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Noisy Data — Clear Statements?

For yeast:  ~ 6000 proteins   → ~18 million potential interactions

rough estimates:          ≤ 100000 interactions occur

→ 1 true positive for 200 potential candidates  = 0.5%

→  decisive experiment must have accuracy <<  0.5% false positives

Different experiments detect different interactions

For yeast:   80000 interactions known,

only 2400 found in > 1 experiment

TAP

HMS-PCI

Y2H

annotated: septin 

complex

see: von Mering (2002)

Y2H: → many false positives

(up to 50% errors)

Co-expression: → gives indications at best

Combine weak indicators = ???
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Conditional Probabilities

Joint probability for "A and B":

P(A)

P(B)

P(A ⋂ B) Solve for conditional probability for "A when B is true"

→ Bayes' Theorem:

P(A) = prior probability (marginal prob.) for "A"   → no prior knowledge about A

P(B) = prior probability for "B"   → normalizing constant

P(B | A) = conditional probability for "B given A"

P(A | B) = posterior probability for "A given B"

→ Use information about B to improve knowledge about A
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What are the Odds?

Express Bayes theorem

in terms of odds:

• Also consider case "A does not apply":

• odds for A when we know about B 

(we will interpret B as information or features):

posterior odds for A prior odds for Alikelihood ratio

Λ(A | B) → by how much does our knowledge about A improve?

P(A)

P(B)

P(A ⋂ B)
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2 types of Bayesian Networks

(1) Naive Bayesian network

→ independent odds

(2) Fully connected Bayesian network

→ table of joint odds

B !B

C 0.3 0.16

!C 0.4 0.14
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Bayesian Analysis of Complexes

Science 302 (2003) 449
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Improving the Odds

Is a given protein pair AB a complex (from all that we know)?

prior odds for a 

random pair AB to be 

a complex

likelihood ratio:

improvement of the odds when 

we know about features f1, f2, 

…

Features used by Jansen et al (2003):

• 4 experimental data sets of complexes

• mRNA co-expression profiles

• biological functions annotated to the proteins (GO, MIPS)

• essentiality for the cell

Idea: determine from known complexes 

and use for prediction of new complexes
estimate (somehow)
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Gold Standard Sets

To determine

Requirements for training data:

i) independent of the data serving as evidence

ii) large enough for good statistics

iii) free of systematic bias

Gold Standard Negative Set (GN):

2708746 (non-)complexes formed by proteins from different cellular 

compartments (assuming that such protein pairs likely do not interact)

Gold Standard Positive Set (GP):

8250 complexes from the hand-curated MIPS catalog of protein complexes

(MIPS stands for Munich Information Center for Protein Sequences)

→ use two data sets with known features f1, f2, … for training
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Prior Odds

Jansen et al:

• estimated ≥ 30000 existing complexes in yeast

• 18 Mio. possible complexes → P(Complex) ≈ 1/600

→ The odds are  600 : 1  against picking a real complex at random

→ Oprior = 1/600

Note: Oprior is mostly an educated guess

→ expect 50% good hits (TP ≥ FP) when  ≈ 600 and higher 
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Essentiality
Test whether both proteins are essential (E) for the cell or not (N)

→ for protein complexes, EE or NN should occur more often

pos/neg: # of gold standard positives/

negatives with essentiality information

Essentiality pos neg P(Ess|pos) P(Ess|neg) L(Ess)

EE 1114 81924 5,18E-01 1,43E-01 3,6

NE 624 285487 2,90E-01 4,98E-01 0,6

NN 412 206313 1,92E-01 3,60E-01 0,5

sum 2150 573724 1,00 1,00

possible 

values of the 

feature

probabilities for each 

feature value

likelihood 

ratios

= 0,5
0.19

0.36

overlap of gold 

standard sets with 

feature values
In the „pos“ case, the 

essentiality was only known 

for 2150 out of 8250 

complexes of the gold-

standard.

