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V12 Menger’s theorem 
Borrowing terminology from operations research 
consider certain primal-dual pairs of optimization 
problems that are intimately related. 

Usually, one of these problems involves  
the maximization of some objective function,  
while the other is a minimization problem. 
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Separating set 
A feasible solution to one of the problems provides a bound for the  
optimal value of the other problem (referred to as weak duality), 
and the optimal value of one problem is equal to the optimal value  
of the other (strong duality). 

→ a u-v separating vertex set is a vertex-cut, and  
    a u-v separating edge set is an edge-cut. 

When the context is clear, the term u-v separating set will refer either to a  
u-v separating vertex set or to a u-v separating edge set. 

Definition: Let u and v be distinct vertices in a connected graph G.  
A vertex subset (or edge subset) S is u-v separating (or separates u and v),  
if the vertices u and v lie in different components of the deletion subgraph G – S. 
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Example 
For the graph G in the Figure below, the vertex-cut  {x,w,z} is a u-v separating set of 
vertices of minimum size, and the edge-cut {a,b,c,d,e} is a u-v separating set of 
edges of minimum size. 

Notice that a minimum-size u-v separating set of edges (vertices) need not be a 
minimum-size edge-cut (vertex-cut). 

E.g., the set {a,b,c,d,e} is not a minimum-size edge-cut in G, because the set of 
edges incident on the 3-valent vertex y is an edge-cut of size 3. 

12. Lecture WS 2012/13 



Bioinformatics III 4 

A Primal-Dual Pair of Optimization Problems 
The connectivity of a graph may be interpreted in two ways. 
One interpretation is the number of vertices or edges it takes to disconnect the 
graph, and the other is the number of alternative paths joining any two given 
vertices of the graph. 

Corresponding to these two perspectives are the following two optimization 
problems for two non-adjacent vertices u and v of a connected graph G. 

Maximization Problem: Determine the maximum number of internally disjoint  
u-v paths in graph G. 

Minimization Problem: Determine the minimum number of vertices of graph G 
needed to separate the vertices u and v. 
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A Primal-Dual Pair of Optimization Problems 
Proposition 5.3.1: (Weak Duality) Let u and v be any two non-adjacent vertices of  

a connected graph G. Let Puv be a collection of internally disjoint u-v paths in G,  
and let Suv be a u-v separating set of vertices in G. 

Then | Puv| ≤ | Suv |. 

Proof: Since Suv is a u-v separating set, each u-v path in Puv must include at least 

one vertex of Suv . Since the paths in Puv are internally disjoint, no two paths of 
them can include the same vertex. 
Thus, the number of internally disjoint u-v paths in G is at most | Suv |. □ 

Corollary 5.3.2. Let u and v be any two non-adjacent vertices of a connected  
graph G. Then the maximum number of internally disjoint u-v paths in G is less  
than or equal to the minimum size of a u-v separating set of vertices in G. 

Menger‘s theorem will show that the two quantities are in fact equal. 
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A Primal-Dual Pair of Optimization Problems 
The following corollary follows directly from Proposition 5.3.1. 

Corollary 5.3.3: (Certificate of Optimality) Let u and v be any two non-adjacent 
vertices of a connected graph G.  

Suppose that Puv is a collection of internally disjoint u-v paths in G,  

and that Suv is a u-v separating set of vertices in G, such that | Puv| = | Suv |. 

Then Puv is a maximum-size collection of internally disjoint u-v paths, and 
Suv is a minimum-size u-v separating set (i.e. S has the smallest size of all u-v 
separating sets). 
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Vertex- and Edge-Connectivity 
Example: In the graph G below, the vertex sequences 〈u,x,y,t,v〉, 〈u,z,v〉, and 

〈u,r,s,v〉 represent a collection P  of three internally disjoint u-v paths in G,  
and the set S = {y,s,z} is a u-v separating set of size 3. 

Therefore, by Corollary 5.3.3, P is a maximum-size collection of internally disjoint 
u-v paths, and S is a minimum-size u-v separating set. 

The next theorem proved by K. Menger in 1927 establishes a strong duality 
between the two optimization problems introduced earlier. 

