V7 - Biological PPl Networks

- graph bisection (-> communities)
- are biological networks really scale-free?
- network growth
- functional annotation in the network
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Modularity: an example of graph partitioning

The simplest graph partitioning problem is the division of a
network into just 2 parts. This is called graph bisection.

If we can divide a network into 2 parts, we can also divide
it further by dividing one or both of these parts ...

graph bisection problem: divide the vertices of a
network into 2 non-overlapping groups of given sizes
such that the number of edges running between
vertices in different groups is minimized.

The number of edges between groups is called the cut size.

In principle, one could simply look through all possible divisions
of the network into 2 parts and choose the one with smallest cut size.
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Algorithms for graph partitioning

But this exhaustive search is prohibitively expensive!

n!

Given a network of n vertices. There are different ways of dividing it

n1!n2!
into 2 groups of n, and n, vertices.

The amount of time to look through all these divisions will go up roughly
exponentially with the size of the system.

Only values of up to n = 30 are feasible with today‘s computers.
In computer science, either an algorithm can be clever and run quickly, but will

fail to provide the optimal answer in some (or perhaps in many) cases, or it will
always find the optimal answer, but takes an impractical length of time to do so.
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The Kernighan-Lin algorithm

This algorithm proposed by Brian Kernighan and Shen Lin in 1970 is one of the

simplest and best known heuristic algorithms for the graph bisection problem.
(Kernighan is also one of the developers of the C language).

(a) The algorithm starts with any division of the vertices of a network into two
groups (shaded) and then searches for pairs of vertices, such as the pair
highlighted here, whose interchange would reduce the cut size between the
groups.

(b) The same network after interchange of the 2 vertices.
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The Kernighan-Lin algorithm
(1) Divide the vertices of a given network into 2 groups (e.g. randomly).
(2) For each pair (i,j) of vertices, where i belongs to the first group and j to the
second group, calculate how much the cut size between the groups would

change if i and j were interchanged between the groups.

(3) Find the pair that reduces the cut size by the largest amount and swap the
vertices.

If no pair reduces it, find the pair that increases it by the smallest amount.

Repeat this process, but with the important restriction that each vertex in the
network can only be moved once.

Stop when there is no pair of vertices left that can be swapped.
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The Kernighan-Lin algorithm (ll)

(3) Go back through every state that the network passed through during the
swapping procedure and choose among them the state in which the cut size
takes its smallest value.

(4) Perform this entire process repeatedly, starting each time with the best
division of the network found in the last round.

(5) Stop when no improvement on the cut size occurs.
Note that if the initial assignment of vertices to groups is done randomly,

the Kernighan-Lin algorithm may give (slightly) different answers
when it is run twice on the same network.
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The Kernighan-Lin algorithm (II)

- - > - P > -
- - - -
. L) » .
- by - - .
-, - -
G shaes srias
:‘..”. ‘ ....... .%....
s s P
. U T AYA e e o N | 1 . S AYAT e 0 e 0 I S AYAT IR0
oooooooooooooooooooooooooooooo
ooooooooooooooooooooooooooooooooooooooo
Sttt il Sanisnia
sialalatalatenia ¥ N ¥ slfetalalaleteil slelalelalotot
o.o.:.o.o.:xo.o:-ﬁ..-o .. b R :.o.oo.o...:ooo’o'.o- v
sletalata = :‘ - e e wletelete N
"0’::"’ -. .:.. ... > - :..
ot VSt T e
0:0':\:o. :0. :ogo::‘&uo: P e Tess W sesTuTery » ::..: .................
..°.:nc. N A L at  ai R S e S
PPOCREICGITASEEE: L orimmmlesioelmiSn L tdalaielesies i
. “-rew VAT o S SFRTERL a ARR  Y EEEEEEER MEE SNER b Ai
AR X AR

(a) A mesh network of 547 vertices of the kind commonly used in finite element
analysis.

(b) The best division found by the Kernighan-Lin algorithm when the task is to
split the network into 2 groups of almost equal size.

This division involves cutting 40 edges in this mesh network and gives parts of
273 and 274 vertices.

(c) The best division found by spectral partitioning (alternative method).
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Runtime of the Kernighan-Lin algorithm

The number of swaps performed during one round of the algorithm is equal to the
smaller of the sizes of the two groups < [0, n/ 2].

