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Submit your solutions on paper, hand-written or printed at the beginning of the lecture or in
building E2 1, Room 3.01. Alternatively you may send an email with a single PDF attachment.
If possible, please include source code listings. Additionally hand in all source code via mail to
christian.spaniol@bioinformatik.uni-saarland.de.

2 More On Networks, Forces, and Force Directed Layouts
We continue to evolve our network software from the first assignment. As announced, the assign-
ment of this week deals with the construction of scale-free networks.
Then we will discuss energies and forces, and finally use force calculations to layout some real
networks.

Exercise 2.1: The Scale-Free Network (30 pts)
First, (a) construct a scale-free network according to the Barabási-Albert model. Then (b) examine
the degree distribution of such networks and determine some characteristics. Finally, (c) compare
the characteristics of random networks and scale-free networks.

(a) Implement the algorithm given in the lecture to set up a scale free network according to the
Barabási-Albert model. Start from the first three connected nodes and add each new node
with two links. Connect the new links to those nodes that already have more links. The
class can be derived from our abstract network class that you wrote in the first assignment.
Hint:

• To extend our previous network class, the semantics of our abstract network initializer
have to change. Now, the parameters specify the number of nodes to be added and the
number of links that are added each iteration step.

(b) Determine the degree distribution for a scale-free network. Plot the degree distribution
for a network of 10 000 and 100 000 nodes, respectively, with double logarithmic axes and
determine the exponent γ. Which region of degrees can you use to fit the exponent γ? Which
problems do you encounter?

Hint:

• To fit the exponent γ plot the obtained degree distribution together with a power law
C · exp(−γ·k) and manually vary C and γ for best fit. Use your eyes!

To extend the range for fitting the exponent, sum up P (k) and compare

S(k) =
∑
k′<k

P (k′)

to the corresponding integral of the power law:

F (k) =

∫
dkck−γ

First verify that
F (k) =

c

1− γ
· k1−γ + F0
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where F0 is an integration constant. Plot (1− S(k)) and F (k) into the same plot.

How many nodes in the network are now necessary for a comparable fitting range (to fit the
exponent also adjust c and F0)? Which main difference between the two ways to plot P (k)
(directly vs. integrated) do you observe. Why does this difference help?

(c) Create a random network with the same number of nodes and links as the scale-free network
of 100 000 nodes and plot the degree distributions of both networks into the same plot.

For which combination of logarithmic and/or linear axes is the difference between the degree
distributions of the two networks seen best?

Identify and explain the two major differences between the degree distribution of the random
and of the scale-free network.

Exercise 2.2: Energy and forces (20pts)

(a) Configuration of minimal energy:

Determine the equilibrium distance between two equally charged mass points which are
connected by a spring. At the equilibrium distance the total force vanishes. Verify that
instead of calculating the forces explicitly, it is equivalent to determine the configuration of
minimal energy.

Hints:

• The force equals the negative gradient of the energy, i.e., the force is a measure for how
much the energy changes with an infinitesimal displacement:

−→
F (−→r ) = −∇E(−→r ), with the gradient operator ∇ :=

 d/dx
d/dy
d/dz


In a single dimension, this reduces to ∇ = d/dr, i.e. the simple derivative with respect
to the distance r. The gradient of a function can consequently be understood as a
multidimensional slope.

• The interaction energy between two charges q1 and q2 is given as:

Ec(r) =
1

4π · ε0ε
q1q2
r

For the connecting spring use the harmonic potential:

Eh(r) =
kr2

2

• To show the equivalence of vanishing force and minimal energy remember how the
minimum of a function is defined. Also note that the distance between two particles is
a one-dimensional measure.

(b) Force field from a spherically symmetric potential:

Calculate the force fields
−→
F (−→r ) = −∇E(−→r ) for both the Coulomb interaction Ec and the

harmonic potential Eh in cartesian coordinates.

Hints:

• Write ∇ and the resulting force field
−→
F (−→r ) in component form. Then you get one

equation for x, y, and z, each. This is the form that you need for the second part.



