V15 Flux Balance Analysis — Extreme Pathways
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Any chemical reaction requires mass conservation. LEF’A pBM
Therefore one may analyze metabolic systems by A

requiring mass conservation. Only required: knowledge Pr2—> 5 L
about stoichiometry of metabolic pathways.

: . Steady state: concentrations are constant
For each metabolite X; : > fluxin = flux out
- dA;B(t
dXi /dt = Vsynthesized _ Vused —th () = Ga,p—La,p = 0
+V

transported_in ~ Vtransported_out

Under steady-state conditions, the mass balance constraints in a metabolic
network can be represented mathematically by the matrix equation:

S:-v=0
where the matrix S is the stoichiometric matrix and the vector v represents all

fluxes in the metabolic network, including the internal fluxes, transport fluxes and
the growth flux.
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Since the number of metabolites is generally smaller than the number of reactions

(m < n) the flux-balance equation is typically underdetermined.

Therefore there are generally multiple feasible

flux distributions that satisfy the mass balance constraints.
The set of solutions are confined to the nullspace of matrix S.

Consider

Corresponds to 2oy g = 0 ___ 21y = —ag
0

3r1 — 1o +x3 = 2r1 = —x3

=> one free parameter: x3 null space: 7 =

Add inequalities for external fluxes
(here,e.g.:x3 = 0)
=> feasible solutions fora > 0

Generally: null space is a cone,

constraints select part of it
15. Lecture WS 2012/13 Bioinformatics Il
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Edwards & Palsson PNAS 97, 5528 (2000)
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The steady-state operation of the
metabolic network is restricted to the
region within a pointed cone, defined
as the feasible set.

The feasible set contains all flux vectors
that satisfy the physicochemical
constrains.

Thus, the feasible set defines the
capabilities of the metabolic network.
All feasible metabolic flux distributions
lie within the feasible set.
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To find the ,true” biological flux in cells (— e.g. Heinzle, UdS) one needs additional
(experimental) information,
or one may impose constraints

a <v, <p,
on the magnitude of each individual metabolic flux.
The intersection of the nullspace and the region

defined by those linear inequalities defines a
region in flux space = the feasible set of fluxes.

Flux C

Flux A

In the limiting case, where all constraints
on the metabolic network are known, such
as the enzyme kinetics and gene
regulation, the feasible set may be reduced
to a single point. This single point must lie
within the feasible set.
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Best studied cellular system: E. coli.

In 2000, Edwards & Palsson constructed an in silico representation of E.coli
metabolism.

There were 2 good reasons for this:
(1)genome of E.coli MG1655 was already completely sequenced,

(2) Because of long history of E.coli research, biochemical literature, genomic
information, metabolic databases EcoCyc, KEGG contained biochemical or
genetic evidence for every metabolic reaction included in the in silico
representation. In most cases, there existed both.

Edwards & Palsson
PNAS 97, 5528 (2000)
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Genes included in in silico model of E.coli

Table 1. The genes Induded In the E. coll metabollc genotype (21)

Central metabolism (EMP, PPP,
TCA cycle, electron transport)

Alternative carbon source

Amino acid metabolism

Purine & pyrimidine
metabolsm

Vitamin & cofactor metabolism

Lipid metabolism

Cellwall metabolism

Trareport processes

Edwards & Palsson
PNAS 97, 5528 (2000)
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aced, aceB, acef, acef, ackA, acnd, amnB, acs adhE, agp, appd, appC, atpd, atpl, atpC, atpl, atpk, atpk,
atpG, atpH, atpl, cpdA, cpdB, ey, cpedD), cyod, cyol, cyol, cyol) did, ena, fba, fbp, fdhF, fdnG, fdnH,
fdnd, fdols, fdol, fdol, frdA, frdB, frdC, frdD, fumd, furnB, fumC galM gepd, gapC ], gapC 2, gicB,
9lgh, GigC, glgP. glk. aipA, @inb, gipC, gipD, GitA, gnd, gamA, gpmB, fyak, hyaR, byaC, hybA, hybC,
hycB, hyck, bk, byeG, icdA, IetD, IdhA, Ipdh, malP, mdh, ndh, nuod, nuoB, nuwok, nuok, nuo, nuok,
noa, nuol, nuwok, nuol, nuoM, nuol, pcih, pfkA, pfiB, pRA, pflB, pHC pflD, pogi, pak. poth, pntd ppe,
ppsh, pta, purT, pyih, pykF, 1pe, tpid, xR, sdhd, wthB, schC, sdhl, sfch, sudh, sucB, sucC, sucl), tal8,
thtA, thtB, tpil, trxB zarf pgl(30), maed (30)

adhC, achE, agaY, agalZ, aldA, aldB, aldH, arah, aral acab, bgiX, cpsG, deoB, fruk, fuch, fud, fuck fucO,
galE, gall gall, gall, gatl) gatY, ik, glok, greK, gntV, gpsA, lacZ, mank, medh, mtiD, nagh, nagh,
nand, pfkB, pgi pgm, b=k, rthad, rhal, rhall, stiD, treC, xyld, xylf