The proof given here is an example of a traditional style proof in graph theory. 
The theorem can also be proven e.g. based on the theory of network flows. 
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strict paths 
Definition Let W be a set of vertices in a graph G and x another vertex not in W. 
A strict x-W path is a path joining x to a vertex in W and containing no other vertex 
of W. A strict W-x path is the reverse of a strict x-W path (i.e. its sequence of 
vertices and edges is in reverse order). 

Example: Corresponding to the u-v separating set W = {y,s,z} in the graph below, 
the vertex sequences 〈u,x,y〉, 〈u,r,y〉, 〈u,r,s〉, and 〈u,z〉 represent the four strict  
u-W paths, and the three strict W-v paths are given by 〈z,v〉, 〈y,t,v〉, and 〈s,v〉. 
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Menger’s Theorem 
Theorem 5.3.4 [Menger, 1927] Let u and v be distinct, non-adjacent vertices in a 
connected graph G.  
Then the maximum number of internally disjoint u-v paths in G equals the minimum 
number of vertices needed to separate u and v. 

u v 

Proof: The proof uses induction on the number of edges. 
The smallest graph that satisfies the premises of the theorem is the path graph 
from u to v of length 2, and the theorem is trivially true for this graph. 

Assume that the theorem is true for all connected graphs having fewer than 
m edges, e.g. for some m ≥ 3. 
Now suppose that G is a connected graph with m edges, and let k be the minimum 
number of vertices needed to separate the vertices u and v. 
By Corollary 5.3.2, it suffices to show that there exist k internally disjoint 
u-v paths in G.  
Since this is clearly true if k = 1 (since G is connected), assume k ≥ 2. 
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Proof of Menger’s Theorem 
Assertion 5.3.4a If G contains a u-v path of length 2, then G contains k internally 
disjoint u-v paths.  

Proof of 5.3.4a: Suppose that P = 〈u,e1,x,e2,v〉 is a path in G of length 2. 
Let W  be a smallest u-v separating set for the vertex-deletion subgraph G – x. 
Since W ∪ {x} is a u-v separating set for G, the minimality of k implies that  
| W | ≥ k – 1. By the induction hypothesis, there are at least k – 1 internally disjoint 

u – v paths in G – x. Path P  is internally disjoint from any of these, and, hence, 
there are k internally disjoint u-v paths in G. □ 

If there is a u-v separating set that contains a vertex adjacent to both vertices  
u and v, then Assertion 5.3.4a guarantees the existence of k internally disjoint  
u-v paths in G.  

The argument for distance (u,v) ≥ 3 is now broken into two cases, according to the 
kinds of u-v separating sets that exist in G. 
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Proof of Menger’s Theorem 
In Case 1 (left picture), there exists a u-v separating set W, where neither u nor v is 
adjacent to every vertex of W . 

In Case 2 (right picture), no such separating set exists.  
Thus, in every u-v separating set for Case 2, either every vertex is adjacent to u  
or every vertex is adjacent to v. 
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Proof of Menger’s Theorem 
Case 1: There exists a u-v separating set W = {w1, w2, ... ,wk } of vertices in G of 
minimum size k, such that neither u nor v is adjacent to every vertex in W. 

Let Gu be the subgraph induced on the union of the edge-sets of all strict u-W paths 
in G, and let Gv be the subgraph induced on the union of edge-sets of all strict W-v 
paths (see Fig. below). 
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Proof of Menger’s Theorem 
Assertion 5.3.4b: Both of the subgraphs Gu and Gv have more than k edges. 

Proof of 5.3.4b: For each wi ∈ W, there is a u-v path Pwi in G on which wi is the only 
vertex of W (otherwise, W – {wi} would still be a u-v separating set, contradicting 
the minimality of W).  
The u-wi subpath of Pwi  is a strict u-W path that ends at wi. 
Thus, the final edge of this strict u-W path is different for each wi.  
Hence, Gu has at least k edges. 

The only way Gu could have exactly k edges would be if each of these strict 
u-W paths consisted of a single edge joining u and wi, i = 1, ..., k.  
But this is ruled out by the condition for Case 1. Therefore, Gu has more than k 
edges. A similar argument shows that Gv also has more than k edges. □ 
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Proof of Menger’s Theorem 
Assertion 5.3.4c: The subgraphs Gu and Gv have no edges in common. 

