rightarrow accurate

Not subject of this lecture

Gene Clustering

Idea: functionally **related** proteins or parts of a complex

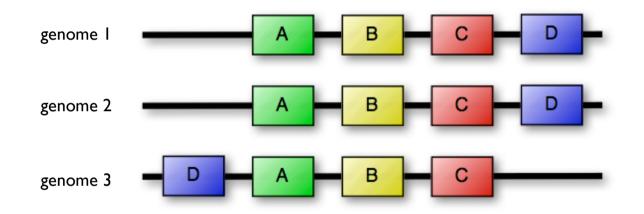
are expressed **simultaneously**



Search for genes with a **common promoter**

 \rightarrow when activated, all are transcribed together as one operon

Example:


bioluminescence in V. fischeri is regulated via quorum sensing \rightarrow three proteins: I, AB, CDE are responsible for this. They are organized as I operon named *luxICDABE*.

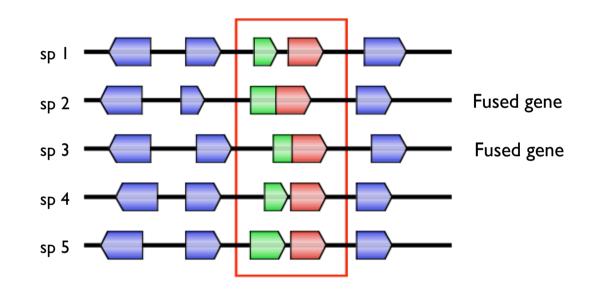
Gene Neighborhood

Hypothesis again: functionally related genes are expressed together

"functionally related" means same {complex | pathway | function | ...}

 \rightarrow Search for **similar arrangement** of related genes in **different organisms**

(<=> Gene clustering: done in one species, need to know promoters)

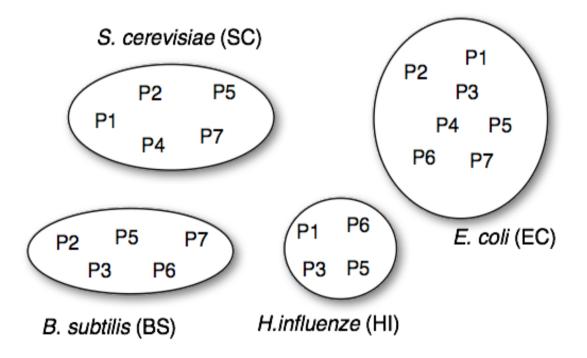

Multi-lingual stele from 196 BC, sp found by the French in 1799 The same decree is inscribed on the stone 3 times, in hieroglyphic, demotic, and greek.

 \rightarrow key to deciphering meaning of hieroglyphs

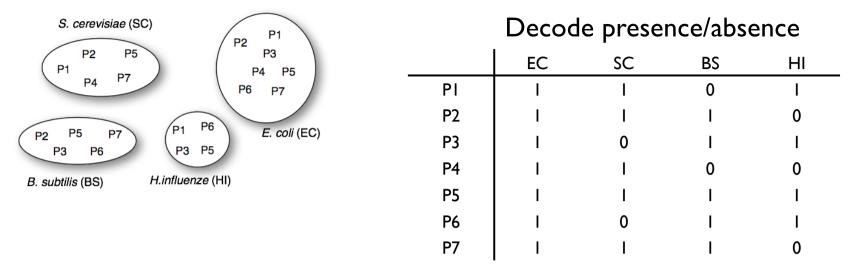
Rosetta Stone Method

Idea: find homologous genes ("**words**") in genomes of different organisms ("**texts**")

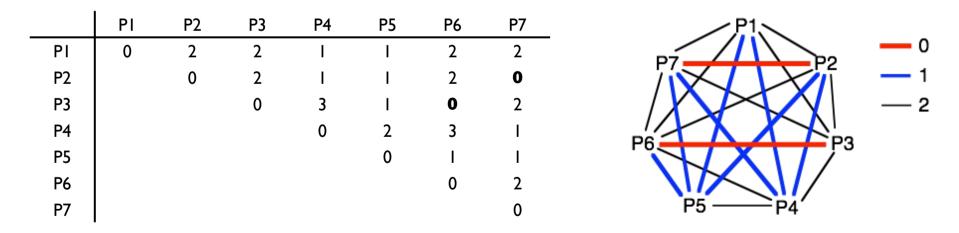
- check if fused gene pair exists in one organism
- \rightarrow May indicate that these 2 proteins form a complex