— in the worst case, there are O(n) swaps.

For each swap, we have to examine all pairs of vertices in different groups to
determine how the cut size would be affected if the pair was swapped.

At most (if both groups have the same size),
there are n/ 2 xn/ 2 = n?/4 such pairs, which is O(n?).
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Runtime of the Kernighan-Lin algorithm (ii

When a vertex i moves from one group to the other group, any edges connecting
it to vertices in its current group become edges between groups after the swap.

Let us suppose that there are k5™ such edges.

Similarly, any edges that i has to vertices in the other group, (say k¢’ ones)
become within-group edges after the swap.

There is one exception. If j is being swapped with vertex j and they are connected
by an edge, then the edge is still between the groups after the swap

— the change in the cut size due to the movement of i is —(kethe" - k;same — A
A similar expression applies for vertex j.

— the total change in cut size due to the swap is
_( kiother - kl_same + kj other _ kj same _ 9 Aij)

Bioinformatics 3 —SS 18 V7 -



Runtime of the Kernighan-Lin algorithm (iii)

For a network stored in adjacency list form, the evaluation of this expression
involves running through all the neighbors of i and j in turn, and hence
takes time on the order of the average degree in the network,

or O (m/n) with m edges in the network.

— the total running time is O (n x n? x m/n ) = O(mn?).

For a sparse network with m o n, this is O(n?3).

For a dense network (with m — "(”2_1)) , this is O(n4).

This time still needs to be multiplied by the number of rounds the algorithm is
run before the cut size stops decreasing.
For networks up to a few 1000 of vertices, this number may be between 5 and 10.
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brief communications {

Lethality and centrality in protein networks

The most highly connected proteinsinthe cellare the mostimportant forits survival.

T ——
Jeong, Mason, Barabasi, Oltvai, Nature 411 (2001) 41
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largest cluster of the yeast proteome (at 2001)
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Effect of sampling on topology predictions ¢
of protein-protein interaction networks

Jing-Dong ] Han!~3, Denis Dupuy!», Nicolas Bertin!, Michael E Cusick! & Marc Vidal!

R ———— —
Nature Biotech 23 (2005) 839

Generate networks of various types,
sample sparsely from them
— determine degree distribution

- - e

* Random (ER / Erdos-Renyi) — P(k) = Poisson
* Exponential (EX) — P(k) ~ exp[-k]

* scale-free / power-law (PL) — P(k) ~ kY
* P(k) = truncated normal distribution (TN)

D UL Y
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Partial Sampling

Estimated for yeast: 6000 proteins, 30000 interactions

Table 1 Topological properties of interactome maps

Ito et al. Uetz et al. Ito-Uetz Li et al. Giot et al. Minimum Maximum

Data set (yeast) (yeast) combined (worm) (fly) value value
Total number of nodes 797 1,005 1,417 1,415 4,651 797 4,651
Nodes in main 417 (52%) 473 (47%) 970 (68%) 1,260 (89%) 3,039 (65%) 47% 89%
component
Total number 806 948 1,520 2,135 4 787 806 4,787
of interactions
Interactions in main 544 558 1,229 2,038 iy 544 Ly
component
R-square 0.843 0.954 0.899 0.885 091 0.843 0.954
Y -1.82 -2.42 -1.91 -1.59 -2.75 -2.75 -1.59
<k> 1.96 1.84 2.15 2.98 2.04 1.84 2.98
Average clustering 0.2 0.11 0.09 0.08 0.06 0.06 0.2
coefficient
Number of network 143 177 160 70 591 70 591
compeonents
Average component size 5.6 T 89 20.2 7.9 5.6 20.2
Characteristic path length 6.14 7.48 6.55 491 9.43 491 9.43
Number of baits 455 512 827 502 2,820 455 2,820

The linear regression R-square measures the linearity between log(n{k)) and log(k} i.e. the fit to a power-law distribution. y is the exponent of the power law distribution
formula that best fits the observed distribution. <k> is the average number of interactions per protein observed in the network. For the Ito, Li and Giot data sets only the high

confidence interactions were considered (core).

Y2H experiments detected only 3...9% of the complete interactome!
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R square

Given: a data set with n values y,,...,y, and
a set of fitted / predicted / modelled) values f|,...,f, e.g. from linear regression.