• Note that:

r =
√
x2 + y2 + z2,

−→
F (−→r ) =

 Fx(x)
Fy(y)
Fz(z)


Exercise 2.3: Force directed layout of graphs (50pts)
Implement an algorithm to layout networks, using energy functions to mimic the repulsive and
attractive behaviour. Subsequently, read networks from files and visualize energy trajectories and
the final layout.

(a) Between all nodes, use a repulsive degree dependent Coulomb type potential, defined as:

Ec(rij) =
ki · kj
rij

Additionally, for interacting nodes, use a degree independent harmonic attractive potential:

Eh(rij) =
r2ij
2

The parameter rij is the distance between two nodes i and j. Because we layout in 2D, the
squared distance is defined as:

r2ij = (xi − xj)2 + (yi − yj)2

The interaction between two nodes i, j is defined as:

W [i][j] =

{
1, if edge i→ j exists
0, else

Implement a layouter class to layout graphs by force interactions.

Hints:

• In order store energy and positions in the respective node objects, you can extend your
class “on-the-fly”, i.e. node.force_x, node.force_y, node.pos_x, node.pox_y = 0.0, 0.0, 0.0, 0.0.

• For each node, choose an initial position on a two-dimensional plane. A reasonable
start is within ±10− 20 units from the origin.

• To layout the graph, perform at least 500 − 5000 iteration steps of the following algo-
rithm:

(1) Calculate the pairwise forces between all nodes and sum them up for each of the
nodes: −→

F ij =
−→
F c(
−→r ij) +W [i][j] ·

−→
F h(−→r ij)

Thus, the total force on node i is Fi =
∑
j Fij . Note that the forces between two

nodes are symmetric, i.e., Fij = −Fij .
(2) Add a random force in the range [−0.3; 0.3] to the total force on each node. This

additional “thermal” contribution improves the convergence behavior and helps to
escape local minima.

(3) Update the position of each node from the forces as:

∆ri = α · Fi

A reasonable value is α = 0.03. Do not forget to reset all the forces after this step.



(4) Calculate the total energy, which is the sum of all individual interaction energies:

Etot =
∑
j>i

Ec(rij) +W [i][j] · Eh(rij)

Print out this energy together with the iteration number to a file.

• To output your layout: if you are using Gnuplot, then loop over all edges and print the
x and y positions of the two nodes of a link on a separate line, each, followed by an
empty line. Plot the resulting file “with linespoints” to get a representation of the
layed out graph.

(b) Proceed to actual network layouts. Therefore, implement a network class to import networks
from files:

0 class GenericNetwork ( AbstractNetwork ) :
def __init__( s e l f , f i l ename ) :
"""
Create a network from a f i l e t ha t conta ins a l i s t o f node ids , e . g .
0 1

5 0 2
1 2
. . .
"""

(c) Start with the test files “star.txt”, “square.txt”, “star++.txt” and “dog.txt”, which are
available on our homepage. The resulting final configurations should converge at increasing
energy levels. Simple networks need about 300 iterations, larger networks may take up to a
thousand iterations. Run the layout algorithm multiple times if necessary.

For each of the networks plot the final configuration and give the final energies you calculated.
Also plot the overall energy vs. iteration number and determine at which point the layout
process can be considered converged.

What happens when you change the coefficient α ?

(d) Perform the same layout on the following networks. Give the final energies and configurations
of each network when you stopped the layout process.

(1) Layout the scale-free networks “scalefree100.txt” and “scalefree200.txt”

(2) We prepared some excerpts from the BIND database: layout “11309.txt” and “2287.txt”,
respectively.

Explain what happens, if you do the optimization without the random forces (Step 2). Plot
the total energy vs. iteration with and without the random forces for one of the “real”
networks. Scale the axes so that the important differences can clearly be seen.

The networks contain more than a single cluster. What happens to the individual clusters?
Explain why.

Have fun!
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