V 6 - Network analysis

- Dijkstra algorithm: compute shortest pathways
- Graph layout
- Network robustness

- Graph modularity

Fri, May 4, 2018
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The Shortest Path Problem

Problem:
Find the shortest path from a given vertex
to the other vertices of the graph (Dijkstra 1959).

We need (input): * weighted graph G(V, E)

* start (source) vertex s in G i

We get (output): * shortest distances d[v] between s and v Edsger Dijkstra
* shortest paths from s to v (1930-2002):

|ldea: Always proceed with the
closest node
— greedy algorithm

Real world application:
— GPS navigation devices
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Dijkstra Algorithm 0

Initialization:  for a11 nodes v in G: distance and path to all other

d[v] = oo < nodes is still unknown
pred[v] = nil

<
<

distance from source to source =0
d[s] = 0

d[v] = length of path from s to v
pred[v] = predecessor node on the shortest path

In the example: s = |

node|1 2 3 4 5 6 7

d O 00 00 00 00 00O 0O

pred |- - - - - - -
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Iteration:

Dijkstra |

Q =V
while Q 1s not empty:
u = node with minimal d

if d[u] = oo:
break

delete u from Q

for each neighbor v of u:

d temp = d[u] + d(u,v)

1f d temp < d[v]:
d[v] = d temp
pred[v] = u

return pred[]C
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Save {V} into working copy Q

choose node closest to s

exit if all remaining nodes
are inaccessible

calculate distance to u's
neighbors

if new path is shorter
=> update
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Dijkstra-Example

Q=(I’2’3’4’5’6’7)
node [1 2 3 4 5 6 7

d ‘ 0 oo 283 12 oo 00 00
pred - - 1 1 - = =
Q =V
Q=(23,4,567) = i T el
node |1 2 38 4 5 6 7  ifdp - oo
d ‘ 0 oo 21 12 30 37 o0 break
pred — = 4 1 4 4 — delete u from Q
for each neighbor v of u:
Q —_ (2’ 3’ 5’ 6’ 7) d temp = df[u] + d(u,v)
node | 1 2 3 4 5 6 7 if d_temp < d[v]:

d(v] = d temp
pred[v] = u

d O 26 21 12 30 37 o0
pred [ - 3 4 1 4 4 -

return pred[]C

Q=(2,56,7)
node |1 2 3 4 5 6 7
d ‘o 26 21 12 30 37 42
pred - 3 4 1 4 4 2
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Example contd.

Q=(2,56,7)
node|1 2 3 4 5 6 7
d ‘o 26 21 12 30 37 42

pred | - 3 4 1 4 4 2

Q=(5,6,7)
node |1 2 3 4 5 6 7

d ‘o 26 21 12 30 37 42

pred - 3 4 1 4 4 2
Q=(6,7)
Q=(7)

node |1 2 3 4 5 6 7
d |0 26 21 12 30 37 42
pred - 3 4 1 4 4 2

d(1,7) = 42 path = (1,4,3,2,7)
d(1,6) =37  path = (l,4,6) or (I,4,5,6)
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Beyond Dijkstra

Dijkstra works for directed and undirected graphs with
non-negative weights.

Straight-forward implementation: O(N?)

Graphs with positive and negative weights
— Bellman-Ford-algorithm

If there is a heuristic to estimate weights:
— improve efficiency of Dijkstra
— A%*-algorithm
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Graph Layout

Task: visualize various interaction data:

e.g. protein interaction data (undirected):
nodes — proteins
edges — interactions

metabolic pathways (directed)
nodes — substances
edges — reactions

regulatory networks (directed):
nodes — transcription factors + regulated proteins
edges — regulatory interaction

co-localization (undirected)
nodes — proteins
edges — co-localization information

homology (undirected/directed)
nodes — proteins
edges — sequence similarity (BLAST score)
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Graph Layout Algorithms

Graphs encapsulate relationship between objects
— drawing gives visual impression of these relations

Good Graph Layout: aesthetic

* minimal edge crossing

* highlight symmetry (when present in the data)
* even spacing between the nodes

Many approaches in literature (and in software tools),
most useful ones usually NP-complete (exponential runtime)

Most popular for straight-edge-drawing:

— force-directed: spring model or spring-electrical model
— embedding algorithms like H3 or LGL
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Force-Directed Layout

9 0
Peter Eades (1984): graph layout heuristic o # Y ¢
N s
— "Spring Embedder" algorithm. b F %
dl'll_lgl "_JI':;' di._;-\,\,r-aJ--.r--.,';b__‘_L_ y

® edges — springs o
vertices — rings that connect the springs fi @

* Layout by dynamic relaxation « ?