We call their difference residuals e, =y, — f,
1 n
and the mean value Y = - Zl Yi

The total sum of squares (proportional to the variance of the data) is:

SSiot = Y _(ui — )%,

?
The sum of squares of residuals is:

2 2
SSres — E :(y'i_fi) — E :6;)
i i
The coefficient of determination, R? or r? is often defined as:

S Sres

R*=1- :
SStot.

www.wikipedia.org
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Sparsely Sampled random (ER) Network

(c) Shows linearity (R square) between detected P(k)
resulting P(k) for different coverages and ideal power law; good agreement (red; R ~| for

/ \ low edge coverage) ‘
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— for sparse sampling (10-20%), even an ER network

"looks" scale-free (when only P(k) is considered)
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Anything Goes — different topologies

100

<k>=5

100

<k>=10 *°
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Han et al, Nature Biotech 23 (2005) 839
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Compare to Uetz et al. data

10,000
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il (solid line) is
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Sampling density affects observed degree distribution
— true underlying network cannot be identified from available data
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Network Growth Mechanisms

Given: an observed PPl network — how did it grow (evolve)?

Inferring network mechanisms: The Drosophila {
melanogaster protein interaction network

Manuel Middendorf!, Etay Ziv*¥, and Chris H. WigginsS"

'Department of Physics, *College of Physicians and Surgeons, SDepartment of Applied Physics and Applied Mathematics, and "Center for Computational
Biology and Bioinformatics, Columbia University, New York, NY 10027

Communicated bv Rarrv H. Honia. Columhia Liniversitv. New Yark NY. Decemhber 20. 2004 (received far review Sentembhe;

PNAS 102 (2005) 3192

Look at network motifs (local connectivity):
compare motif distributions from various network prototypes to fly network

Idea: each growth mechanism leads to a typical motif distribution,
even if global measures are comparable
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The Fly Network

Y2H PPl network for D. melanogaster from Giot et al. [Science 302 (2003) 1727]

Giot et al. assigned a 10°;
confidence score [O’ |] for » percolation events for p > 0.65 1
every observed interaction. "

)
10°

— use only data with
p > 0.65 (0.5) because ...
— remove self-interactions

er of vertices

107

and isolated nodes

High confidence network
with 3359 (4625) nodes
and 2795 (4683) edges.

Use prototype networks Size of largest components.At p = 0.65, there is one large component

of same size for training. with 1433 nodes and the other 703 components contain at most |5
nodes.

Middendorf et al, PNAS 102 (2005) 3192
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Network subgraphs -> motives

All non-isomorphic subgraphs that can be generated with a walk of length 8
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Growth Mechanisms

Generate 1000 networks, each, of the following 7 types
(same size as fly network, undefined parameters were scanned)

DMC Duplication-mutation, preserving complementarity

DMR Duplication with random mutations

RDS Random static networks

RDG Random growing network

LPA Linear preferential attachment network (Albert-Barabasi)
AGV Aging vertices network

SMW Small world network
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Growth Type 1: DMC

"Duplication — mutation with preserved complementarity"

Evolutionary idea: gene duplication, followed by a partial loss of
function of one of the copies, making the other copy essential

Algorithm:

Start from two connected nodes

* duplicate existing node with all interactions

» for all neighbors: delete with probability gdel
either link from original node or from copy x

Repeat these steps many (e.g. N — 2) times

Bioinformatics 3 —SS 18
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Growth Type 2: DMR

"Duplication with random mutations”

Gene duplication, but no correlation between original and copy
(original unaffected by copy)

Algorithm:

Start growth from five-vertex cycle,
repeat N - 5 times:

* duplicate existing node with all interactions

» for all neighbors: delete with probability qdel
link from copy

* add new links to non-neighbors with
probability gnew/n
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Growth Types 3-5: RDS, RDG, and LPA

RDS = static random network

Start from N nodes, add L links randomly

RDG = growing random network

Start from small random network, add nodes,
then edges between all existing nodes

LPA = linear preferential attachment

Add new nodes similar to Barabasi-Albert algorithm,

but with preference according to (ki + a), a =0...5
(BA for a = 0)

Bioinformatics 3 —SS 18
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Growth Types 6-7: AGV and SMW

AGYV = aging vertices network

Like growing random network,
but preference decreases with age of the node
— citation network: more recent publications are cited more likely