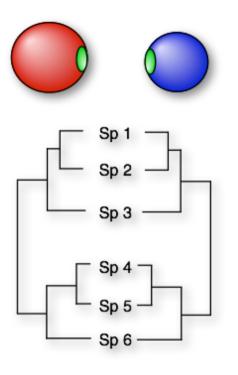
Enright, Ouzounis (2001): 40000 predicted pair-wise interactions from search across 23 species


Phylogenetic Profiling

Idea: either all or none of the proteins of a complex should be **present** in an organism


 \rightarrow compare presence of protein homologs across species (e.g., via sequence alignment)

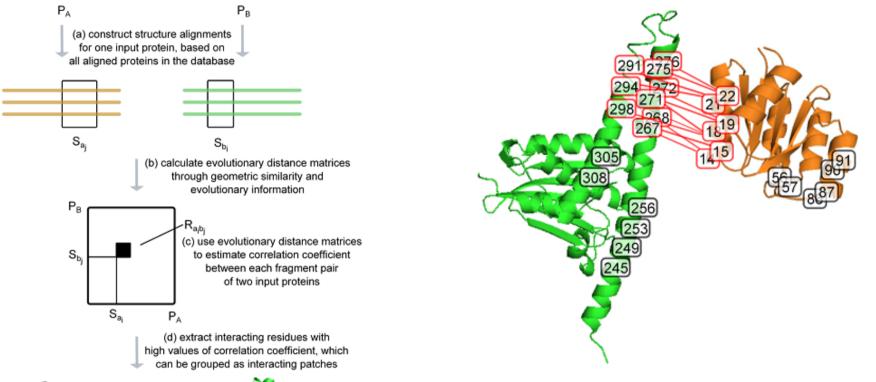
Distances in Phylogenetic Profiling



Hamming distance between species: number of different protein occurrences

Two pairs with similar occurrence: P2-P7 and P3-P6 These are candidates to interact with eachother.

Co-evolution



Binding interfaces of complexes are often **better conserved** in evolution than the rest of the protein surfaces.

Idea of Pazos & Valencia (1997): if a mutation occurs at one interface that changes the character of this residue (e.g. polar -> hydrophobic), a corresponding mutation could occur at the other interface at one of the residues that is in contact with the first residue.

Detecting such correlated mutations could help in identifying binding candidates.

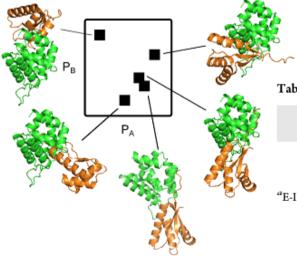


Figure 3. Our method detects correlated residues on SK/RR interaction. Interface residues are indicated in red boxes, and non-interface residues are indicated in black boxes.

Table 6. Comparison to metaPPI, meta-PPISP, and PPI-Pred

	our method		metaPPI		meta-	PPISP	PPI-Pred	
type	Acc	Cov	Acc	Cov	Acc	Cov	Acc	Cov
E-I ^a	73%	65%	61%	37%	56%	55%	46%	47%
others	55%	57%	41%	22%	39%	26%	29%	31%
overall	63%	61%	49%	28%	46%	38%	36%	38%
a a								

^aE-I is type of enzyme-inhibitor.

Guo et al. J. Chem. Inf. Model. 2015, 55, 2042-2049

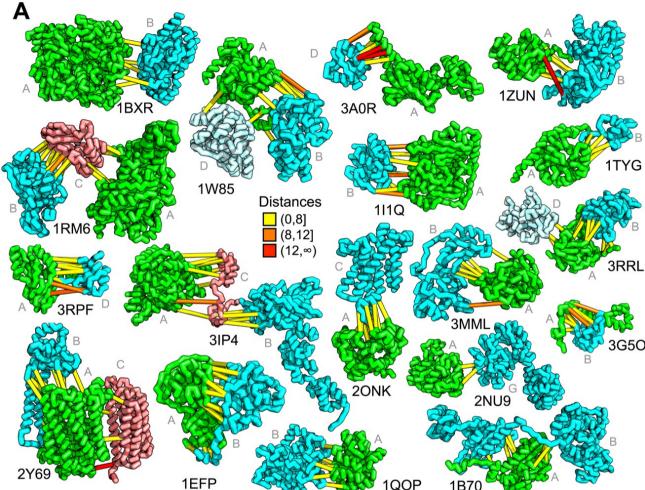
Correlated mutations (Gremlin)

Detect positional correlations in paired multiple sequence alignments of thousands of protein sequences.

