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V7  – Biological  PPI  Networks  

-­ graph  bisection  (-­>  communities)
-­ are  biological  networks  really  scale-­free?

-­ network  growth
-­ functional  annotation  in  the  network

Mon,  Nov  14,  2016
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Modularity:  an  example  of  graph  partitioning
The  simplest  graph  partitioning  problem  is  the  division  of  a  
network  into  just  2  parts.  This  is  called  graph  bisection.

If  we  can  divide  a  network  into  2  parts,  we  can  also  divide  
it  further  by  dividing  one  or  both  of  these  parts  …

graph  bisection  problem:  divide  the  vertices  of  a  
network  into  2  non-­overlapping  groups  of  given  sizes  
such  that  the  number  of  edges  running  between
vertices  in  different  groups  is  minimized.

The  number  of  edges  between  groups  is  called  the  cut  size.

In  principle,  one  could  simply  look  through  all  possible  divisions  
of  the  network  into  2  parts  and  choose  the  one  with  smallest  cut  size.
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Algorithms  for  graph  partitioning
But  this exhaustive  search is prohibitively expensive!

Given a  network of n vertices.  There are !!
!#!!$!	
  

	
   different  ways of dividing it

into 2  groups of n1 and n2 vertices.  

The  amount of time  to look through all  these divisions will  go up roughly
exponentially with the size of the system.

Only values of up to n =  30  are feasible with today‘s computers.

In  computer science,  either an  algorithm can be clever  and run quickly,  but  will  
fail to provide the optimal  answer in  some (or perhaps in  many)  cases,  or it will  
always find  the optimal  answer,  but  takes an  impractical length of time  to do  so.
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The  Kernighan-­Lin  algorithm
This  algorithm proposed by Brian  Kernighan and Shen Lin  in  1970  is one of the
simplest and best known heuristic algorithms for the graph bisection problem.
(Kernighan is also  one of the developers of the C  language).

(a)  The  algorithm starts with any division of the vertices of a  network into two
groups (shaded)  and then searches for pairs of vertices,  such  as the pair  
highlighted here,  whose interchange would reduce the cut size between the
groups.
(b)  The  same  network after  interchange of the 2  vertices.
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The  Kernighan-­Lin  algorithm
(1) Divide the vertices of a  given network into 2  groups (e.g.  randomly).

(2) For each pair  (i,j)  of vertices,  where i  belongs to the first group and j  to the
second group,  calculate how much the cut size between the groups would
change if i  and j were interchanged between the groups.

(3) Find  the pair  that reduces the cut size by the largest amount and swap the
vertices.

If no pair  reduces it,  find  the pair  that increases it by the smallest amount.

Repeat  this process,  but  with the important restriction that each vertex in  the
network can only be moved once.

Stop when there is no pair  of vertices left that can be swapped.
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The  Kernighan-­Lin  algorithm  (II)
(3) Go  back  through every state that the network passed through during the
swapping procedure and choose among them the state in  which the cut size
takes its smallest value.

(4) Perform this entire process repeatedly,  starting each time  with the best
division of the network found in  the last  round.

(5) Stop when no improvement on  the cut size occurs.

Note  that if the initial  assignment of vertices to groups is done randomly,  
the Kernighan-­Lin  algorithm may give (slightly)  different  answers
when it is run twice on  the same  network.
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The  Kernighan-­Lin  algorithm  (II)

(a)  A  mesh  network  of  547  vertices  of  the  kind  commonly  used  in  finite  element  
analysis.
(b)  The  best  division  found  by  the  Kernighan-­Lin  algorithm  when  the  task  is  to  
split  the  network  into  2  groups  of  almost  equal  size.  
This  division  involves  cutting  40  edges  in  this  mesh  network  and  gives  parts  of  
273  and  274  vertices.
(c)  The  best  division  found  by  spectral  partitioning  (alternative  method).
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Runtime  of  the  Kernighan-­Lin  algorithm
The  number of swaps performed during one round of the algorithm is equal to the
smaller of the sizes of the two groups Î [0,  n  /  2].

→  in  the worst case,  there are O(n)  swaps.

For each swap,  we have to examine all  pairs of vertices in  different  groups to
determine how the cut size would be affected if the pair  was  swapped.

At  most (if both groups have the same  size),  
there are n  /  2  ´ n  /  2  =  n2 /  4  such  pairs,  which is O(n2).
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Runtime  of  the  Kernighan-­Lin  algorithm  (ii)
When a  vertex i  moves from one group to the other group,  any edges connecting
it to vertices in  its current group become edges between groups after  the swap.

Let us suppose that there are kisame such  edges.