— lowest-energy conformation

— "Force Directed" algorithm -

http://www.hpc.unm.edu/~sunls/research/treelayout/node1.html
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Energy and Force

Height

Distance

/M,

Distance

Downhill force

A
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Energy: describes the
altitude of the landscape

E(x) = mgh(x)

Energy increases when
you go up the hill

You need more force
for a steeper ascent

dE(x)
dx
Force: describes the

change of the altitude,
points downwards.

F(z) = —
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Spring Embedder Layout

Springs regulate the mutual distance between the nodes
* too close — repulsive force
e too far — attractive force E

Spring embedder algorithm:
* add springs for all edges

* add loose springs to all non-adjacent vertex pairs | >

Vi-1 V]

Y Y (|lzs — 5] — 1i5)°

z17z+lz-7

Total energy of the system:

Xi, Xj = position vectors for nodes i and j
li = rest length of the spring between i and j
R = spring constant (stiffness)

Problem: lj have to be determined a priori, e.g., from network distance
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Spring Model Layout

Task: find configuration of minimal energy

In 2D/3D: force = negative gradient of the energy OE

oz
F(z) = -VE@) = - | &
OF
Oz

— Iteratively move nodes "downhill" along the gradient of the energy
— displace nodes proportional to the force acting on them

Problems:
* local minima

* a priori knowledge of all spring lengths
— works best for regular grids
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The Spring-Electrical-Model

More general model than spring embedder model: use two types of forces

|) attractive harmonic force between connected nodes (springs)

h __ , _ one uses usually the same
Fi; = —k |ri — ;]| . Y
spring constant k for all edges

2) repulsive Coulomb-like force between all nodes
"all nodes have like charges" — repulsion

Q'i,j

[rs — 75

Fz(; = either Qj = Q or, e.g., Qj = ki k;

Repulsion pushes all nodes apart, springs pull connected nodes together
— workhorse method for small to medium sized graphs

— Do-it-yourself in Assignment 2 <=

Bioinformatics 3 —SS 18
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Spring-Electrical Example

o o9
o ® ® o
. =9 /@ )
e =) e © O
e 0
© (o o
@ ) ©
* o
0 o
° w
< 0 @ o © o
< o
e | © | ©
° o o
@ © o ©®

http://www.it.usyd.edu.au/~aquigley/3dfade/
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Force-Directed Layout: Summary

Analogy to a physical system
=> force directed layout methods tend to meet various aesthetic standards:

» efficient space filling,

 uniform edge length (with equal weights and repulsions)
 symmetry

» smooth animation of the layout process (visual continuity)

Force directed graph layout — the "work horse" of layout algorithms.

Not so nice: the initial random placement of nodes and even very small
changes of layout parameters will lead to different representations.

(no unique solution)

Side-effect: vertices at the periphery tend to be closer to each other
than those in the center...
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Runtime Scaling

Force directed layout: Several possible

— arrangements!!!

loop until convergence: < o
(local minima)
calculate forces:

L springs

< 2\
N(N-1)/2 charge pairs O(N)!!!

move vertices

output positions

— force directed layout suitable for small to medium graphs (< O(1000) nodes?)

Speed up layout by:

* multi-level techniques to overcome local minima -

* clustering (octree) methods for distant |
groups of nodes — O(N log N) o]
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Network Robustness

Network = set of connections

Failure events: - loss of edges
* loss of nodes (together with their edges)

—ih

— Robustness = how much does the network (not)
change when edges/nodes are removed

— loss of connectivity
* paths become longer (detours required)
* connected components break apart
— network characteristics change
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Error and attack tolerance
of complex networks

Réka Albert, Hawoong Jeong & Albert-Laszlé Barabasli

Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame,
Notre Dame, Indiana 46556, USA

s Many complex systems display a surprising degree of tolerance
against errors. For example, relatively simple organisms grow,
persist and reproduce despite drastic pharmaceutical or
environmental interventions, an error tolerance attributed to

i the robustness of the underlying metabolic network'. Complex

communication networks’ display a surprising degree of robust-

ness: although key components regularly malfunction, local fail-

] ures rarely lead to the loss of the global information-carrying
ability of the network. The stability of these and other complex

- systems is often attributed to the redundant wiring of the func-
tional web defined by the systems’ components. Here we demon-
strate that error tolerance is not shared by all redundant systems:
it is displayed only by a class of inhomogeneously wired networks,

millan Magazines Ltd NATURE | VOL 406 | 27 JULY 2000 | www.nature.com
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Random vs. Scale-Free
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Exponential Scale-free