SMW = small world networks, see Watts, Strogatz, Nature 363, 202 (1998)

Randomly rewire regular ring lattice
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Alternating Decision Tree Classifier

Trained with the motif counts from 1000 networks of each of the 7 types

— prototypes are well separated and can be reliably classified

s V -‘\

1: Sl4 <165

3: S1<1L5

DMC: 0.49
DMR: 0.58
RDG: 0.56
LPA: -3.94
AGV: -3.94

DMC: 0.62
DMR: -3.64
RDG: -3.82
LPA: -4.25
AGV: -0.03
SMW: 0.29
RDS: 0.30

'

6: S49 < 203.0

/y

DMC: 0.04
DMR: -0.75
RDG: -1.63
LPA: -2.46
AGV: -0.30
SMW: 0.05
RDS: 0.65

DMC: -0.21
DMR: -0.44

RDG: -0.94
LPA: -1.40

AN

DMC: -1.78
DMR: 0.12

DMC: -0.65
DMR: 0.19

RDG: 0.24 RDG: 0.10
LPA: 0.99 LPA: -0.01
AGV: 0.05 AGV: 0.01
SMW: -3.92 SMW: 0.02

RDS: -3.94 RDS: 0.03

'

4: S27 < 2761.5

¥

DMC: 0.65
DMR: -0.57
RDG: -1.60
LPA: -0.00
AGV: 0.05
SMW: 0.73
RDS: -2.44

Decision nodes count

occurrence of subgraphs

Bioinformatics 3 —SS 18

DMC: 4.41
DMR: -3.50
RDG: -3.51
LPA: -1.70
AGV: -2.80
SMW: -2.94
RDS: -3.01

Prediction accuracy for networks
similar to fly network with p = 0.5:

Prediction
Truth DMR DMC AGV LPA SMW RDS RDG
DMR 99.3 0.0 0.0 0.0 0.0 0.1 0.6
DMC 0.0 99.7 0.0 0.0 0.3 0.0 0.0
AGY 0.0 0.1 84.7 13.5 1.2 0.5 0.0
LPA 0.0 0.0 10.3 89.6 0.0 0.0 0.1
SMW 0.0 0.0 0.6 0.0 99.0 0.4 0.0
RDS 0.0 0.0 0.2 0.0 0.8 99.0 0.0
RDG 0.9 0.0 0.0 0.1 0.0 0.0 99.0
Middendorf et al, PNAS 102 (2005) 3192 V7 ’6



Are the generated networks different?

1 10°# b
5 e © DMR
2 ® * RDG 14}
10-1? @ a
t o 121
.2’ . %
10 ) e 10
2 | Q -
£ | ¢ T8
10°! ° -
? 5
9 o
10-4; % 4
| x OND
2
5
10 et
0 1 2 0 q - -
10 19 10 -30 20 10 0 10 20
prediction score
DMR RDG
(C)126 10713 1077 (5.4 1077£3.7 1077 Clustering coefficient
0 104 £0.1 9.6+ 0.04
Average shortest path length

Example: DMR vs. RDG: Similar global parameters <C> and <I> (left),
but different counts of the network motifs (right)

-> networks can (only) be perfectly separated by motif-based classifier
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How Did the Fly Evolve?

Subgraphs with up to

Eight-step subgraphs seven edges Eight-step subgraphs
(p* = 0.65) (p* = 0.65) (p* = 0.5)

Rank Class Score Class Score Class Score

1 DMC 82+*1.0 DMC 86+ 1.1 DMC 08 =29
2 DMR -6.8+09 DMR -6.1+1.7 DMR -21x20
3 RDG -95+23 RDG -93+16 AGV -31x22
4 AGV —-10.6 = 4.2 AGV -11.5+ 4.1 LPA -10.1 = 3.1
5 LPA -16.5 + 3.4 LPA -14.3 + 3.2 SMW -206 =19
6 SMwW -18.9 = 0.7 SMW -183+1.9 RDS -223 =17
7 RDS -19.1+ 23 RDS -19.9*+15 RDG —-225 =47

Drosophila is consistently (independently of the cut-off in subgraph size) classified as a DMC network, with an
especially strong prediction for a confidence threshold of p* = 0.65.