Similarly,  any edges that i  has to vertices in  the other group,  (say kiother ones)
become within-­group  edges after  the swap.

There is one exception.  If i  is being swapped with vertex j  and they are connected
by an  edge,  then the edge is still  between the groups after  the swap

→  the change in  the cut size due  to the movement of i  is –(kiother -­ kisame – Aij)

A  similar expression applies for vertex j.  

→  the total  change in  cut size due  to the swap is
–(kiother -­ kisame +kjother -­ kjsame – 2Aij)
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Runtime  of  the  Kernighan-­Lin  algorithm  (iii)
For  a  network stored in  adjacency list form,  the evaluation of this expression
involves running through all  the neighbors of i  and j   in  turn,  and hence
takes time  on  the order of the average degree in  the network,  
or O  (m/n)  with m  edges in  the network.

→  the total  running time  is O  (  n  ´ n2 ´ m/n  )  =  O(mn2).

For a  sparse network with m  µ n,  this is O(n3).

For a  dense network (with 𝑚 → ! !()
*
)  ,  this is O(n4).

This  time  still  needs to be multiplied by the number of rounds the algorithm is
run before the cut size stops decreasing.
For networks up to a  few 1000  of vertices,  this number may be between 5  and 10.
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Jeong, Mason, Barabási, Oltvai,  Nature 411 (2001) 41

→ "PPI networks
apparently are 
scale-free…"

"Are" they scale-free
or

"Do they look like" 
scale-free???

largest cluster of the yeast proteome (at 2001)
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Nature Biotech 23 (2005) 839

Generate networks of various types,
sample sparsely from them
→ determine degree distribution

• Random (ER / Erdös-Renyi) → P(k) = Poisson
• Exponential (EX) → P(k) ~ exp[-k]
• scale-free / power-law (PL) → P(k) ~ k–γ

• P(k) = truncated normal distribution (TN)
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Partial  Sampling
Estimated for yeast:    6000 proteins,   30000 interactions

Y2H experiments detected only 3…9% of the complete interactome!

Han et al,  Nature Biotech 23 (2005) 839
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Given: a data set with n values y1,...,yn and 
a set of fitted / predicted / modelled) values f1,...,fn e.g. from linear regression.

We call their difference residuals ei = yi − fi

and the mean value

The total sum of squares (proportional to the variance of the data) is:

The sum of squares of residuals is:

The coefficient of determination, R2 or r2 is often defined as:

14

R  square

www.wikipedia.org
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Sparsely  Sampled  random  (ER)  Network
resulting P(k) for different coverages

(c) Shows linearity (R square) between detected P(k) 
and ideal power law; good agreement (red; R »1 for 
low edge coverage)

→ for sparse sampling (10-20%), even an ER network 
"looks" scale-free (when only P(k) is considered)

Han et al,  Nature Biotech 23 (2005) 839

R square

(b) Shows log-scale
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Anything  Goes  – different  topologies

Han et al,  Nature Biotech 23 (2005) 839
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Compare  to  Uetz  et  al.  data

Sampling density affects observed degree distribution
→ true underlying network cannot be identified from available data

Han et al,  Nature Biotech 23 (2005) 839

Uetz et al. data
(solid line) is
compared to 
sampled 
networks of
similar size.
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Network  Growth  Mechanisms
Given:   an observed PPI network → how did it grow (evolve)?

Look at network motifs (local connectivity):
compare motif distributions from various network prototypes to fly network

Idea:  each growth mechanism leads to a typical motif distribution,
even if global measures are comparable

PNAS 102 (2005) 3192
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The  Fly  Network
Y2H PPI network for D. melanogaster from Giot et al. [Science 302 (2003) 1727]

Giot et al. assigned a 
confidence score [0, 1] for 
every observed interaction.
→ use only data with 

p > 0.65 (0.5) because …
→ remove self-interactions

and isolated nodes

High confidence network
with 3359 (4625) nodes
and 2795 (4683) edges.

Use prototype networks
of same size for training.

percolation events for p > 0.65

Middendorf et al, PNAS 102 (2005) 3192

Size of largest components. At p = 0.65, there is one large component 
with 1433 nodes and the other 703 components contain at most 15 
nodes.
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Network  subgraphs  -­>  motives
All non-isomorphic subgraphs that can be generated with a walk of length 8

Middendorf et al, PNAS 102 (2005) 3192
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Growth  Mechanisms

Generate 1000 networks, each, of the following 7 types
(same size as fly network, undefined parameters were scanned)

DMC Duplication-mutation, preserving complementarity
DMR Duplication with random mutations
RDS Random static networks
RDG Random growing network
LPA Linear preferential attachment network (Albert-Barabasi)
AGV Aging vertices network
SMW Small world network
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Growth  Type  1:    DMC
"Duplication – mutation with preserved complementarity"