130 nodes, 215 edges

The top 5 nodes with the highest k connect to...
... 27% of the network

... 60% of the network

Albert, Jeong, Barabasi, Nature 406 (2000) 378
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Failure vs. Attack

Failure: remove randomly
selected nodes

Attack: remove nodes with
highest degrees

12 .
a
L E SF
A o Failure
10 ¢ O Attack

o O
- 0]

kA AO A8 AD A8
o}

network diameter
[0 ]

(o))

- O

O

A
Ag Ao AO AO 8O O XS

SF: scale-free network -> attack

E: exponential (random) network
o a0 80 60 5% 91> fajlure / attack

(JDDUDDDDDDDDDDDDDD— SF:faiIure

L |
61.00 0.02

fraction of nodes removed

|
0.04

N = 10000, L =20000, but effect is size-independent;

Interpretation:

SF network diameter increases strongly when network is attacked

but not when nodes fail randomly
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Two real-world networks

Scale-free: - very stable against random failure ("packet re-rooting")
* very vulnerable against dedicated attacks ("9/11")

| | T
b o c
O 00 |
< 19T nternet 7 WWW 0%
S Co 20 -
g © T 00
8 oOOO P
5 10F Oooco - - o
Y o0 Attack ©  Attack
S [ X | Oo
E dfffp 15 . od ]
- O
| Failure | g Failure
0 1 1 1 1 1 1 0 1 | 1
0.00 0.01 0.02 0.00 0.01 0.02
fraction of nodes removed
http://moat.nlanr.net/Routing/rawdata/ : WWW-sample containing 325729 nodes
6209 nodes and 12200 links (2000) and 1498353 links
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Network Fragmentation

<s>:average size of the

isolated clusters (except A 2 a ' ﬁ_' ' ) b 1

v ot 2 %
the largest one) v | E .. _\ SF o %

© 0

00 04 08
S: relative size of the v 1 S <s> ey
o ] o = Failure 1 el

largest cluster S; this is i o e Attack s
defined as the fraction s : i 1 b o,

) o
of nodes contained in T%: %. o ga,,ém 0 s
the largest cluster (that .0 0.2 0.4 0.0 0.2 0.4
is,S=1forf=0) fraction of nodes removed

Random network: + no difference between attack and failure (homogeneity)
* fragmentation threshold at fc 2 0.28 (S = 0)

Scale-free network: * delayed fragmentation and isolated nodes for failure
» critical breakdown under attack at fc = 0.18
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Reducing Network Complexity?

Rpals Rpc3t

Is there a representation that highlights
the structure of these networks???

TAF1T

> AF40

TAFE! AFS0

TAF28 1A

Fa7
TAFST rap1an

* Modular Decomposition (Gagneur, ..., Casari, 2004)
* Network Compression (Royer, ..., Schroder, 2008)
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Method {

Modular decomposition of protein-protein interaction networks
Julien Gagneur™', Roland Krause®, Tewis Bouwmeester” and Georg Casari”

Addresses: “Cellzome AG, Meyerhofstrasse 1, 69117 Heidelberg, Germany. "Laboratoire de Mathématiques Appliquées aux Systémes, Ecole
Centrale Paris, Grande Voie des Vignes, 92295 Chatenay-Malabry cedex, France.

AR —

Abstract [

We introduce an algorithmic method, termed modular decomposition, that defines the
organization of protein-interaction networks as a hierarchy of nested modules. Modular
decomposition derives the logical rules of how to combine proteins into the actual functional
complexes by identifying groups of proteins acting as a single unit (sub-complexes) and those that
can be alternatively exchanged in a set of similar complexes. The method is applied to experimental
data on the pro-inflammatory tumor necrosis factor-o. (TNF-a.)/NFkB transcription factor
pathway.

R —— -

Genome Biology 5 (2004) R57
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Shared Components

Shared components = proteins or groups of proteins occurring in different complexes
are fairly common. A shared component may be a small part of many complexes,
acting as a unit that is constantly reused for its function.

Also, it may be the main part of the complex e.g. in a family of variant complexes that
differ from each other by distinct proteins that provide functional specificity.

Aim: identify and properly represent the modularity of protein-protein interaction
networks by identifying the shared components and the way they are arranged to

generate complexes.

