In the first half of this lecture section, we use the theory of network flows to give
constructive proofs of Menger's theorem.

These proofs lead directly to algorithms for determining the edge-connectivity and
vertex-connectivity of a graph.

The strategy to prove Menger's theorems is based on properties of certain
networks whose arcs all have unit capacity.

These 0-1 networks are constructed from the original graph.
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Lemma 12.3.1. Let N be an s-f network such that
outdegree(s) > indegree(s),
indegree(t) > outdegree (t), and
outdegree(v) = indegree(v) for all other vertices v.
Then, there exists a directed s-t path in network N.

Proof. Let W be a longest directed trail (trail = walk without repeated edges; path = trail
without repeated vertices) in network N that starts at source s, and let z be its terminal
vertex.

If vertex z were not the sink ¢, then there would be an arc not in trail W that is directed from
Z (since indegree(z) = outdegree(z) ).

But this would contradict the maximality of trail W.

Thus, W s a directed trail from source s to sink .

If W has a repeated vertex, then a part of W determines a directed cycle, which can be
deleted from W to obtain a shorter directed s-t trail.

This deletion step can be repeated until no repeated vertices remain, at which point, the
resulting directed trail is an s-t path. o
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Proposition 12.3.2. Let N be an s-t network such that

outdegree(s) — indegree(s) = m = indegree(t) — outdegree (1),
and outdegree(v) = indegree(v) for all vertices v = s,t.
Then, there exist m disjoint directed s-t path in network N.

Proof. If m = 1, then there exists an open eulerian directed trail T from
source S to sink t by Theorem 6.1.3.

Review: An eulerian trail in a graph is a trail that visits every edge of that graph exactly once.

Theorem 6.1.3. A connected digraph D has an open eulerian trail from vertex x to vertex y if and only if
indegree(x) + 1 = outdegree(x), indegree(y) = outdegree(y) + 1, and all vertices except x and y have equal
indegree and outdegree.

Euler proved that a necessary condition for the existence of Eulerian circuits is that all vertices in the graph
have an even degree.

Theorem 1.5.2. Every open x-y walk W is either an x-y path or can be reduced to an x-y path.

Therefore, trail T is either an s-t directed path or can be reduced to an s-t path.
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By way of induction, assume that the assertion is true for m = k, for some k = 1,
and consider a network N for which the condition holds for m = k +1.
There exists a directed s-t path P by Lemma 12.3.1.

If the arcs of path P are deleted from network N, then the resulting network N - P
satisfies the condition of the proposition for m = k.

By the induction hypothesis, there exist k arc-disjoint directed s-f paths in network

N - P. These k paths together with path P form a collection of k + 1 arc-disjoint
directed s-t paths in network N. o
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Definition A 0-1 network is a capacitated network whose arc capacities
are either O or 1.

Proposition 12.3.3. Let N be an s-t network such that cap(e) = 1 for every arc e.
Then the value of a maximum flow in network N equals the maximum number of
arc-disjoint directed s-t paths in N.

Proof: Let f* be a maximum flow in network N, and let r be the maximum number of
arc-disjoint directed s-t paths in N.

Consider the network N* obtained by deleting from N all arcs e for which f*(e) = 0.
Then f*(e) = 1 for all arcs e in network N*.

It follows from the definition that for every vertex v in network N7,

E I (e)= ‘OW(V) = Outdegree(v)

e0ut (v )

and f* (e)= ‘]n(v) = ina’egree(v)

eEln v)
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Thus by the definition of val(f*) and by the conservation-of-flow property,
outdegree(s) — indegree (s) = val(f*) = indegree(t) — outdegree(t)

and outdegree(v) = indegree(v), for all vertices v = s,t.

By Proposition 12.3.2., there are val(f*) arc-disjoint s-t paths in network N*, and

hence, also in N, which implies that val(f*) <.

To obtain the reverse inequality, let {P,,P,, ..., P,} be the largest collection of arc-

disjoint directed s-t paths in N, and consider the function f: E,, — R* defined by

1, if some path P, uses arc e
-

0, otherwise

Then fis a feasible flow in network N, with val(f) =r.
It follows that val(f*) = r. o
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Review from §5.3
Let s and ¢ be distinct vertices in a graph G. An s-t separating edge setin Gis a
set of edges whose removal destroys all s-t paths in G.

Thus, an s-t separating edge set in G is an edge subset of E that contains at least
one edge of every s-t path in G.