— Best overlap with DMC (Duplication-mutation, preserved complementarity)

— Scale-free (LPA) or random networks (RDS/RDG) are very unlikely

Middendorf et al, PNAS 102 (2005) 3192
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Motif Count Frequencies

108 .
[ —

10% 3
" & ' . ' 1, 110 ‘é

D. melanog ! ] ‘ it ‘§
| | | | w

B

-> DMC and DMR
networks contain
most subgraphs in
similar amount as fly
network (top).
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rank score: fraction of test networks with
a higher count than Drosophila .
(50% = same count as fly on avg.) N count
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Randomly replace edges in fly network and classify again:

Experimental Errors?

prediction score

107

-10F

161

-20

-25

0.1

02

03 04 05 06 07
fraction of edges replaced

08

0.9

— Classification unchanged for < 30% incorrect edges,
at higher values RDS takes over (as to be expected)
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Summary (l)

Sampling matters!

— "Scale-free" P(k) is obtained by sparse sampling
from many network types

Test different hypotheses for

* global features
— depends on unknown parameters and sampling
— no clear statement possible

* local features (motifs)
— are better preserved
— DMC best among tested prototypes

Bioinformatics 3 —SS 18
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What Does a Protein Do?
% BRENDA ||

The Comprehensive Enzyme Information System

TU

/ Braunschweig
| \ Dept. of

Bioinformatics

Explorer [ SEARCH ][ BROWSE ]

B 1 Oxidoreductases (4042 organisms) 3 %
B 2 Transferases (3198 organisms) 3 &
B 2.1 Transferring one-carbon groups (615 organisms) 2 Y
B32.1.1 Methyltransferases (514 organisms) 3 &
£32.1.2 Hydroxymethyl-, formyl- and related transferases (82 organisms) 3 %
£32.1.3 Carboxy- and carbamoyltransferases (105 organisms) 3 ®
B 2.1.4 Amidinotransferases (32 organisms) 3 Y
®2.1.4.1 glycine amidinotransferase (17 organisms) 3 ®
®2.1.4.2 scyllo-inosamine-4-phosphate amidinotransferase (15 organisms) 3 %
£32.2 Transferring aldehyde or ketonic groups (91 organisms) 2 ®
B32.3 Acyltransferases (930 organisms) 3 %
£32.4 Glycosyltransferases (925 organisms) 2 ®
£32.5 Transferring alkyl or aryl groups, other than methyl groups (547 organisms) 2 ®
£32.6 Transferring nitrogenous groups (377 organisms) 3 @
£32.7 Transferring phosphorus-containing groups (1343 organisms) 3 Y
£3 2.8 Transferring sulfur-containing groups (276 organisms) 3 ®
£32.9 Transferring selenium-containing groups (6 organisms) 3
£33 Hydrolases (4453 organisms) 2 %
B34 Lyases (2145organisms) 3 ©
B35 Isomerases (849 organisms) 3 Y
B 6 Ligases (686 organisms) 3 &

e — ﬁ

Enzyme Classification scheme

(from http://www.brenda-enzymes.org/)
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What about Un-Classified Proteins?

Vol. 21 Suppl. 12005, pages i302-i310
doi: 10. 1093/bicinformatics/bti1054 [

_ Whole-proteome prediction of protein function
mg: via graph-theoretic analysis of interaction maps
1

&

Elena Nabieva-2, Kam Jim?, Amit Agarwal', Bernard Chazelle’
and Mona Singh’:4*

'Computer Science Department and 2Lewis-Sigler Institute for Integrative Genomics,
Princeton University, Princeton, NJ 08544, USA

Received on January 15, 2005; accepted on March 27, 2005

Many unclassified proteins:
— estimate: ~1/3 of the yeast proteome not annotated functionally

— BioGRID: 4495 proteins in the largest cluster of the yeast physical

interaction map.
only 2946 have a MIPS functional annotation
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Partition the Graph

Large PPI networks can be built from (see V3, V4, V5):
« HT experiments (Y2H, TAP, synthetic lethality, coexpression, coregulation, ...)
« predictions (gene profiling, gene neighborhood, phylogenetic profiles, ...)