Evolutionary idea:  gene duplication, followed by a partial loss of
function of one of the copies, making the other copy essential

Algorithm:

• duplicate existing node with all interactions

• for all neighbors: delete with probability qdel

either link from original node or from copy

Repeat these steps many (e.g. N – 2) times

Start from two connected nodes
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Growth  Type  2:    DMR
"Duplication with random mutations"

Gene duplication, but no correlation between original and copy
(original unaffected by copy)

Algorithm:

• duplicate existing node with all interactions

• for all neighbors: delete with probability qdel

link from copy

Start growth from five-vertex cycle,
repeat N - 5 times:

• add new links to non-neighbors with 
probability qnew/n
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Growth  Types  3–5:  RDS,  RDG,  and  LPA
RDS = static random network

Start from N nodes, add L links randomly

LPA = linear preferential attachment

Add new nodes similar to Barabási-Albert algorithm, 
but with preference according to (ki + α),  α = 0…5
(BA for α = 0)

RDG = growing random network

Start from small random network, add nodes, 
then edges between all existing nodes
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Growth  Types  6-­7:    AGV  and  SMW
AGV = aging vertices network

Like growing random network, 
but preference decreases with age of the node
→ citation network:  more recent publications are cited more likely

SMW = small world networks, see Watts, Strogatz, Nature 363, 202 (1998)

Randomly rewire regular ring lattice
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Alternating  Decision  Tree  Classifier
Trained with the motif counts from 1000 networks of each of the 7 types
→ prototypes are well separated and can be reliably classified

Prediction accuracy for networks 
similar to fly network with p = 0.5:

Part of a trained ADT

Decision nodes count 
occurrence of subgraphs 

Middendorf et al, PNAS 102 (2005) 3192
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Are  the  generated  networks  different?

Example: DMR vs. RDG:  Similar global parameters <C> and <l> (left), 
but different counts of the network motifs (right)

-> networks can (only) be perfectly separated by motif-based classifier
Middendorf et al, PNAS 102 (2005) 3192

Clustering coefficient
Average shortest path length
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How  Did  the  Fly  Evolve?

→ Best overlap with DMC (Duplication-mutation, preserved complementarity)
→ Scale-free (LPA) or random networks (RDS/RDG) are very unlikely

Middendorf et al, PNAS 102 (2005) 3192
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Motif  Count  Frequencies

rank score:  fraction of test networks with 
a higher count than Drosophila
(50%  =  same count as fly on avg.)

Middendorf et al, PNAS 102 (2005) 3192

-> DMC and DMR 
networks contain 
most subgraphs in 
similar amount as fly 
network (top).
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Experimental  Errors?
Randomly replace edges in fly network and classify again:

→ Classification unchanged for ≤ 30% incorrect edges,
at higher values RDS takes over (as to be expected)
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Summary  (I)
Sampling matters!

→ "Scale-free" P(k) is obtained by sparse sampling 
from many network types

Test different hypotheses for

• global features 
→ depends on unknown parameters and sampling
→ no clear statement possible

• local features (motifs)
→ are better preserved
→ DMC best among tested prototypes



Bioinformatics 3 – SS 18 V 7  – 32

What  Does  a  Protein  Do?

Enzyme Classification scheme 
(from http://www.brenda-enzymes.org/)
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What  about  Un-­Classified  Proteins?

Many  unclassified  proteins:      
→  estimate:  ~1/3  of  the  yeast  proteome  not  annotated  functionally
→  BioGRID:    4495  proteins  in  the  largest  cluster  of  the  yeast  physical  
interaction  map.

only  2946  have  a  MIPS  functional  annotation
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Partition  the  Graph
Large  PPI  networks can  be  built  from  (see  V3,  V4,  V5):
•  HT  experiments  (Y2H,  TAP,  synthetic  lethality,  coexpression,  coregulation,  …)
•  predictions  (gene  profiling,  gene  neighborhood,  phylogenetic  profiles,  …)
→  proteins  that  are  functionally  linked

genome 1

genome 2

genome 3

sp 
1

sp 
2

sp 
3

sp 
4

sp 
5

Identify  unknown functions from  clustering of  these  networks  by,  e.g.:
•  shared  interactions  (similar  neighborhood)
•  membership  in  a  community
•  similarity  of  shortest  path  vectors  to  all  other  proteins  (=  similar  path  into  
the  rest  of  the  network)
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Protein  Interactions
Nabieva et al used the S. cerevisiae dataset from GRID of 2005 (now BioGRID)
→ 4495 proteins and 12 531 physical interactions in the largest cluster

http://www.thebiogrid.org/about.php
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Function  Annotation
Task:  predict function (= functional annotation) for an unlabeled protein 

from the available annotations of other proteins in the network

Similar task:
How to assign colors to 
the white nodes?