1114

2150
= 0,518

-> Essentiality is a weak feature!
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mRNA Co-Expression

Publicly available expression data from

• the Rosetta compendium

• the yeast cell cycle
Correlation between the data sets

→ use principal component)

Jansen et al, Science 302 (2003) 449

-> Co-expression is a much better feature

than essentiality!
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Biological Function

Use MIPS function catalog and Gene Ontology function annotations

• determine functional class shared by the two proteins; small values (1-9)

Indicate highest MIPS function or GO BP similarity

• count how many of the 18 Mio potential pairs share this classification

Jansen et al, Science 302 (2003) 449

-> Co-Functionality is a semi-weak feature!
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Experimental Data Sets

In vivo pull-down:

HT-Y2H:

Gavin et al, Nature 415 (2002) 141

Ho et al,  Nature 415 (2002) 180

Uetz et al, Nature 403 (2000) 623

Ito et al,  PNAS 98 (2001) 4569

31304 pairs

25333 pairs

981 pairs

4393 pairs

4 experiments on overlapping PP pairs 

→ 24 = 16 categories   — table represents fully connected Bayes network

Jansen et al, Science 302 (2003) 449
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Statistical Uncertainties

1)  L(1111) < L(1001)

statistical uncertainty:

Overlap with all experiments is smaller → larger uncertainty

2)  L(1110) = NaN?

Use conservative lower bound → assume 1 overlap with GN

→ L(1110) ≥ 1970

Jansen et al, Science 302 (2003) 449
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Overview

Jansen et al, Science 302 (2003) 449
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Performance of complex prediction

None of the individual evidences alone was enough to get

a likelihood ratio > 600,

neither predicted nor experimental evidences

Jansen et al, Science 302 (2003) 449

Predictions Experimental data
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Follow-up work: PrePPI (2012)

Zhang et al, Nature (2012) 490, 556–560

For each subunit, find both close and remote structural neighbors. 

A ‘template’ for the interaction exists whenever a PDB structure contains a pair 

of inter-acting chains (e.g. NA1–NB3) that are structural neighbors of MA and 

MB, respectively. 

A model is constructed by superposing the individual subunits, MA and MB, 

on their corresponding structural neighbors, NA1 and NB3. 

Given a pair of query proteins that potentially interact (QA, QB), try to 

find representative structures for the individual subunits (MA, MB) in 

the PDB, where available, or from homology model databases.
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Follow-up work: PrePPI (2012)

We assign 5 empirical-structure-based scores to each interaction model and 

then calculate a likelihood for each model to represent a true interaction by 

combining these scores using a Bayesian network trained on a high-confidence 

data set of positive interactors and a reference set of non-interactors. 

We finally combine the structure-derived score (SM) with non-structural 

evidence associated with the query proteins (for example, co-expression, 

functional similarity) using a naive Bayesian classifier.

Zhang et al, Nature (2012) 490, 556–560
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Results of PrePPI
Receiver-operator characteristics 

(ROC) for predicted yeast complexes.

Examined features: 

- structural modeling (SM), 

- GO similarity, 

- protein essentiality (ES) relationship, 

- MIPS similarity, 

- co‐expression (CE), 

- phylogenetic profile (PP) similarity.

Also listed are 2 combinations:  

- NS for the integration of all 

non‐structure clues, i.e. GO, ES, 

MIPS, CE, and PP, and 

- PrePPI for all structural and 

non‐structure clues). 
Jansen et al, Science 302 (2003) 449

This gave 30.000 high-confidence PP 

interactions for yeast and 300.000 for 

human.
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Summary:  Bayesian Analysis

Combination of weak features yields powerful predictions

• boosts odds via Bayes' theorem

• Gold standard sets for training the likelihood ratios

Bayes vs. other machine learning techniques:

(voting, unions, SVM, neuronal networks, decision trees, …)

→ arbitrary types of data can be combined

→ weight data according to their reliability

→ include conditional relations between evidences

→ easily accommodates missing data (e.g., zero overlap with GN)

→ transparent procedure

→ predictions easy to interpret
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Insert: Relation of PPI networks to diseases

Sahni et al., Marc Vidal (2015) 

Cell 161, 647–660

In principle, a protein mutant can 

destabilize proteins (left) or 

perturb interactions (right)

3 possible outcomes: all interactions kept,

some or no interactions remain.

Disease alleles enriched in „edgetic“ cases.

Can one study this systematically

on a genome-level?
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Y2H: screen native PPIs

Sahni et al., Marc Vidal (2015) 

Cell 161, 647–660

Aim 1: Systematic characterization of PPI perturbations associated with 

disease mutation. 

Experimental dataset: 2,449 mutant proteins and their 1,072 corresponding 

WT proteins.

