
Bioinformatics 3 – SS 18 V 7 –

V7 – Biological PPI Networks

-­ graph bisection (-­> communities)
-­ are biological networks really scale-­free?

-­ network growth
-­ functional annotation in the network

Mon, Nov 14, 2016

1

Bioinformatics 3 – SS 18 V 7 –

Modularity: an example of graph partitioning
The simplest graph partitioning problem is the division of a
network into just 2 parts. This is called graph bisection.

If we can divide a network into 2 parts, we can also divide
it further by dividing one or both of these parts …

graph bisection problem: divide the vertices of a
network into 2 non-­overlapping groups of given sizes
such that the number of edges running between
vertices in different groups is minimized.

The number of edges between groups is called the cut size.

In principle, one could simply look through all possible divisions
of the network into 2 parts and choose the one with smallest cut size.

Bioinformatics 3 – SS 18 V 7 –

Algorithms for graph partitioning
But this exhaustive search is prohibitively expensive!

Given a network of n vertices. There are !!
!#!!$!	

	
 different ways of dividing it

into 2 groups of n1 and n2 vertices.

The amount of time to look through all these divisions will go up roughly
exponentially with the size of the system.

Only values of up to n = 30 are feasible with today‘s computers.

In computer science, either an algorithm can be clever and run quickly, but will
fail to provide the optimal answer in some (or perhaps in many) cases, or it will
always find the optimal answer, but takes an impractical length of time to do so.

Bioinformatics 3 – SS 18 V 7 –

The Kernighan-­Lin algorithm
This algorithm proposed by Brian Kernighan and Shen Lin in 1970 is one of the
simplest and best known heuristic algorithms for the graph bisection problem.
(Kernighan is also one of the developers of the C language).

(a) The algorithm starts with any division of the vertices of a network into two
groups (shaded) and then searches for pairs of vertices, such as the pair
highlighted here, whose interchange would reduce the cut size between the
groups.
(b) The same network after interchange of the 2 vertices.

Bioinformatics 3 – SS 18 V 7 –

The Kernighan-­Lin algorithm
(1) Divide the vertices of a given network into 2 groups (e.g. randomly).

(2) For each pair (i,j) of vertices, where i belongs to the first group and j to the
second group, calculate how much the cut size between the groups would
change if i and j were interchanged between the groups.

(3) Find the pair that reduces the cut size by the largest amount and swap the
vertices.

If no pair reduces it, find the pair that increases it by the smallest amount.

Repeat this process, but with the important restriction that each vertex in the
network can only be moved once.

Stop when there is no pair of vertices left that can be swapped.

Bioinformatics 3 – SS 18 V 7 –

The Kernighan-­Lin algorithm (II)
(3) Go back through every state that the network passed through during the
swapping procedure and choose among them the state in which the cut size
takes its smallest value.

(4) Perform this entire process repeatedly, starting each time with the best
division of the network found in the last round.

(5) Stop when no improvement on the cut size occurs.

Note that if the initial assignment of vertices to groups is done randomly,
the Kernighan-­Lin algorithm may give (slightly) different answers
when it is run twice on the same network.

Bioinformatics 3 – SS 18 V 7 –

The Kernighan-­Lin algorithm (II)

(a) A mesh network of 547 vertices of the kind commonly used in finite element
analysis.
(b) The best division found by the Kernighan-­Lin algorithm when the task is to
split the network into 2 groups of almost equal size.
This division involves cutting 40 edges in this mesh network and gives parts of
273 and 274 vertices.
(c) The best division found by spectral partitioning (alternative method).

Bioinformatics 3 – SS 18 V 7 –

Runtime of the Kernighan-­Lin algorithm
The number of swaps performed during one round of the algorithm is equal to the
smaller of the sizes of the two groups Î [0, n / 2].

→ in the worst case, there are O(n) swaps.

For each swap, we have to examine all pairs of vertices in different groups to
determine how the cut size would be affected if the pair was swapped.