Definition: Let s and ¢ be distinct vertices in a digraph D.
An s-t separating arc set in D is a set of arcs whose removal destroys all directed
s-t paths in D.

Thus, an s-t separating arc set in D is an arc subset of E that contains at least one
arc of every directed s-t path in digraph D.

Remark: For the degenerate case in which the original graph or digraph has no
s-t paths, the empty set is regarded as an s-t separating set.
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Proposition 12.3.4 Let N be an s-t network such that cap(e) = 1 for every arc e.
Then the capacity of a minimum s-t cut in network N equals the minimum number of
arcs in an s-f separating arc setin N.

Proof: Let K*=(V,,V, ) be a minimum s-t cut in network N, and let q be the
minimum number of arcs in an s-t separating arc setin N.
Since K*is an s-t cut, it is also an s-f separating arc set. Thus cap(K*) = q.

To obtain the reverse inequality, let S be an s-f separating arc set in network N

containing q arcs, and let R be the set of all vertices in N that are reachable from
source s by a directed path that contains no arc from set S.

Then, by the definitions of arc set S and vertex set R, t € R, which means that
(R, Vy-R)is an s-t cut.

Moreover, ( R, V), - R) C S. Therefore
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cap(K *)s cap<R, V. - R> since K * 1s a minimum s — ¢ cut

= ‘< RV, - R>‘ since all capacities are |
N since (R,V, -R)C S
=q

which completes the proof. o
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Theorem 12.3.5 [Arc form of Menger‘s theorem]

Let s and t be distinct vertices in a digraph D. Then the maximum number of arc-
disjoint directed s-f paths in D is equal to the minimum number of arcs in an s-t
separating set of D.

Proof: Let N be the s-t network obtained by/assigning a unit capacity to each arc of
digraph D. Then the result follows from Propositions 12.3.3. and 12.3.4., together
with the max-flow min-cut theorem. o

Theorem 12.2.4 [Max-Flow Min-Cut] For a given network, the value of a maximum flow is equal to the
capacity of a minimum cut.

Proposition 12.3.3. L et-Nbe an s-f network-such that cap(e) = 1 for every arc e. Then the value of a
maximum flow in network N equals the maximum number-of-arc-disjoint directed s-t paths in N.

Proposition 12.3.4 Let N be an s-t network such that cap(e) = 1 for every arc e. Then the capacity of a
minimum s-t cut in network N equals the minimum number of arcs in an s-f separating arc set in N.
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There exist different levels of computational methods for
describing metabolic networks:

- stoichiometry/kinetics of classical biochemical pathways (glycolysis, TCA cycle, ...

- stoichiometric modelling (flux balance analysis): theoretical capabilities of an
integrated cellular process, feasible metabolic flux distributions

- automatic decomposition of metabolic networks
(elementary nodes, extreme pathways ...)

- kinetic modelling of coupled cellular pathways (E-Cell ...)

General problem: lack of kinetic information
on the dynamics and regulation of cellular metabolism
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The KEGG PATHWAY
database (http://www.genome. jp/kegg/
pathway.html) is a collection of
graphical diagrams (KEGG
pathway maps) representing
molecular interaction networks
in various cellular processes.
Each reference pathway is
manually drawn and updated
with the notation shown left.

Organism-specific pathways
(green-colored pathways) are
computationally generated
based on the assignment
in individual genomes.
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E.coli genome contains 4.7 million DNA bases.
How can we characterize the functional complement of E.coli and according to
what criteria can we compare the biochemical networks of two organisms?

EcoCyc contains the metabolic map of E.coli defined as the set of all known
pathways, reactions and enzymes of E.coli small-molecule metabolism.

Analyze

- the connectivity relationships of the metabolic network

- its partitioning into pathways

- enzyme activation and inhibition

- repetition and multiplicity of elements such as enzymes, reactions, and substrates.

Ouzonis, Karp, Genome Res. 10, 568 (2000)
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o Regulation of Glycolysis in E.coli

() Boxed genes on the left are enzymes of glycolysis
pathway

pgi: phosphoglucose isomerase
pgk: phosphoglycerate kinase
pfk: 6-phosphofructo kinase ...

Circled FruR, CRP etc. on the right : transcription
factors

Green pointed arrows: activation of transcription;
Violet blunt arrow : repression;

Brown circle-ended arrow indicates that the factor can
activate or repress, depending on circumstances.