Approach: run Y2H screen how mutant and WT proteins interact with 

proteins encoded by the 7,200 ORFs in the human ORFeome v1.1. 

Intersect this with the human interactome map HI-II-14 (enhance confidence).

-> interaction profiles for 460 mutant proteins and their 220 WT counterparts. 

Out of 1,316 PPIs (ca. 6 per protein), 521 interactions were perturbed.

Only two mutations conferred PPI gains, suggesting that gain of 

interactions may be a rare event in human disease.
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Findings

Sahni et al., Marc Vidal (2015) 

Cell 161, 647–660

Ca. 60% of disease-associated missense mutations perturb PPIs.

- Of these, half result in complete loss of interactions, 

generally caused by protein misfolding and impaired expression.

- The other half lead to edgetic perturbations.

Importantly, different mutations in the same gene frequently result in different 

interaction perturbation profiles. 
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How do mutations affect protein folding?

Sahni et al., Marc Vidal (2015) 

Cell 161, 647–660

Aim 2: How do disease mutations impact protein folding and disposition?

Measure how well hmORF-encoded proteins and their WT counterparts 

interact with cellular quality control factors (QCFs) using a quantitative 

high-throughput LUMIER assay. 

They selected the following QCFs based on their broad specificity:

(1) the cytoplasmic chaperones HSP90 and HSC70, 

(2) their co-chaperones BAG2 and CHIP/STUB1, 

(3) the regulatory subunit PSMD2 of the proteasome and 

(4) the ER chaperones GRP78/BIP and GRP94.

Idea: Increased interaction between a QCF and mutant or WT protein, as 

measured by the LUMIER assay, indicates a mutation-induced perturbation

in conformational stability that is often associated with compromised or 

complete loss of function.
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Experimental pipeline

Sahni et al., Marc Vidal (2015) 

Cell 161, 647–660

Select mutations associated with a wide range of disorders, including 

- cancer susceptibility and 

- heart, respiratory, and neurological diseases.

Out of 16,400 such mutations affecting over 1,200 genes for which we have 

a wild-type (WT) open-reading frame (ORF) clone in our human

‘‘ORFeome’’ collection, the authors selected 1 to 4 mutations per gene.
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Lumier assay

Barrios-Rodiles, M. et al. High-throughput mapping of a dynamic 

signaling network in mammalian cells. Science 307, 1621−1625 (2005).

LUMIER stands for “luminescence-based mammalian 

interactome mapping”. 

In a LUMIER assay, a luciferase-tagged 'bait' protein is 

screened against a series of Flag-tagged 'prey' proteins. 

An antibody against Flag is used to affinity-purify the prey, 

and the prey-associated luminescence reveals the extent 

of bait interaction 

The antibodies (yellow) are immobilized on sepharose

beads (black sphere). 

An array scanner can be used to quantify the relative 

extent of interaction for large numbers of assays.
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Interaction with QCFs

Sahni et al., Marc Vidal (2015) 

Cell 161, 647–660

The interaction profiles of most 

mutant proteins correlated with 

their WT counterparts. However, 

compared to a background control 

set, a significant enrichment was 

found for mutant alleles having 

increased interaction with QCFs 

(A–H) but little or no enrichment for 

decreased interaction (A).

(I) The interaction profiles of 

mutant proteins with the five 

cytoplasmic QCFs were highly 

correlated, distinct from those with 

the 2 ER factors. 

-> coordination and specificity of 

cellular quality control pathways. 

28% of the tested alleles exhibited 

increased binding to at least 1 of 

the 7 QCFs tested.
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Connected Regions
Observation: there are  more interactions inside a complex 

than to the outside

→ how can one identify highly connected regions in a network?

1) Fully connected region:  Clique

clique := G' = (V', E' = V'(2))

Problems with cliques:

• finding cliques is NP-hard

(but can be done in O(N2) for sparsely 

connected biological networks)

• biological protein complexes are not

always fully connected



Bioinformatics 3 – SS 18 V 4  – 29

Communities

Community := subset of vertices, for which the internal connectivity is 

denser than to the outside

Aim:  map network onto tree that reflects the community structure

<=>

???

Radicchi et al,  PNAS 101 (2004) 2658:
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Define communities by agglomerative clustering

1)  Assign a weight Wij to each pair of vertices i, j that measures 

how "closely related" these two vertices are.