At most (if both groups have the same size),
there are n / 2 ´ n / 2 = n2 / 4 such pairs, which is O(n2).

Bioinformatics 3 – SS 18 V 7 –

Runtime of the Kernighan-­Lin algorithm (ii)
When a vertex i moves from one group to the other group, any edges connecting
it to vertices in its current group become edges between groups after the swap.

Let us suppose that there are kisame such edges.

Similarly, any edges that i has to vertices in the other group, (say kiother ones)
become within-­group edges after the swap.

There is one exception. If i is being swapped with vertex j and they are connected
by an edge, then the edge is still between the groups after the swap

→ the change in the cut size due to the movement of i is –(kiother -­ kisame – Aij)

A similar expression applies for vertex j.

→ the total change in cut size due to the swap is
–(kiother -­ kisame +kjother -­ kjsame – 2Aij)

Bioinformatics 3 – SS 18 V 7 –

Runtime of the Kernighan-­Lin algorithm (iii)
For a network stored in adjacency list form, the evaluation of this expression
involves running through all the neighbors of i and j in turn, and hence
takes time on the order of the average degree in the network,
or O (m/n) with m edges in the network.

→ the total running time is O (n ´ n2 ´ m/n) = O(mn2).

For a sparse network with m µ n, this is O(n3).

For a dense network (with 𝑚 → ! !()
*
) , this is O(n4).

This time still needs to be multiplied by the number of rounds the algorithm is
run before the cut size stops decreasing.
For networks up to a few 1000 of vertices, this number may be between 5 and 10.

Bioinformatics 3 – SS 18 V 7 – 11

Jeong, Mason, Barabási, Oltvai, Nature 411 (2001) 41

→ "PPI networks
apparently are
scale-free…"

"Are" they scale-free
or

"Do they look like"
scale-free???

largest cluster of the yeast proteome (at 2001)

Bioinformatics 3 – SS 18 V 7 – 12

Nature Biotech 23 (2005) 839

Generate networks of various types,
sample sparsely from them
→ determine degree distribution

• Random (ER / Erdös-Renyi) → P(k) = Poisson
• Exponential (EX) → P(k) ~ exp[-k]
• scale-free / power-law (PL) → P(k) ~ k–γ

• P(k) = truncated normal distribution (TN)

Bioinformatics 3 – SS 18 V 7 – 13

Partial Sampling
Estimated for yeast: 6000 proteins, 30000 interactions

Y2H experiments detected only 3…9% of the complete interactome!

Han et al, Nature Biotech 23 (2005) 839

Bioinformatics 3 – SS 18 V 7 –

Given: a data set with n values y1,...,yn and
a set of fitted / predicted / modelled) values f1,...,fn e.g. from linear regression.

We call their difference residuals ei = yi − fi

and the mean value

The total sum of squares (proportional to the variance of the data) is:

The sum of squares of residuals is:

The coefficient of determination, R2 or r2 is often defined as:

14

R square

www.wikipedia.org

Bioinformatics 3 – SS 18 V 7 – 15

Sparsely Sampled random (ER) Network
resulting P(k) for different coverages

(c) Shows linearity (R square) between detected P(k)
and ideal power law; good agreement (red; R »1 for
low edge coverage)

→ for sparse sampling (10-20%), even an ER network
"looks" scale-free (when only P(k) is considered)

Han et al, Nature Biotech 23 (2005) 839

R square

(b) Shows log-scale

Bioinformatics 3 – SS 18 V 7 – 16

Anything Goes – different topologies

Han et al, Nature Biotech 23 (2005) 839

Bioinformatics 3 – SS 18 V 7 – 17

Compare to Uetz et al. data

Sampling density affects observed degree distribution
→ true underlying network cannot be identified from available data

Han et al, Nature Biotech 23 (2005) 839

Uetz et al. data
(solid line) is
compared to
sampled
networks of
similar size.