Gagneur et al. Genome Biology 5, R57 (2004)

Georg Casari, Cellzome (Heidelberg)
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Modular Decomposition of a Graph

Module ;= set of nodes that have the
same neighbors outside of the module

trivial modules:

{a},{b}, ..., {g}
{a,b, ..., g}

non-trivial modules:
{a, b}, {a, c}, {b, c}
{a, b, c}
{e,f}

Quotient: representative node for a module

Iterated quotients — labeled tree representing the original network
— "modular decomposition"”

Gagneur et al, Genome Biology 5 (2004) R57
Bioinformatics 3 — SS |8
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Quotients

Series: all included nodes are direct neighbors (= clique)

{a, b, ¢} d e

{a, b, c} d e

Bioinformatics 3 —SS 18 Vé6 -28



A Simple Recursive Example

series

) o—
. {a,b,c} d {e,f}
prime .
®
{a,b,c,de f,g}
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Gagneur et al, Genome Biology 5 (2004) R57
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Using data from protein complex purifications
e.g. by TAP

Different types of data:
* Y2H: detects direct physical interactions between proteins

« PCP by tandem affinity purification with mass-spectrometric identification of the
protein components identifies multi-protein complexes

— Molecular decomposition will have a different meaning due to different
semantics of such graphs.

Here, we focus analysis on PCP content from TAP-MS data.

PCP experiment: select bait protein where TAP-label is attached — Co-purify protein
with those proteins that co-occur in at least one complex with the bait protein.

Gagneur et al. Genome Biology 5, R57 (2004)
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Data from Protein Complex Purification

Graphs and module labels from
systematic PCP experiments:

(a) Two neighbors in the network are
proteins occurring in a same complex.

(b) Several potential sets of complexes
can be the origin of the same observed
network. Restricting interpretation to the
simplest model (top right), the series
module reads as a logical AND between
its members.

(c) A module labeled “parallel”
corresponds to proteins or modules
working as strict alternatives with
respect to their common neighbors.

(d) The “prime” case is a structure
where none of the two previous cases
occurs.
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(a) (b)

Protein complex purification Series = combined

TH e A

dod | '
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(c) (d)

1) Parallel = alternatives (P) Prime
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Gagneur et al. Genome Biology 5, R57 (2004)
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Real World Examples

Two examples of modular decompositions of protein-protein
interaction networks.

G
O

In each case from top to bottom: schemata of the complexes,
the corresponding protein-protein interaction network as
determined from PCP experiments, and its modular
decomposition (MOD).

(a) Protein phosphatase 2A. 2

Pph22
Parallel modules group proteins that do not interact but (/ $ \D
are functionally equivalent. - N
Protein complex
V' purification Ryt
Here these are the catalytic proteins Pph21 565 Modular decompositon "
and Pph22 (module 2) and the regulatory  Protein
proteins Cdc55 and Rts1 (module 3), Series module
connected by the Tpd3 ,backbone”. " Parallel module
1
Notes:* Graph does not show functional alternatives!!! A)
* other decompositions also possible z\) Tpda

Rts1 CdcS5 Pph21 Pph22
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RNA polymerases |, Il and Il
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Gagneur et al. Genome Biology 5, R57 (2004)
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Summary

Modular decomposition of graphs is a well-defined concept.

* One can proof thoroughly for which graphs a modular decomposition
exists.

« Efficient O(m + n) algorithms exist to compute the decomposition.

However, experiments have shown that biological complexes are not
strictly disjoint. They often share components

— separate complexes do not always fulfill the strict requirements of
modular graph decomposition.

Also, there exists a ,danger” of false-positive or false-negative interactions.

— other methods, e.g., for detecting communities (Girven & Newman) or
densely connected clusters are more suitable for identification of
complexes because they are more sensitive.
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Transcriptional activation

looping
factors

.......

0 .
----
--------

Mediator

TATA 5SS
DNA-looping enables interactions for the distal promotor

regions,
Mediator cofactor-complex serves as a huge linker
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cis-regulatory modules

coactivators 0 Q
corepressor @

~ 0000 03

TFs are not dedicated activators or respressors!

-+
AN

)

P

It's the assembly that is crucial.

Bioinfqgmgg'cs 3—SS | Vé6 -36
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Protein complexes involving
multiple transcription factors

Borrow idea from ClusterOne method:

|dentify candidates of TF complexes

In protein-protein interaction graph

by optimizing the cohesiveness

w (V)

FV) = oV T wroma (1)
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underlying domain-domain representation of
PPls

Assumption: every domain supports only one interaction.

Green proteins A, C, E form actual complex.

Their red domains are connected by the two green edges.