2) Iteratively add edges between pairs of nodes with decreasing Wij

Measures for Wij:

1) Number of vertex-independent paths between vertices i and j

(vertex-independent paths between i and j:  no shared vertex except i and j)

2) Number of edge-independent paths between i and j

Menger (1927):  the number of vertex-independent paths equals the 

number of vertices that have to be removed to cut all paths between i and j

→ measure for network robustness

3) Total number of paths L between i and j

but L = 0 or ∞  → weight paths with their length αL with α < 1

Problem:  vertices with a single link are separated from the communities
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Vertex Betweenness
Freeman (1927):  count on how many shortest paths a vertex is visited

For a graph  G = (V, E)  with  |V| = n

Betweenness for vertex ν:

st (v) : shortest path including v.

There are  n - 1 other vertices besides v.

They have shortest paths to n - 2 vertices.

-> Computing shortest paths takes O(n2) 

operations 

Alternative:  edge betweenness

→ to how many shortest paths does 

this edge belong
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Girvan-Newman Algorithm

Girvan, Newman,  PNAS 99 (2002) 7821:

1)  Calculate betweenness for all m edges 

For a graph  G = (V, E)  with  |V| = n,  |E| = m

2)  Remove edge with highest betweenness

3)  Recalculate betweenness for all affected nodes

4)  Repeat from 2) until no more edge is left  (at most m iterations)

5)  Build up tree from V by reinserting vertices in reverse order

Works well, but slow: O(mn2) ≈ O(n3) for scale-free networks  (|E| = 2 |V|)

Reason for complexity: compute shortest paths (n2) for m edges

→ recalculating a global property is expensive for larger networks
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Zachary's Karate Club

• observed friendship relations of 34 members over two years

• correlate fractions at break-up with calculated communities

administrator's 

fraction

instructor's 

fraction

with edge betweenness:

with number of edge-independent paths:

Girvan, Newman,  PNAS 99 (2002) 7821
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Collaboration Network

Girvan, Newman,  PNAS 99 (2002) 7821

Vertices: scientists at the Santa Fe 

Institute.

Edge: two authors have co-authored a 

joint paper.

Show is the largest component of the 

Santa Fe Institute collaboration 

network.

The primary divisions detected by the 

GN algorithm are indicated by 

different vertex shapes.
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Determining Communities Faster

Radicchi et al,  PNAS 101 (2004) 2658:

Determine edge weights via edge-clustering coefficient

→ local measure

→ much faster, esp. for large networks

Modified edge-clustering coefficient:

→ fraction of potential triangles 

with edge between i and j

k = 5

k = 4

C(3) = (2+1) / 3 = 1

Here, zi,j
(3) is the number of triangles, 

ki and kj are the degrees of nodes i and j.

Note:  "+ 1" to remove degeneracy for zi,j
(3) = 0

Algorithm works exactly like 

GN-algorithm except that at 

each iteration, the edge is 

removed with smallest 
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Performance

Instead of triangles:  cycles of higher order g

→ continuous transition to a global measure

Radicchi et al-algorithm:  O(N2) for large networks

Radicchi et al,  PNAS 101 (2004) 2658:
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Comparison of algorithms

Girven-Newman algorithm Radicchi with g = 4

→ very similar communities

Data set: football teams from US colleges; different symbols = different 

conferences, teams played ca. 7 intraconference games and 4 inter-

conference games in 2000 season.
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A large number of approaches have been developed to maximize 

modularity for divisions into any number of communities of any sizes.

Comparison of modularity maximization methods

38

Danon, Duch, Diaz-Guilera, Arenas, J. Stat. Mech. P09008 (2005)
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Test the sensitivity of these methods: 

How well can each method detect communities in ad hoc networks with a 

well known, fixed community structure. 

Such networks are typically generated with n = 128 nodes

that are split into 4 communities containing 32 nodes each. 

Pairs of nodes belonging to the same community are linked 

with probability pin whereas 

pairs belonging to different communities are joined with probability pout. 

39

Danon, Duch, Diaz-Guilera, Arenas, J. Stat. Mech. P09008 (2005)

Comparison of modularity maximization methods
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The value of pout is taken so that the average number of links that a node 

has to members of any other community, zout, can be controlled. 

While pout (and therefore zout) is varied freely, the value of pin is chosen to 

keep the total average node degree, k constant, and is set to 16.