Gremlin constructs a global statistical model of the alignment of the protein family pair A and B by assigning a probability to every amino acid sequence in the paired alignment:

$$p(X_1, X_2, \dots, X_p; X_{p+1}, \dots, X_{p+q}) = \frac{1}{Z} exp\left(\sum_{i=1}^{p+q} \left[v_i(X_i) + \sum_{j=1}^{p+q} w_{ij}(X_i, X_j) \right] \right)$$

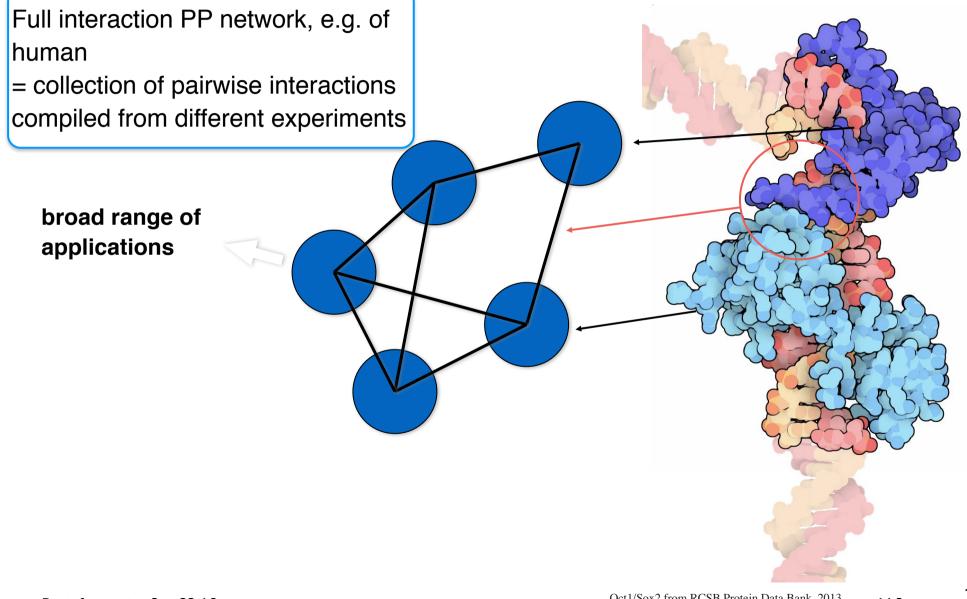
 X_i : amino acid composition at position *i*,

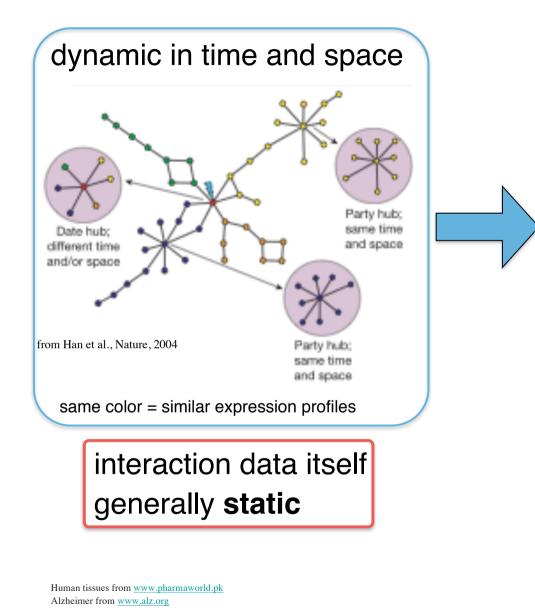

 v_i : vectors encoding position-specific amino acid propensities

 w_{ij} :matrices encoding amino acid coupling between positions *i* and *j*.

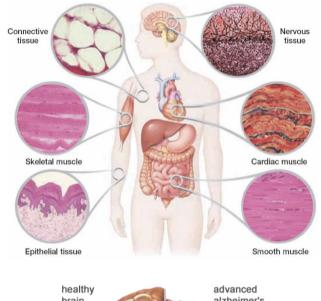
Z : partition function, normalizes sum of probabilities to I.

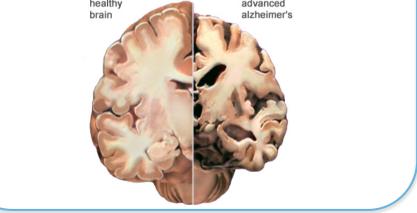
 v_i and w_{ij} are obtained from the aligned sequences by a maximum likelihood approach. The derived coupling strengths w_{ij} are then normalized and converted into distance restraints that can be used e.g. in scoring protein-protein docking models.