Proof of 5.3.4c: By way of contradiction, suppose that the subgraphs Gu and Gv 
have an edge e in common. By the definitions of Gu and Gv, edge e is an edge of 
both a strict u-W path and a strict W-v path.  
A strict x-W path is a path joining x to a vertex in W and containing no other vertex of W.  
A strict W-x path is the reverse of a strict x-W path (i.e. its sequence of vertices and edges is in reverse order). 

Hence, at least one of the endpoints of e, say x, is not a vertex in the u-v separating 
set W (see Fig. below). This implies the existence of a u-v path in G-W,  
which contradicts the definition of W. □ 
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Proof of Menger’s Theorem 
We now define two auxiliary graphs Gu

* and Gv
*:  

Gu
* is obtained from G by replacing the subgraph Gv with a new vertex v* and 

drawing an edge from each vertex in W to v*, and  
Gv

* is obtained by replacing Gu with a new vertex u* and drawing an edge from u* to 
each vertex in W (see Fig. below). 
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Proof of Menger’s Theorem 
Assertion 5.3.4d: Both of the auxiliary graphs Gu

* and Gv
* have fewer edges than G. 

A similar argument shows that Gv
* also has fewer edges than G. □ 

5.3.4c 

5.3.4b 

since Gu ∪ Gv is a subgraph of G 

by the construction of Gu* 

Proof of 5.3.4d: The following chain of inequalities shows that graph Gu
* has fewer 

edges than G. 
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Proof of Menger’s Theorem 
By the construction of graphs Gu

* and Gv
*, every u-v* separating set in graph Gu

* 
and every u*-v separating set in graph Gv

* is a u-v separating set in graph G. 
Hence, the set W is a smallest u-v* separating set in Gu

* and a smallest u*-v 
separating set in Gv

*. 

Since Gu
* and Gv

* have fewer edges than G, the induction hypothesis implies the 
existence of two collections, Pu

* and Pv
* of k internally disjoint u-v* paths in Gu

* and 
k internally disjoint u*-v paths in Gv

*, respectively (see Fig.). 
For each wi, one of the paths in Pu

* consists of a u-wi path Pi
‘ in G plus the new 

edge from wi to v*, and one of the paths in Pv
* consists of the new edge from u* to 

wi followed by a wi-v path Pi
‘‘ in G. 

Let Pi be the concatenation of paths  Pi
‘ and Pi

‘‘, for i = 1, ..., k. Then the set 
{Pi} is a collection of k internally disjoint u-v paths in G. □ (Case 1) 
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Proof of Menger’s Theorem 
Case 2: Suppose that for each u-v separating set of size k, one of the vertices  
u or v is adjacent to all the vertices in that separating set. 
will not be proven in lecture = not be subject of test 3/final exam. 

Let P = 〈u,e1,x1,e2,x2, ..., v〉 be a shortest u-v path in G.  
By Assertion 5.3.4a, we can assume that P has length at least 3 and that  
vertex x1 is not adjacent to vertex v. 
By Proposition 5.1.3, the edge-deletion subgraph G – e2 is connected. 
Let S be a smallest u-v separating set in subgraph G – e2 (see Fig.). 
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Proof of Menger’s Theorem 
Then S is a u-v separating set in the vertex-deletion subgraph G – x 1.  
Thus, S ∪ {x1} is a u-v separating set in G, which implies that | S | ≥ k – 1, by the 
minimality of k. On the other hand, the minimality of 
| S | in G – e2 implies that | S | ≤ k, since every u-v separating set in G is also  
a u-v separating set in G – e2. 

If | S | = k, then, by the induction hypothesis, there are k internally disjoint u-v paths 
in G – e2  and, hence, in G.  
If | S | = k – 1, then xi ∉ S, i = 1,2 (otherwise S – {xi } would be a u-v separating set 
in G – e2, contradicting the minimality of k). 
Thus, the sets S ∪ {x1} and S ∪ {x2} are both of size k and both u-v separating sets 
of G. The condition for Case 2 and the fact that vertex x1 is not adjacent to v imply 
that every vertex in S is adjacent to vertex u. 
Hence, no vertex in S is adjacent to v (lest there be a u-v path of length 2). 
But then the condition of Case applied to S ∪ { x2 } implies that vertex x2 is adjacent 
to vertex u, which contradicts the minimality of path P and completes the proof. □ 
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