40

Danon, Duch, Diaz-Guilera, Arenas, J. Stat. Mech. P09008 (2005)

Comparison of modularity maximization methods
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As zout increases, the communities become more and more diffuse and 

harder to identify, (see figure). 

41

Danon, Duch, Diaz-Guilera, Arenas, J. Stat. Mech. P09008 (2005)

Comparison of modularity maximization methods

Since the “real” community 

structure is well known in this 

case, 

it is possible to measure the 

number of nodes correctly 

classified by the method of 

community identification.
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Insert: Quantify detection of communities

How can one quantify the quality of a division?

A good division is one where there are fewer than expected edges between

groups.

42

SS 2014 - lecture 4
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Quantify assortative mixing

SS 2014 - lecture 2

Find the fraction of edges that run between vertices of the same type

and subtract from this the fraction of edges we would expect if edges

were positioned at random without considering the vertex type.

ci : class or type of vertex i , ci  [1 … nc]

nc : total number of classes

The total number of edges between vertices of the same type is

෍

edges 𝑖,𝑗

𝛿 𝑐𝑖 , 𝑐𝑗 =
1

2
෍

𝑖𝑗

𝐴𝑖𝑗𝛿 𝑐𝑖 , 𝑐𝑗

Here (m,n) is the Kronecker delta ( is 1 if m = n and 0 otherwise).

The factor ½ accounts for the fact that every vertex pair i,j is counted

twice in the sum.
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Quantify assortative mixing
44

SS 2014 - lecture 2

As expected number of edges between all pairs of vertices

of the same type one can derive

………
1

2
෍

𝑖𝑗

𝑘𝑖𝑘𝑗

2𝑚
𝛿 𝑐𝑖 , 𝑐𝑗

where the factor ½ avoids double-counting vertex pairs.

Taking the difference between the actual and expected number of edges gives

1

2
σ𝑖𝑗𝐴𝑖𝑗𝛿 𝑐𝑖 , 𝑐𝑗 −

1

2
σ𝑖𝑗

𝑘𝑖𝑘𝑗

2𝑚
𝛿 𝑐𝑖 , 𝑐𝑗 =

1

2
σ𝑖𝑗 𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
𝛿 𝑐𝑖 , 𝑐𝑗

Typically one does not calculate the number of such edges

but the fraction, which is obtained by dividing this by m

𝑄 =
1

2𝑚
෍

𝑖𝑗

𝐴𝑖𝑗 −
𝑘𝑖𝑘𝑗

2𝑚
𝛿 𝑐𝑖 , 𝑐𝑗

This quantity Q is called the modularity. 
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One of the most successful approaches is simulated annealing (SA).

At the start: define an initial partition of the nodes into communities. 

At each step, a node is chosen at random and moved to a different 

community, also chosen at random. 

If the change improves the modularity (Q > 0), it is always accepted, 

otherwise it is accepted with a probability exp(Q/kT). 

The simulation will start at high temperature T and is then slowly cooled 

down.

Several improvements have been tested.

Firstly, the algorithm is stopped periodically, or quenched, 

and Q is calculated for moving each node to every community that is not 

its own. 

Finally, the move corresponding to the largest value of Q is accepted.

45

Comparison of modularity maximization methods
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Danon, Duch, Diaz-Guilera, Arenas, J. Stat. Mech. P09008 (2005)

Comparison of modularity maximization methods

GN:

Girven-Newman

algorithm (used

as standard

here).

SA: simulated

annealing.

Most modern

algorithms work

better than GN.
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Strong Communities

"Community :=  subgraph with more interactions inside than to the outside"

…strong sense when:

→ Check every node individually

A subgraph V is a community in a…

…weak sense when:

→ allow for borderline nodes

• Σ kin = 2,  Σ kout = 1

{kin, kout} = {1,1}, {1,0}

→ community in a weak sense

• Σ kin = 10,  Σ kout = 2

{kin, kout} = {2,1}, {2, 0}, {3, 1},  {2,0}, {1,0}

→ community in a strong and weak sense

Radicchi et al, PNAS 101 (2004) 

2658
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Summary

What you learned today:

Next lecture:      Fri, May 4, 2018

• Modular decomposition

• Robustness

• how to combine a set of noisy evidences into a powerful prediction tool

→ Bayes analysis

• how to find communities in a network efficiently

→ betweenness,  edge-cluster-coefficient