Correlated mutations

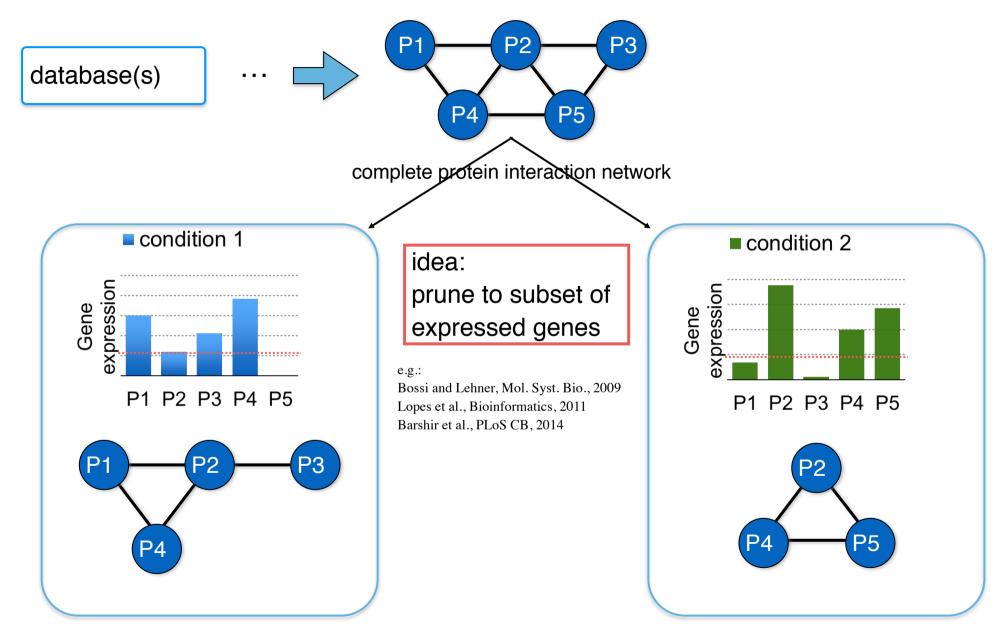

Ovchinnikov, Kamisetty, Baker (2014) eLife 3:e02030 Residue-pairs across protein chains with high GREMLIN scores almost always make contact across protein interfaces in experimentally determined complex structures.

All contacts with GREMLIN scores greater than 0.6 are shown. Residue pairs within a distance of 8 Å are colored yellow, betwen 8 and 12 Å in orange, and greater than 12 Å in red. Note that the structures are pulled apart for clarity.

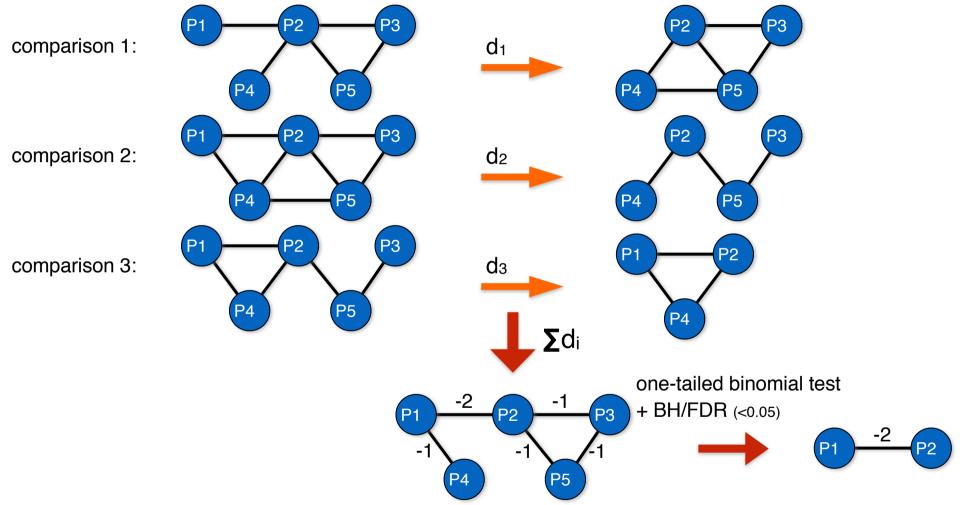

Toward condition-specific protein interaction networks



But protein interactions can be ...



condition-specific protein composition



Simple condition-specific PPI networks

Differential PPI wiring analysis

112 matched normal tissues (TCGA) 112 breast cancer tissues (TCGA)

Check whether rewiring of a particular PP interaction occurs in a significantly large number of patients compared to what is expected by chance rewiring events.