Bioinformatics 3 – SS 18 V 7 – 18

Network Growth Mechanisms
Given: an observed PPI network → how did it grow (evolve)?

Look at network motifs (local connectivity):
compare motif distributions from various network prototypes to fly network

Idea: each growth mechanism leads to a typical motif distribution,
even if global measures are comparable

PNAS 102 (2005) 3192

Bioinformatics 3 – SS 18 V 7 – 19

The Fly Network
Y2H PPI network for D. melanogaster from Giot et al. [Science 302 (2003) 1727]

Giot et al. assigned a
confidence score [0, 1] for
every observed interaction.
→ use only data with

p > 0.65 (0.5) because …
→ remove self-interactions

and isolated nodes

High confidence network
with 3359 (4625) nodes
and 2795 (4683) edges.

Use prototype networks
of same size for training.

percolation events for p > 0.65

Middendorf et al, PNAS 102 (2005) 3192

Size of largest components. At p = 0.65, there is one large component
with 1433 nodes and the other 703 components contain at most 15
nodes.

Bioinformatics 3 – SS 18 V 7 – 20

Network subgraphs -­> motives
All non-isomorphic subgraphs that can be generated with a walk of length 8

Middendorf et al, PNAS 102 (2005) 3192

Bioinformatics 3 – SS 18 V 7 – 21

Growth Mechanisms

Generate 1000 networks, each, of the following 7 types
(same size as fly network, undefined parameters were scanned)

DMC Duplication-mutation, preserving complementarity
DMR Duplication with random mutations
RDS Random static networks
RDG Random growing network
LPA Linear preferential attachment network (Albert-Barabasi)
AGV Aging vertices network
SMW Small world network

Bioinformatics 3 – SS 18 V 7 – 22

Growth Type 1: DMC
"Duplication – mutation with preserved complementarity"

Evolutionary idea: gene duplication, followed by a partial loss of
function of one of the copies, making the other copy essential

Algorithm:

• duplicate existing node with all interactions

• for all neighbors: delete with probability qdel

either link from original node or from copy

Repeat these steps many (e.g. N – 2) times

Start from two connected nodes

Bioinformatics 3 – SS 18 V 7 – 23

Growth Type 2: DMR
"Duplication with random mutations"

Gene duplication, but no correlation between original and copy
(original unaffected by copy)

Algorithm:

• duplicate existing node with all interactions

• for all neighbors: delete with probability qdel

link from copy

Start growth from five-vertex cycle,
repeat N - 5 times:

• add new links to non-neighbors with
probability qnew/n

Bioinformatics 3 – SS 18 V 7 – 24

Growth Types 3–5: RDS, RDG, and LPA
RDS = static random network

Start from N nodes, add L links randomly

LPA = linear preferential attachment

Add new nodes similar to Barabási-Albert algorithm,
but with preference according to (ki + α), α = 0…5
(BA for α = 0)

RDG = growing random network

Start from small random network, add nodes,
then edges between all existing nodes

Bioinformatics 3 – SS 18 V 7 – 25

Growth Types 6-­7: AGV and SMW
AGV = aging vertices network

Like growing random network,
but preference decreases with age of the node
→ citation network: more recent publications are cited more likely

SMW = small world networks, see Watts, Strogatz, Nature 363, 202 (1998)

Randomly rewire regular ring lattice

Bioinformatics 3 – SS 18 V 7 – 26

Alternating Decision Tree Classifier
Trained with the motif counts from 1000 networks of each of the 7 types
→ prototypes are well separated and can be reliably classified

Prediction accuracy for networks
similar to fly network with p = 0.5:

Part of a trained ADT

Decision nodes count
occurrence of subgraphs

Middendorf et al, PNAS 102 (2005) 3192

Bioinformatics 3 – SS 18 V 7 – 27

Are the generated networks different?