Use information on:
• distance to colored nodes
• local connectivity
• reliability of the links
• …

<=>
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Algorithm  I:    Majority
This concept was presented in 
Schwikowski, Uetz, and Fields, " A network of protein–protein interactions in yeast" 
Nat. Biotechnol. 18 (2000) 1257

Consider all direct neighbors and sum up how often a certain annotation occurs
→ score for an annotation  =  count among the direct neighbors

→ take the 3 most frequent functions

Majority makes only limited use 
of the local connectivity
→ cannot assign function to 

next-neighbors

For weighted graphs:
→ use weighted sum
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Extended  Majority:    Neighborhood
This concept was presented in 
Hishigaki, Nakai, Ono, Tanigami, and Takagi,  "Assessment of prediction accuracy of 
protein function from protein–protein interaction data", 
Yeast 18 (2001) 523

Look for overrepresented functions within a given radius of 1, 2, or 3 links
→ use as function score the value of a c2–test

Neighborhood algorithm does not 
consider local network topology

?
?

Both examples (left) are 
treated identically with r = 
2
although the right situation 
feels more certain (2 direct 
neighbors of ? are labeled)
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Minimize  Changes:    GenMultiCut

"Annotate proteins so as to minimize the number of times that different
functions are associated to neighboring (i.e. interacting) proteins"

This concept was presented in 
Karaoz, Murali, Letovsky, Zheng, Ding, Cantor, and Kasif,  "Whole-genome annotation 
by using evidence integration in functional-linkage networks" 
PNAS 101 (2004) 2888

→ generalization of the multiway k-cut problem for weighted edges,
can be stated as an integer linear program (ILP)

Multiple possible solutions → scores from frequency of annotations
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Nabieva  et  al:    FunctionalFlow
Extend the idea of "guilty by association"
→ each annotated protein is considered as a source of "function"-flow

→ propagate/simulate for a few time steps
→ choose the annotation a with the highest accumulated flow

Each node u has a reservoir Rt(u), each edge a capacity constraint (weight) wu,v

Initially:

Then: downhill flow from node u to neighbor node v:

Score from accumulated in-flow:

and

Nabieva et al, Bioinformatics 21 (2005) i302

Idea: Node v has already „more 
function“ than node u → no flow 
uphill
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An  Example
accumulated 
flow

thickness = current flow

…..

…..

…..
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Comparison

Change score threshold for accepting annotations → ratio  TP/FP
→ FunctionalFlow performs best in the high-confidence region
→ but generates still many false predictions!!!

unweighted yeast map

Nabieva et al, Bioinformatics 21 (2005) i302

For FunctionalFlow:
six propagation steps were 
simulated; this is comparable 
to the diameter of the yeast 
network ≈ 12

Majority results are initially 
very good, but has limited 
coverage.

Results with neighborhood 
get more imprecise for larger 
radii r
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Largest  connected  component  of  S.  cerevisiae
PPI  network  (BioGRID)  has  4990  nodes  and  
74,310  edges  (physical  interactions).

Right figure shows  the  histogram  of  shortest-­
path  lengths  in  this  network.  Over  95%  of  all  
pairs  of  nodes  are  either  2  hops  or  3  hops  apart

Relying on the ordinary shortest-path distance metric in PPI networks is 
problematic because PPI networks are “small world” networks. 
Most nodes are “close” to all other nodes.

® any method that infers similarity based on proximity will find that a large 
fraction of the network is proximate to any typical node. 
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The 2-hop neighborhood of a typical node 
probably includes around half of all nodes in the graph.

One of the reasons that paths are typically short in biological networks 
like the PPI network is due to the presence of hubs.

But hub proteins often represent proteins with 
different functional roles than their neighbors.

Hub proteins likely also have multiple, distinct functions.

® not all short paths provide equally strong evidence 
of similar function in PPI networks. 

What  nodes  mediate  short  contacts?



Bioinformatics 3 – SS 18 V 7  – 45

DSD  Distance  Metric

Explanation:

If there is no ambiguity about k, we can drop k.

where

He(vi) is a „random walk distance vector“ of node vi from all other nodes.

Two nodes u and v have small DSD if they have similar distance from all other 
nodes.
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DSD  clearly  improves  functional  predictions

MV: majority voting
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Summary
V8: wrap up protein interaction networks

Then next block of the lecture:  gene-regulatory networks