Will, Helms, Bioinformatics, 47, 219 (2015) doi: 10.1093/bioinformatics/btv620

V3 –

34

Bioinformatics 3 – SS 18

How much rewiring of PPIs exists?

	GENE
avg. number of proteins (normal)	$12,678\pm223$
avg. number of proteins (tumor)	$12,528\pm206$
avg. number of interactions (normal)	$134,348 \pm 2,387$
avg. number of interactions (tumor)	$133,128 \pm 2,144$
P_{rew}	0.067 ± 0.016
significantly rewired interactions	9,754

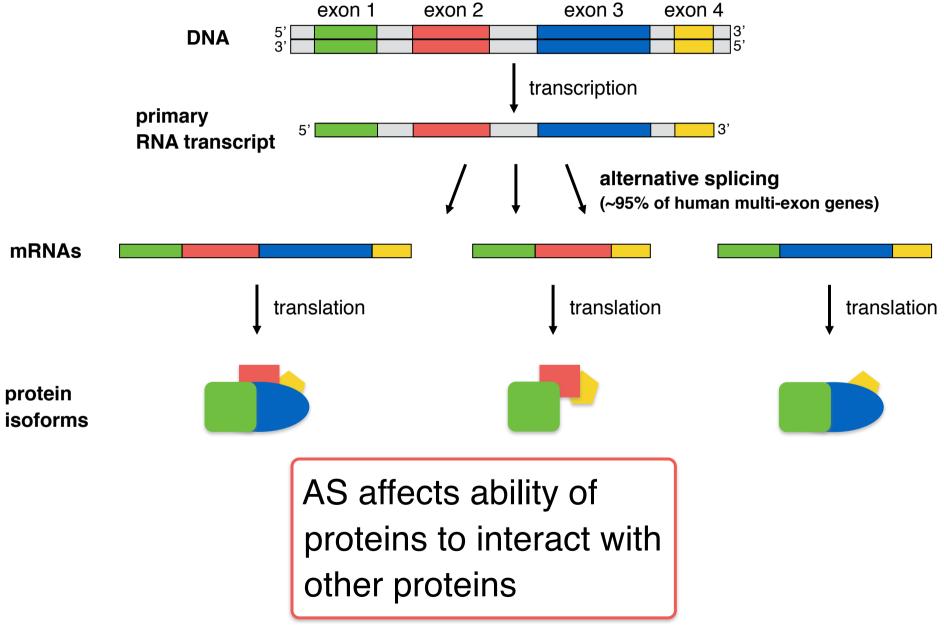
Standard deviations reflect differences betwen patients.

About 10.000 out of 133.000 proteinprotein interactions are significantly rewired between normal and cancer samples.

Table S7: Results obtained using the BioGRID interaction data and using either gene- or various transcript-based network construction approaches. The given numbers denote the sizes of the constructed networks. For all deterministic approaches the standard deviation across all 112 matched samples is shown, for the randomized approach the deviation shown is the average of standard deviations per run. A part of the results for P_{rew} and significantly rewired interactions are also shown in the upper half of Table 3 in the main text. Both net loss of proteins and interactions from normal to tumor were significant according to a two-sided Wilcoxon signed-rank test applied to the matched pairs of samples. For the

Will, Helms, Bioinformatics, 47, 219 (2015) doi: 10.1093/bioinformatics/btv620 V 3 - 35

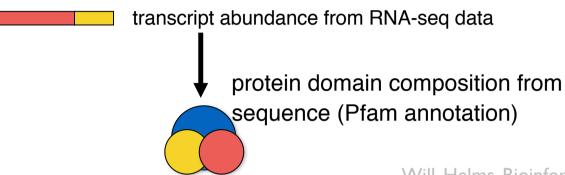
Rewired PPIs are associated with hallmarks