— proteins that are functionally linked

slp _D_D"D'D_-D_
co-regulated _'_J-(M Sp -<: D ED D
l - genome [ Al B ) — .
B ... — e | o oo
| Ad- o el . — DB

genome 3 (BN A= 8 ; S D-n—

|dentify unknown functions from clustering of these networks by, e.g.:
 shared interactions (similar neighborhood)

 membership in a community
« similarity of shortest path vectors to all other proteins (= similar path into

the rest of the network)
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Protein Interactions

Nabieva et al used the S. cerevisiae dataset from GRID of 2005 (now BioGRID)
— 4495 proteins and |12 531 physical interactions in the largest cluster

( R Search R
B l O G l D (o /.E1 BBy Escherichia coli K12 ™
General Repository for Interaction Datasets

help / : :

home support contribute downloads mirrors about us
About BioGRID BioGRID Links
The Biological General Repository for Interaction Datasets (BioGRID) database « Arabidopsis Information
(http://www.thebiogrid.org) was developed to house and distribute collections of Resource
protein and genetic interactions from major model organism species. BioGRID » BioPIXIE
currently contains over 198 000 interactions from six different species, as  Biotechnology and Biological
derived from both high-throughput studies and conventional focused studies. Sciences Research Council
Through comprehensive curation efforts, BioGRID now includes a virtually (BBSRC)
complete set of interactions reported to date in the primary literature for both the » Canadian Institutes of Health
budding yeast Saccharomyces cerevisiae and the fission yeast Research (CIHR)
Schizosaccharomyces pombe. A number of new features have been added to » Cytoscape
the BioGRID including an improved user interface to display interactions based » Database of Interacting
on different attributes, a mirror site and a dedicated interaction management Proteins
system to coordinate curation across different locations. The BioGRID provides » Entrez-Gene
interaction data with monthly updates to Saccharomyces Genome Database, » Flybase
Flybase and Entrez Gene. Source code for the BioGRID and the linked Osprey +« Gene DB
network visualization system is now freely available without restriction. » Gene Ontology

» Germ Online

http://www.thebiogrid.org/about.php
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Function Annotation

Task: predict function (= functional annotation) for an unlabeled protein
from the available annotations of other proteins in the network

Similar task:
How to assign colors to
the white nodes!?

Use information on:

e distance to colored nodes
* local connectivity

* reliability of the links
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Algorithm |: Majority
This concept was presented in
Schwikowski, Uetz, and Fields, " A network of protein—protein interactions in yeast"
Nat. Biotechnol. 18 (2000) 1257

Consider all direct neighbors and sum up how often a certain annotation occurs
— score for an annotation = count among the direct neighbors
— take the 3 most frequent functions

Majority makes only limited use

of the local connectivity

— cannot assign function to
next-neighbors

For weighted graphs:
— use weighted sum
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Extended Majority: Neighborhood

This concept was presented in
Hishigaki, Nakai, Ono, Tanigami, and Takagi, "Assessment of prediction accuracy of
protein function from protein—protein interaction data",

Yeast 18 (2001) 523

Look for overrepresented functions within a given radius of 1,2, or 3 links
— use as function score the value of a y2—test

Neighborhood algorithm does not
’ ® consider local network topology

‘\(5/ O Both examples (left) are
treated identically with r =
4 2
® ./C\ although the right situation

feels more certain (2 direct

neighbors of ? are labeled)
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Minimize Changes: GenMultiCut

This concept was presented in
Karaoz, Murali, Letovsky, Zheng, Ding, Cantor, and Kasif, "Whole-genome annotation
by using evidence integration in functional-linkage networks"

PNAS 101 (2004) 2888

"Annotate proteins so as to minimize the number of times that different
functions are associated to neighboring (i.e. interacting) proteins”

— generalization of the multiway k-cut problem for weighted edges,
can be stated as an integer linear program (ILP)

P PR B

Multiple possible solutions — scores from frequency of annotations
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Nabieva et al: FunctionalFlow

Extend the idea of "guilty by association™
— each annotated protein is considered as a source of "function"-flow
— propagate/simulate for a few time steps
— choose the annotation a with the highest accumulated flow

Each node u has a reservoir Riy(u), each edge a capacity constraint (weight) wuy

oo, 1f u 1s annotated with a,

a —
0, otherwise. and gy(u,v) =0

Initially: Rj(u) = {

Then: downhill flow from node u to neighbor node v:

O, lf R;l l(u) <Rta l(v) Idea: Node v has already ,,more

function than node u = no flow
uphill

gl (u,v) =

. w,, ., .
min (wu Vs ) , otherwise.
’ Z(u,y)eE Wy y

Score from accumulated in-flow:

d
@)=Y Y gv,u)

t=1 v:(u,v)eE

Nabieva et al, Bioinformatics 21 (2005) i302
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An Example

thickness = current flow

accumulated
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Comparison
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s
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v
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Proteins predicted incorrectly

For FunctionalFlow:

Six propagation steps were
simulated; this is comparable
to the diameter of the yeast
network = |2

Majority results are initially
very good, but has limited
coverage.