WWW.eCoCyC.org
14. Lecture WS 2012/13 Bioinformatics Ill 17



e Pentose Phosphate pathway
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Regulation of Pentose Phosphate Pathway

WWW.eCoCyC.org
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Regulation of TCA cycle
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E.coli genome contains 4391 predicted genes, of which 4288 code for proteins
(4503 genes in Dec. 2011, 209 RNAs).

676 of these genes form 607 enzymes of E.coli small-molecule metabolism.

Of those enzymes, 311 are protein complexes, 296 are monomers.

()3}
A D < N O Al
N ™ 0 OAN O O JF ™7™ ™ ™ v v

—
® © O
o O O
i EETE |

Organization of protein complexes.
Distribution of subunit counts for all
EcoCyc protein complexes.

The predominance of monomers,
dimers, and tetramers is obvious
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N
o
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number of enzymes with that subunit count
0
C

o
L

, 12 3 45 6 7 8 101214242838 4060
Ouzonis, Karp, Genome Res. 10, 568 (2000) number of subunits per enzyme
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EcoCyc describes 905 metabolic reactions that are catalyzed by E. coli.
(1991 in Dec. 2011)

Of these reactions, 161 are not involved in small-molecule metabolism,
e.g. they participate in macromolecule metabolism such as DNA replication and

tRNA charging.

Of the remaining 744 reactions, 569 have been assigned to at least one pathway.

Ouzonis, Karp, Genome Res. 10, 568 (2000)
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The number of reactions (744) and the number of enzymes (607) differ ...
WHY??

(1) there is no one-to-one mapping between enzymes and reactions —
some enzymes catalyze multiple reactions, and some reactions are catalyzed
by multiple enzymes.

(2) for some reactions known to be catalyzed by E.coli, the enzyme has not yet
been identified.

Ouzonis, Karp, Genome Res. 10, 568 (2000)
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The 744 reactions of E.coli small-molecule metabolism involve a total of 791
different substrates.

On average, each reaction contains 4.0 substrates, (think of A+ B -> C + D)

57 126 427 99 83 9 6

100—:

_ 90

Number of reactions 80
containing varying 2 704
numbers of substrates ‘g 60
(reactants plus % 507
products). g 404
S ]

3 30-:

c .

20—;

104

04

substrates

Ouzonis, Karp, Genome Res. 10, 568 (2000)
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Compounds

Each distinct substrate occurs in an average of 2.1 reactions.

Table 1. Most Frequently Used Metabolites in £ colf

Central Metabolism

1> naJ;
: 14 glucose
Occurrence Name of metabolite 13 glycerakdetryde-3.phosphate
13 THF
205 H;O 13 acetate
152 ATP 12 PRPP
101 ADP 12 [acy| carrier protein)
lgg phosphab:h 12 oxaloacetic acid
osphate 11 di =cetone-phosphate
7 RiAEE" 3 O
60 NADH 1 glucose-1-phosphate
54 CO, 11 UMP
53 H* 10 e’
49 AMP 10 phosphoenolpyruvate
48 NH, 10 acceptor
43 NADP 10 reduced acceptor
45 NADPH 10 GTP
a4 Coenzyme A 10 L-serine
43 L-glutamate 10 fructose. 6 phosphate
41 pPyruvate 9 L-cysteine
29 acetyl-Cod 9 reduced thioreckxin
26 Q, i oxidized thioredoxin
24 2-oxoglutarate 9 reduced ghlutathione
23 Sadenosyl-Lamethicnine 8 acyl-ACP
18 Sadenosyl-homocysteine 8 L-ghcine
16 L-aspartate 8 GMP
16 L-glutamine 5 formate
15 HO,

14. Lecture WS 2012/13

glucose-1-phosphate

Metabdlites were used either a5 reactants or products.

Ouzonis, Karp, Genome Res. 10, 568 (2000)
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EcoCyc describes 131 pathways (347 in Dec. 2011):
energy metabolism
leotid d ami id bi thesi
nucleotide and amino acid biosynthesis Length distribution of

secondary metabolism EcoCyc pathways

8 232114189 2 9104 2 3 2 2 1 1

Pathways vary in length from a 25-
single reaction step to 16 steps ]
with an average of 5.4 steps. N
£ 15

]

c 5_:

o]

1 2 3 456 7 8 9101112131415 16
number of steps

Ouzonis, Karp, Genome Res. 10, 568 (2000)
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Pathways

Table 2. List of All Known 2. o002 Metabolic Pat bwarys as Described by EcoCye

However, there is no precise
biological definition of a pathway.

The partitioning of the metabolic
network into pathways (including
the well-known examples of
biochemical pathways) is
somehow arbitrary.