	GENE
rewired interactions	9,754
participation in any hallmark term	7,028
fraction in any hallmark term	0.721
Resisting Cell Death	4,064 (0.417)
Activating Invasion and Metastasis	2,244 (0.230)
Sustaining Proliferative Signaling	3,964 (0.406)
Inducing Angiogenesis	169(0.017)
Tumor-Promoting Inflammation	516(0.053)
Genome Instability and Mutation	1,362(0.140)
Enabling Replicative Immortality	232(0.024)
Evading Growth Suppressors	3,362(0.345)
Avoiding Immune Destruction	752(0.077)
Deregulating Cellular Energetics	821 (0.084)
avg.	1,749 (0.179)

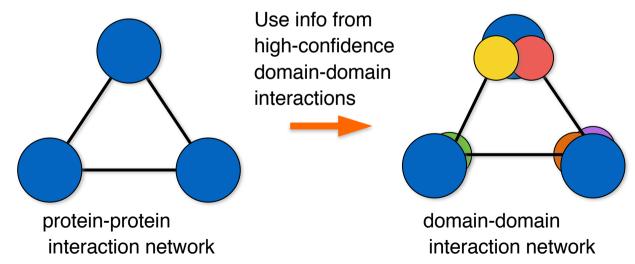
A large fraction (72%) of the rewired interactions affects genes that are associated with "hallmark of cancer" terms.

Table S10: Results for the rewiring analysis of the BioGRID network in terms of rewired interactions that affect proteins associated with hallmarks of cancer as defined by [1]. A protein interaction was considered relevant regarding a hallmark term if at least one of its associated proteins was part of the corresponding set of hallmark proteins. The results for individual hallmark terms are reported as the absolute quantity of matches (left number) and as fraction of the total number of rewired interactions listed in the first row (in brackets).

Will, Helms, Bioinformatics, 47, 219 (2015) doi: 10.1093/bioinformatics/btv620


Not considered yet: alternative splicing

PPIXpress uses domain information


see http://sourceforge.net/projects/ppixpress

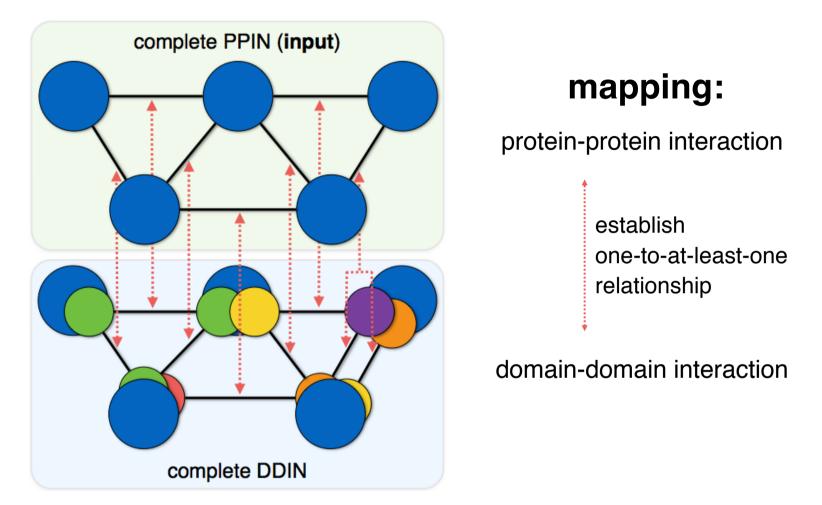
I. Determine "building blocks" for all proteins