Example: DMR vs. RDG: Similar global parameters <C> and <l> (left),
but different counts of the network motifs (right)

-> networks can (only) be perfectly separated by motif-based classifier
Middendorf et al, PNAS 102 (2005) 3192

Clustering coefficient
Average shortest path length

Bioinformatics 3 – SS 18 V 7 – 28

How Did the Fly Evolve?

→ Best overlap with DMC (Duplication-mutation, preserved complementarity)
→ Scale-free (LPA) or random networks (RDS/RDG) are very unlikely

Middendorf et al, PNAS 102 (2005) 3192

Bioinformatics 3 – SS 18 V 7 – 29

Motif Count Frequencies

rank score: fraction of test networks with
a higher count than Drosophila
(50% = same count as fly on avg.)

Middendorf et al, PNAS 102 (2005) 3192

-> DMC and DMR
networks contain
most subgraphs in
similar amount as fly
network (top).

Bioinformatics 3 – SS 18 V 7 – 30

Experimental Errors?
Randomly replace edges in fly network and classify again:

→ Classification unchanged for ≤ 30% incorrect edges,
at higher values RDS takes over (as to be expected)

Bioinformatics 3 – SS 18 V 7 – 31

Summary (I)
Sampling matters!

→ "Scale-free" P(k) is obtained by sparse sampling
from many network types

Test different hypotheses for

• global features
→ depends on unknown parameters and sampling
→ no clear statement possible

• local features (motifs)
→ are better preserved
→ DMC best among tested prototypes

Bioinformatics 3 – SS 18 V 7 – 32

What Does a Protein Do?

Enzyme Classification scheme
(from http://www.brenda-enzymes.org/)

Bioinformatics 3 – SS 18 V 7 – 33

What about Un-­Classified Proteins?

Many unclassified proteins:
→ estimate: ~1/3 of the yeast proteome not annotated functionally
→ BioGRID: 4495 proteins in the largest cluster of the yeast physical
interaction map.

only 2946 have a MIPS functional annotation

Bioinformatics 3 – SS 18 V 7 – 34

Partition the Graph
Large PPI networks can be built from (see V3, V4, V5):
• HT experiments (Y2H, TAP, synthetic lethality, coexpression, coregulation, …)
• predictions (gene profiling, gene neighborhood, phylogenetic profiles, …)
→ proteins that are functionally linked

genome 1

genome 2

genome 3

sp
1

sp
2

sp
3

sp
4

sp
5

Identify unknown functions from clustering of these networks by, e.g.:
• shared interactions (similar neighborhood)
• membership in a community
• similarity of shortest path vectors to all other proteins (= similar path into
the rest of the network)

Bioinformatics 3 – SS 18 V 7 – 35

Protein Interactions
Nabieva et al used the S. cerevisiae dataset from GRID of 2005 (now BioGRID)
→ 4495 proteins and 12 531 physical interactions in the largest cluster

http://www.thebiogrid.org/about.php

Bioinformatics 3 – SS 18 V 7 – 36

Function Annotation
Task: predict function (= functional annotation) for an unlabeled protein

from the available annotations of other proteins in the network

Similar task:
How to assign colors to
the white nodes?

Use information on:
• distance to colored nodes
• local connectivity
• reliability of the links
• …

<=>

Bioinformatics 3 – SS 18 V 7 – 37

Algorithm I: Majority
This concept was presented in
Schwikowski, Uetz, and Fields, " A network of protein–protein interactions in yeast"
Nat. Biotechnol. 18 (2000) 1257

Consider all direct neighbors and sum up how often a certain annotation occurs
→ score for an annotation = count among the direct neighbors

→ take the 3 most frequent functions

Majority makes only limited use
of the local connectivity
→ cannot assign function to

next-neighbors

For weighted graphs:
→ use weighted sum

Bioinformatics 3 – SS 18 V 7 – 38

Extended Majority: Neighborhood
This concept was presented in
Hishigaki, Nakai, Ono, Tanigami, and Takagi, "Assessment of prediction accuracy of
protein function from protein–protein interaction data",
Yeast 18 (2001) 523

Look for overrepresented functions within a given radius of 1, 2, or 3 links
→ use as function score the value of a c2–test

Neighborhood algorithm does not
consider local network topology

?
?