Results with neighborhood
get more imprecise for larger
radii r

Change score threshold for accepting annotations — ratio TP/FP
— FunctionalFlow performs best in the high-confidence region
— but generates still many false predictions!!!
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Going the Distance for Protein Function Prediction: A
New Distance Metric for Protein Interaction Networks

Citation: Cao M, Zhang H, Park J, Daniels NM, Crovella ME, et al. (2013) Going the Distance for Protein Function Prediction: A New Distance Metric for Protein
Interaction Networks. PLoS ONE 8(10): €76339. doi:10.1371/journal.pone.0076339

Relying on the ordinary shortest-path distance metric in PPl networks is
problematic because PPl networks are “small world” networks.
Most nodes are “close” to all other nodes.

— any method that infers similarity based on proximity will find that a large
fraction of the network is proximate to any typical node.

distribution of shortest path distances

Largest connected component of S. cerevisiae 7
PPI network (BioGRID) has 4990 nodes and i
74,310 edges (physical interactions).
Right figure shows the histogram of shortest- Ez_
path lengths in this network. Over 95% of all 1
pairs of nodes are either 2 hops or 3 hops apart ° — hpT 5o
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What nodes mediate short contacts?

The 2-hop neighborhood of a typical node
probably includes around half of all nodes in the graph.

One of the reasons that paths are typically short in biological networks
like the PPl network is due to the presence of hubs.

But hub proteins often represent proteins with
different functional roles than their neighbors.

Hub proteins likely also have multiple, distinct functions.

— not all short paths provide equally strong evidence
of similar function in PPl networks.
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DSD Distance Metric

Given some fixed k>0, we define He'tk (A4,B) to be the expected
number of times that a random walk starting at 4 and proceeding

for k steps, will visit B. |f there is no ambiguity about k, we can drop k.
He(v;)=(He(v;,v1),He(vi,v2),...,He(vi,v,))
He(v) is a ,,random walk distance vector® of node v, from all other nodes.
DSD(u,)=||He(u)— He(v)||,  where
||He(u)— He(v)||; denotes the L; norm of the He vectors

Two nodes u and v have small DSD if they have similar distance from all other

nodes.

. The one-norm (also known as the Li-norm, ¢; norm, or mean norm) of a vector v is denoted
Explanation: |7]|, and is defined as the sum of the absolute values of its components:

10, = luil (1)
1=1

for example, given the vector v = (1, —4,5), we calculate the one-norm:
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DSD clearly improves functional predictions

MIPS Top Level, Accuracy

65.00%
60.00% ——
55.00%
— F1 Score on GO term Prediction for S. cerevisiae
' 30.00%
45.00%
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
—=w=DSD Weighted ====DSD Unweighted == Original MV 25.00%
MV: majority voting
® Majority Vote
MIPS Second Level, Accuracy 20.00% m MV (weighted DSD)
55.00% ®m Functional Flow
50.00% 15.00% W FF with DSD
® Neighborhood
45.00%
® Neighborhood with DSD
40.00% 10.00% ]
m Multi-cut
35.00% ® Multi-cut with DSD
12 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20
5.00%
—a==DSD Weighted -+ DSD Unweighted  ====CQriginal MV
. 0.00%
MIPS Third Level, Accuracy Exact Match Overlap Depth Overlap Counting
47.00%
43.00% Figure 6. Improvement on F1 Score for DSD using three
oo evaluation methods: exact match, overlap depth and overlap
— counting, on informative GO terms for the four algorithms for
37.00% S. cerevisiae in 10 runs of 2-fold cross validation.
35.00%

1 2 3 45 6 7 8 9 10111213 141516 17 18 19 20

e DSD Weighted  ==e==DSD Unweighted  =====Qriginal MV
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Summary

V8: wrap up protein interaction networks

Then next block of the lecture: gene-regulatory networks
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