Will, Helms, Bioinformatics, 47, 219 (2015) doi: 10.1093/bioinformatics/btv620

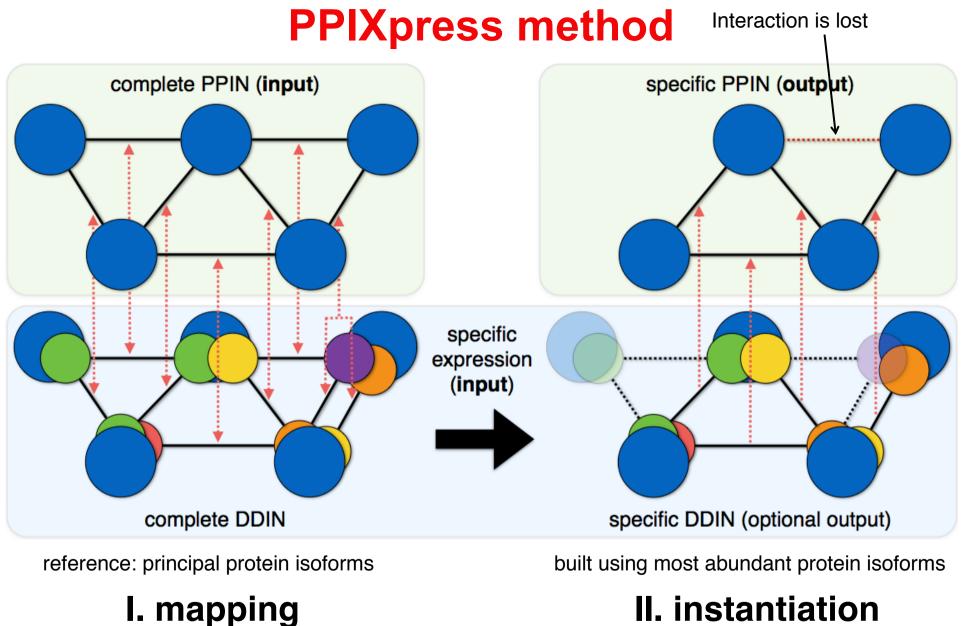
II. Connect them on the domain-level

Coverage of PPIs with domain information

		fraction of		
protein set	size of set	matched PPIs	contributing proteins	
complete network [*]	15086	0.264	0.517	
all HM	4407	0.280	0.684	
non HM	10679	0.227	0.449	

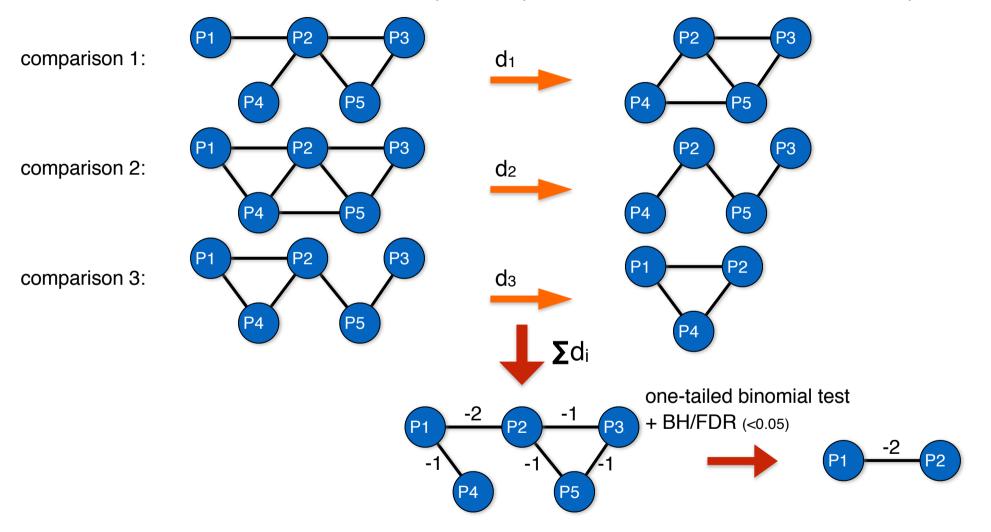

Domain information is currently available for 51.7% of the proteins of the PP interaction network.

This means that domain information supports about one quarter (26.7%) of all PPIs.


All other PPIs were connected by us via artificially added domains (I protein = I domain).

Will, Helms, Bioinformatics, 47, 219 (2015) doi: 10.1093/bioinformatics/btv620

PPIXpress method


reference: principal protein isoforms = longest coding transcript

II. instantiation

Differential PPI wiring analysis at domain level

112 matched normal tissues (TCGA) 112 breast cancer tissues (TCGA)

Rewired PPIs are associated with hallmarks

	GENE	ALL-DDI
rewired interactions	9,754	10,111
participation in any hallmark term	7,028	7,343
fraction in any hallmark term	0.721	0.726
Resisting Cell Death	4,064 (0.417)	4,316 (0.427)
Activating Invasion and Metastasis	$2,244 \ (0.230)$	2,285(0.226)
Sustaining Proliferative Signaling	3,964 (0.406)	4,142(0.410)
Inducing Angiogenesis	169(0.017)	172(0.017)
Tumor-Promoting Inflammation	516(0.053)	537(0.053)
Genome Instability and Mutation	1,362(0.140)	1,419(0.140)
Enabling Replicative Immortality	232(0.024)	360(0.036)
Evading Growth Suppressors	3,362(0.345)	$3,557 \ (0.352)$
Avoiding Immune Destruction	752(0.077)	772 (0.076)
Deregulating Cellular Energetics	821 (0.084)	$850\ (0.084)$
avg.	1,749 (0.179)	1,841 (0.182)

The construction at transcript-level found a larger fraction (72.6 vs 72.1%) of differential interactions that can be associated with hallmark terms than the gene-level based approach.