These decisions of course also
affect the distribution of pathway
lengths.

Ouzonis, Karp, Genome Res. 10, 568 (2000)
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An enzymatic reaction is a type of EcoCyc object that represents the pairing
of an enzyme with a reaction catalyzed by that enzyme.

EcoCyc contains extensive information on the modulation of E.coli enzymes with
respect to particular reactions:

- activators and inhibitors of the enzyme,

- cofactors required by the enzyme

- alternative substrates that the enzyme will accept.

Of the 805 enzymatic-reaction objects within EcoCyc, physiologically relevant
activators are known for 22, physiologically relevant inhibitors are known for 80.

327 (almost half) require a cofactor or prosthetic group.

Ouzonis, Karp, Genome Res. 10, 568 (2000)
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Table 3. Most Common Modulators, cofactors, and prosthetic groups of E. coli enzymes and Their Frequencies

Enzyme Modulation

A. Modulators (activators and inhibitors)

B. Cofactors and prosthetic groups

Name Name Prosthetic
Occurrence of modulator Activator Inhibitor Occurrence of compound Cofactor group
35 Cu?* . 145 Mg?* . .
32 ATP . . 48 pyridoxal 5'-phosphate . .
30 Zn** . . 33 Mn2+ .
29 AMP . . 31 FAD . .
26 ADP . . 21 Fe?+ . .
25 EDTA . . 18 Zn** . .
23 p-chloromercuribenzoate . 16 thiamine-pyrophosphate .
23 pyrophosphate . . 11 FMN . .
22 K* . . 10 Co?* .
22 phosphate . . 9 K* .
20 Hg?* . 6 Mo?* .
20 Ca®* . 5 NAD . .
19 N-ethylmaleimide . . 4 protoheme .
16 NAD . . 4 Ni2* .
16 iodoacetamide . 4 Ca**
16 coenzyme A . 4 4Fe-45 center .
15 Co?* . . 3 NH,* .
15 Mg+ . . 3 pyruvate B
15 phosphoenclpyruvate . . 3 siroheme .
14 Fe+ . . 3 cytochrome ¢ .
14 GTP . . 2 heme C .
14 pyruvate . . 2 B2 .
13 p-hydroxymercuribenzoate . 2 NADP .
13 NADP . 2 Cu?* .
12 Mn?* - . 2 biotin -
2 S .
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Ouzonis, Karp, Genome Res. 10, 568 (2000)

Bioinformatics Ill

30



676 55 12 1

100

Diagram showing the number of reactions 90

number of reactions

80
that are catalyzed by one or more enzymes. 7o
Most reactions are catalyzed by one enzyme, :g
some by two, and very few by more than two 40
304
enzymes. 20.
10—3
04

<1 2 3 4
enzymes

For 84 reactions, the corresponding enzyme is not yet encoded in EcoCyc.

What may be the reasons for isozyme redundancy?

(1) the enzymes that catalyze the same reaction are paralogs (homologs) and
have duplicated (or were obtained by horizontal gene transfer),
acquiring some specificity but retaining the same mechanism (divergence)

(2) the reaction is easily ,invented®; therefore, there is more than one protein family

that is independently able to perform the catalysis (convergence).
Ouzonis, Karp, Genome Res. 10, 568 (2000)
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Genome predictions usually assign a single enzymatic function.

However, E.coli is known to contain many multifunctional enzymes.

Of the 607 E.coli enzymes, 100 are multifunctional, either having the same active
site and different substrate specificities or different active sites.

684 507 81 13 2 2 1 1

100+
905
Number of enzymes that catalyze one or 80.
more reactions. Most enzymes catalyze 70-

60
one reaction; some are multifunctional.

50
40
30-5
20
10—5
04

number of enzymes

I I

reactions

The enzymes that catalyze 7 and 9 reactions are purine nucleoside phosphorylase
and nucleoside diphosphate kinase.

Take-home message: The high proportion of multifunctional enzymes implies that
the genome projects significantly underpredict multifunctional enzymes!
Ouzonis, Karp, Genome Res. 10, 568 (2000)
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175 470 72 22 3 1 1

100

number of reactions

pathways with that substrate count

th 6 4 6 8 101214 16 18 20 22 24 26 28 30 32 34 36
pathways number of substrates per pathway
The 99 reactions belonging to muliiple Ouzonis, Karp,
pathways appear to be the intersection Genome Res. 10, 568 (2000)

points in the complex network of/chemical
processes in the cell.