Both examples (left) are
treated identically with r =
2
although the right situation
feels more certain (2 direct
neighbors of ? are labeled)

Bioinformatics 3 – SS 18 V 7 – 39

Minimize Changes: GenMultiCut

"Annotate proteins so as to minimize the number of times that different
functions are associated to neighboring (i.e. interacting) proteins"

This concept was presented in
Karaoz, Murali, Letovsky, Zheng, Ding, Cantor, and Kasif, "Whole-genome annotation
by using evidence integration in functional-linkage networks"
PNAS 101 (2004) 2888

→ generalization of the multiway k-cut problem for weighted edges,
can be stated as an integer linear program (ILP)

Multiple possible solutions → scores from frequency of annotations

Bioinformatics 3 – SS 18 V 7 – 40

Nabieva et al: FunctionalFlow
Extend the idea of "guilty by association"
→ each annotated protein is considered as a source of "function"-flow

→ propagate/simulate for a few time steps
→ choose the annotation a with the highest accumulated flow

Each node u has a reservoir Rt(u), each edge a capacity constraint (weight) wu,v

Initially:

Then: downhill flow from node u to neighbor node v:

Score from accumulated in-flow:

and

Nabieva et al, Bioinformatics 21 (2005) i302

Idea: Node v has already „more
function“ than node u → no flow
uphill

Bioinformatics 3 – SS 18 V 7 – 41

An Example
accumulated
flow

thickness = current flow

…..

…..

…..

Bioinformatics 3 – SS 18 V 7 – 42

Comparison

Change score threshold for accepting annotations → ratio TP/FP
→ FunctionalFlow performs best in the high-confidence region
→ but generates still many false predictions!!!

unweighted yeast map

Nabieva et al, Bioinformatics 21 (2005) i302

For FunctionalFlow:
six propagation steps were
simulated; this is comparable
to the diameter of the yeast
network ≈ 12

Majority results are initially
very good, but has limited
coverage.

Results with neighborhood
get more imprecise for larger
radii r

Bioinformatics 3 – SS 18 V 7 –
43

Largest connected component of S. cerevisiae
PPI network (BioGRID) has 4990 nodes and
74,310 edges (physical interactions).

Right figure shows the histogram of shortest-­
path lengths in this network. Over 95% of all
pairs of nodes are either 2 hops or 3 hops apart

Relying on the ordinary shortest-path distance metric in PPI networks is
problematic because PPI networks are “small world” networks.
Most nodes are “close” to all other nodes.

® any method that infers similarity based on proximity will find that a large
fraction of the network is proximate to any typical node.

Bioinformatics 3 – SS 18 V 7 – 44

The 2-hop neighborhood of a typical node
probably includes around half of all nodes in the graph.

One of the reasons that paths are typically short in biological networks
like the PPI network is due to the presence of hubs.

But hub proteins often represent proteins with
different functional roles than their neighbors.

Hub proteins likely also have multiple, distinct functions.

® not all short paths provide equally strong evidence
of similar function in PPI networks.

What nodes mediate short contacts?

Bioinformatics 3 – SS 18 V 7 – 45

DSD Distance Metric

Explanation:

If there is no ambiguity about k, we can drop k.

where

He(vi) is a „random walk distance vector“ of node vi from all other nodes.

Two nodes u and v have small DSD if they have similar distance from all other
nodes.

Bioinformatics 3 – SS 18 V 7 – 46

DSD clearly improves functional predictions

MV: majority voting

Bioinformatics 3 – SS 18 V 7 – 47

Summary
V8: wrap up protein interaction networks

Then next block of the lecture: gene-regulatory networks