Table S10: Results for the rewiring analysis of the BioGRID network in terms of rewired interactions that affect proteins associated with hallmarks of cancer as defined by [1]. A protein interaction was considered relevant regarding a hallmark term if at least one of its associated proteins was part of the corresponding set of hallmark proteins. The results for individual hallmark terms are reported as the absolute quantity of matches (left number) and as fraction of the total number of rewired interactions listed in the first row (in brackets).

Will, Helms, Bioinformatics, 47, 219 (2015) doi: 10.1093/bioinformatics/btv620

Enriched KEGG and GO-BP terms in gene-level \ transcript-level set

	GENE		ALL-DDI				
	term	p	term	р			
KEGG	hsa04012:ErbB signaling pathway	0.0013	hsa05200:Pathways in cancer	$1.5*10^{-17}$			
	hsa05212:Pancreatic cancer	0.0491	hsa04110:Cell cycle	$1.8 * 10^{-15}$			
			hsa05220:Chronic myeloid leukemia	$3.5 * 10^{-15}$			
			hsa05212:Pancreatic cancer	$1.4*10^{-8}$			
			hsa05223:Non-small cell lung cancer	$4.3*10^{-8}$			
GO BP	GO:0007242 intracellular signaling cascade	$6.9 * 10^{-5}$	GO:0010604 positive regulation of macromolecule metabolic process	$4.3 * 10^{-16}$			
	GO:0043065 positive regulation of apoptosis	0.0252	GO:0042981 regulation of apoptosis	$3.6 * 10^{-15}$			
	$\operatorname{GO:0043068}$ positive regulation of programmed cell death	0.0272	GO:0043067 regulation of programmed cell death	$6.1 * 10^{-15}$			
	GO:0010942 positive regulation of cell death	0.0287	GO:0010941 regulation of cell death	$7.7*10^{-15}$			
	GO:0051329 interphase of mitotic cell cycle	0.0409	GO:0007049 cell cycle	$1.7*10^{-14}$			

Table S16: Comparison of rewiring results between the gene-based construction and a transcript-based construction method for the BioGRID network. Here, the top five enriched terms and their p-values are shown for the proteins affected by interactions exclusively found by the transcript-based method using the ALL-DDI dataset or the gene-based approach, respectively. Enrichment in KEGG pathways and GO biological processes was determined using DAVID [2] where we used the proteins included in the corresponding input network as the background. Enrichment was defined as p < 0.05 (Bonferroni-adjusted).

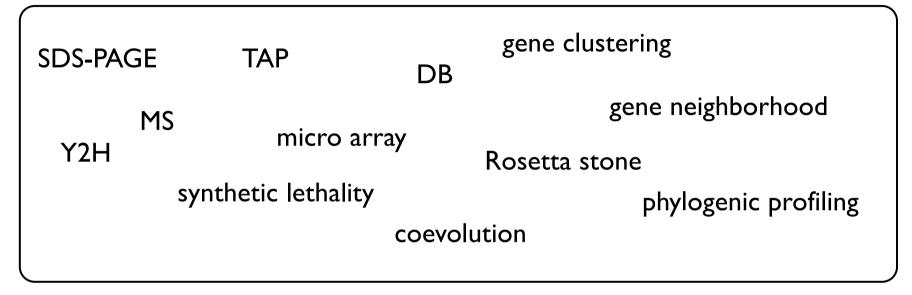
The enriched terms that are exclusively found by the transcript-level method (right) are closely linked to carcinogenetic processes.

Hardly any significant terms are exclusively found at the gene level (left).

Will, Helms, Bioinformatics, 47, 219 (2015) doi: 10.1093/bioinformatics/btv620

Bioinformatics 3 – SS 18

Conclusion (PPIXpress)


About 10.000 out of 130.000 PP interactions are **rewired** in cancer tissue compared to matched normal tissue due to **altered gene expression**.

The method PPIXpress exploits domain interaction data to adapt protein interaction networks to specific cellular conditions at transcript-level detail.

For the example of protein interactions in breast cancer this increase in granularity positively affected the performance of the network construction compared to a method that only makes use of gene expression data.

Summary

What you learned **today**: how to get some data on PP interactions

type of interaction? — reliability? — sensitivity? — coverage? — ...

Next lecture:

- combining weak indicators: Bayesian analysis
- identifying communities in networks