E.g. the reaction present in 6 pathways corresponds to the reaction catalyzed by
malate dehydrogenase, a central enzyme in cellular metabolism.
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Attributes of generic network structures.

) Exponential Scale-free c
a, Representative structure of the a
network generated by the Erdos—Reényi
network model. b, The network
connectivity can be characterized by the
probability, P(k), that a node has k links.
For a random network P(k) peaks
strongly at k = <k> and decays b d
exponentially for large k (i.e., P(k) = e* 3
for k >> <k> and k<< <k>). <
c, In the scale-free network most nodes = an
have only a few links, but a few nodes,
called hubs (dark), have a very large >
number of links. i |

d, P(k) for a scale-free network has no log k

well-defined peak, and for large k it
decays as a power-law, P(k) = k7,

appearing as a straight line with slope -

Jeong et al. Nature 407, 651 (2000)
on a log—log plot.

14. Lecture WS 2012/13 Bioinformatics Ill 34



a, Archaeoglobus fulgidus (archae);

b, E. coli (bacterium); :;f;_l . '”19__ E - O{pti—;:_
c, Caenorhabditis elegans (eukaryote), Jo2b 1 L E
shown on a log—log plot, counting < 109F 1 L ]
separately the incoming (In) and b 1t ]
outgoing links (Out) for each substrate. osb a 1 Lty E
k. (k) corresponds to the number of O NIRRT R SR
reactions in which a substrate 108 I e
participates as a product (educt). 10-1E;_ . E .
d, The connectivity distribution 102F 1 E -
averaged over 43 organisms. < 10°F 1 E .
RS 1 F :

10‘5;— c _ ;_ < _

T T T R T T T

k k

Jeong et al. Nature 407, 651 (2000)
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a, The histogram of the biochemical pathway 2

3x10°
lengths, /, in E. coli. ]
b, The average path length (diameter) for gzxm
each of the 43 organisms. 1x10°
¢, d, Average number of incoming links (c) or 0
outgoing links (d) per node for each o
organism. 4
e, The effect of substrate removal on the L
metabolic network diameter of E. coli. In the N3

top curve (red) the most connected 5
substrates are removed first. In the bottom
curve (green) nodes are removed randomly.
M =60 corresponds to 8% of the total
number of substrates in found in E. coli.

Diameter

1
0070 20 30 40 5

M

The horizontal axis in b— d denotes the
number of nodes in each organism. b—d,
Archaea (magenta), bacteria (green) and
eukaryotes (blue) are shown.
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In a cell or microorganism, the processes that generate mass, energy, information
transfer and cell-fate specification are seamlessly integrated through a complex
network of cellular constituents and reactions.

A systematic comparative mathematical analysis of the metabolic networks of 43
organisms representing all 3 domains of life showed that, despite significant
variation in their individual constituents and pathways, these metabolic networks
have the same topological scaling properties and show striking similarities to the
inherent organization of complex non-biological systems.

This may indicate that metabolic organization is not only identical for all living
organisms, but also complies with the design principles of robust and error-tolerant
scale-free networks, and may represent a common blueprint for the large-scale
organization of interactions among all cellular constituents.

Jeong et al. Nature 407, 651 (2000)
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(a) ®—0©
Evolution of
network-based @, -~~~ =-=s--—=====-=-=--- :
pathways () @

System boundary

(c) Subsequently, network-based,
mathematically defined pathways
can be analyzed that account for a
complete network (black and gray
arrows correspond to active and
inactive reactions).

(a) With advanced biochemical tech-
niques, years of research have led to the
precise characterization of individual
reactions. As a result, the complete
stoichiometries of many metabolic
reactions have been characterized.

(b) Most of these reactions have been
grouped into "traditional pathways' (e.g.
glycolysis) that do not account for
cofactors and byproducts in a way that
lends itself to a mathematical description.
However, with sequenced and annotated
genomes, models can be made that
account for many metabolic reactions in
an organism.

Papin et al. TIBS 28, 250 (2003)
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Stoichiometric matrix:
A matrix with reaction stochio-
metries as columns and

i § o bay
metabolite participations as | ? o ity
| —
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Stoichiometric matrix

System boundary

s S S ——

The stochiometric matrix is an

important part of the in silico

model.

With the matrix, the methods of

extreme pathway and

elementary mode analyses can P=x
be used to generate a unique 1
set of pathways P1, P2, and P3

(see future lecture).

00— <0oND
(= R R
«

— - N
- N
o

Papin et al. TIBS 28, 250 (2003)
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