B and D are incident proteins. They could form new interactions

(red edges) with unused domains (blue) of A, C, E
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data source used: Yeast Promoter Atlas,
PPl and DDI

seed proteins,
threshold for pairs,
max. depth of search

Prot * emBL-£BI "

W -
weighted protein-protein

i I I

interaction data, such as : :
37 domain-aware cohesiveness
PrePPI optimization algorithm
E domain-domain
" interaction network
transcription factor data retrieval and buildup automatically

complex candidates Nnm §2 Inkerpro
»®aM= IDDI

Datbnss o8 Prodoie Domats |ohe mat wa

Will, T. and Helms,V. (2014)
Bioinformatics, 30, i415-i42 |
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Daco identifies far more TF complexes than
other methods

DACO Cllps Clls (Il MCD MCL

TF complexes 1375 175/176  61/63  106/106 16/38  75/79
TF variants 412 134/138  59/61  80/80 16/38  75/79
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Examples of TF complexes — comparison
with ClusterONE

(Eis1 L)
A ,,/)Tlmxs)
YG3A

(b} HIR(SED) / ClusterONE

) ORC(MIPS) / (1) ORC(MIPS) / ClusterONE

Green nodes: proteins in the

A%

N reference that were matched by the
{(c) RPD3L{CYC2008) [ {d) RPDSL{C'YC2008) / ClusterONE o
DACO prediction

red nodes: proteins that are in the
predicted complex, but not part of
the reference.
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Performance evaluation

4.5
Methods Ref. comparison Bio. relevance
4.0 B DACO EEE Prec Bl NColoc x
I Cllps B Rec B GOE o
35/ @@ Clls =M GeoA W GOE(MF) e :
30l ] Cl1 MMR GOE(BP) S
v 3 MCD GOE(CC) 2 g -
5 2.58% B MCL -
8 2.0F : S (28
e ™ =
o o
O 5 A
1.5 - = =t | S
1ol i m | : A ¥ ; 2
B o |m (¢ . . : [ S (8|28 3 =
0.0 - , _
ref.. CYC2008 ref.: MIPS ref.. SGD bio. relevance
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Co-expressed target genes of MET4/MET32
TF complex during yeast cell cycle

normalized expression

‘ . \ ‘;;\ - /4\77% .
“ —( % ~g /] g
‘\'\\\Va.\.d /

— _—
‘VA?;:’ =

0 5 10 15 20 25 30
timepoints
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Functional role of TF complexes

TFs Paecs  Binding mode Targets Regulatory influence GO process enrichment (P <0.05, Bonferroni corrected) in targets
MET4/MET32 0.0010 coloc. 19 t Methionine metabolic process

TBP/HAPS 0.0335 med. 47 }

GLN3/DALS0 0.0009  med. 28 Allantoin catabolic process

DIGI1/STEI2/SWI6 0.0369 all 15 Fungal-type cell wall organization

FHLI/RAPI 0.0001 coloc. 116 + rRNA transport

RPHI1/GIS1 0.0001 med. 100 Hexose catabolic process

CBFI/MET32 0.0002 coloc. 33 0 Sulfate assimilation

DIGI/STEI2 0.0003 med. 34 Response to pheromone

GCN4/RAPI 0.033  med. 62 t

MSN4/MSN2 0.0021 med. 105 } Oligosaccharide biosynthetic process

DALS0O/GZF3 0.0044 med. 20 Purine nucleobase metabolic process

SWI6/SWI4 0.0039 med. 53 t Regulation of cyclin-dependent protein serine/threonine kinase activity
STB1/SWI6 0.0275 all 47 + [

TBP/SWI6 0.0159 med. 14 + /

GLN3/GZF3 0.0120 adj. 31 Allantoin catabolic process

MBPI/SWI6/SWI4  0.0307 med. 18 + Regulation of cyclin-dependent protein serine/threonine kinase activity
MBPI/SWI6 0.0124 ad,. 25 Cell cycle process

Note: Owing to the number of permutations of the test, the lowest possible value is Pggcs = 107, The calculations were conducted for different conceivable modes of targeting
(all shared target proteins, direct adjacency, mediated adjacency and colocalization) to have a detailed picture of the possible target-gene sets. Only the most enriched GO
process term i1s shown for each target set. The inferred regulatory influence on the rate of transcrniption 1s abbreviated as follows: + (increase), — (decrease), o (no statement
possible), / (conflicting annotations).
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Summary

What you learned today:

* Graph layout: spring-electric layout algorithm
produces aesthetic graphs

* Network robustness
scale-free networks are failure-tolerant, but fragile to attacks
<=> the few hubs are important
=> immunize hubs!

 Modules in networks
=> modular decomposition
=> optimization of cohesiveness (DACO)

NeXxt lecture:

* Are biological networks scale-free? (other models?)
* Network growth mechanisms
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