adi ok, alr, ansh, ansB, argh, avgl argC, argD, argE, argF, argG, argh, avgl avals, avol aroC, arol), arck,
aof, avrolz, avoH, arok, arol, asd, asnd, asnB, aspA, aspl, avth, caddh, cavd, carB, cysC, cysD), cy=E, opsH,
cyd, opsd, cysK cysM, o, dadd, dadX, dapd, dapf dapl), dapk, dapF, duih, gabl), gabT, gadd, gads,
gdih, gk, gind, gitB, gith, g4, goaG, hisd, hisB, hisC, hisD, Wisf, hsG, hist, s, il B G i,
iNE, G T, G2 dvH, o, ML A, kDL MG, lewh, leuB, leuC leul) lysh, lysC metA, metd, metC,
metE, math, metk, matl, phed, prod, prof, proC, prsd, putd, sdak, sdall serd, serB, serC, spel, spef,
speC, spel), spek, spef, tdc, tdh, thed, thrl theC, tnad, rpd, trpd, rpC trpl, opk, tynd, A, il
9/, ygit, aleB (42), depC(43), pat (44), prr (44), sad (48), methyithioadonosine nudeosidase (46),
S-mathylthioribose kinase (46), S-methylthoribose-i-phosphate isomerasze (46), adenosyl homocystainase
(A7), 1-cystone desulhydrase (A4), glutaminaseA (44), glutaminase B (A1)

add, adk amn, ap¢, cdd, cmk, codd, dod, deod, deol), dat, dut, gmk, gpt, gk guad, guall, gual, hpt
mutT, ndk nrdA, nrdB, redD, ovdE, modF, purd, purB, pwC, prD, purk, pwrk, purl, purk, pourl, purM,
pwrl, porT, pyeB, pyrC pyeD, pyrE, pyrf, pyrG, pyrk pyrl ok, thyl, trok, udk, udp, upp, wshA, xapd, yicF,
CMP glycosyhse (48)

acps, biod, biof bioD, bioF, coad, cyof, cys, enth, entf, ent(, entD, ertt, entf, epd, folA, folC, foll, folf,
folk, folf, gevh, govl qovT, gitX, giwh, gor, gshd, gsh8 hemd, hemB hero(, heml), hernf, hesof, hemi,
hemK, heml, heroM, hemX, hemY, ivC, g lpdA, menA, men8 menC, menl, menk, men¥, ment, metk,
mutT, nadA, nadB, nadC, nadE, ntpd, paldi, pabB, pabC panB, panC, panl) pdxd, pdxB, pdaH, pdxl,
pdak, prcB, purl, ribA, ribB ribD, ribE, ribH ser C thiC thif, thif, thiG, thitd, theC, ubi, b8, ubxC, wbiG,
ubit, ubX, yaaC, yoi, nadD (49), nadF (49), nadG (49), pank (50), pacA (49), pncC (49), th@ (51), thiD (1),
thikl (51), thil (51), thiM (51), thiV (51), wbiE (52), ub¥ (S2), arabincse-5-phosphate isomerase (12),
phosphopantathonate-grstaine kigase (W), phosphopantothonate-cys teine decarboxylase (90,
phaspho-pantethaine adenylyltransferase (Y0), dephosphoCod kinase (50), NMN glycohydrolase (49)

acch, acch, accD, atof, cdh, cdsA, cls, dgkd, fabl, fabH, fadB, gpsh, spd, ispB, papB, pgdk, pwd, ps=A pgpd
(53)

dedlds, ddlB, galf, gall, gimS, iU, fer8, kdsh, kdsB, kdtA, lpxA, loxd, lpaC, fpxD), mraY, msbB muk, muwE,
morC, murl, murk, marf, mwG, muel, tfaC, rfal), rfaf, rfaG, rfal, rfal, rfal, ush4, glmM (54), lpod (55),
rfak (55), totraacyldisacchoride 4' kinase (55), 3-deoxy-p-manno-octulosonic-acid 8-phosphate
phosphatase (B5)

arak, araf, ava, araH, agT, avol, artl art), artM, artP, artQ, ben(), cadB, chad, chall chaC, cmth, cme,
codB, cre, oych, cysA, cpsP s T ol oW ol deth, doud, dewB, dppd, dppB, dppC, dppl, dppf, fadl,
focA, frud, frud, fuch, gabP, galP. gath, gatd gatC. gint, ginP, gin. gipF. gipT, git), gkK. gitl, gitP, gits,
gntT, gpt, hisl hisM, hisP, b=, bpt, kdpd, kdpB, kdpC, kgtR lacY, lamB, IwF, G, Indd, Wl WK, M,
1P, ysP, malE, malf, malG, malk, malX, manX, man¥, manZ, melB, mgll, mglB, mglC, mtld, mu, nagk,
nanT, nhad, nhaB, nupC, nupG, oppd, oppB, oppC, oppd, opp¥, pank, pheF. pith, pith, pnuC, potA, potf,
potC, potD, potk, potf, potG, potH, potl, prof, prolV, proW, proX, pstd, ptB, pstC, pstS, pesh, ptsG, pesi
ptsi, ptsP purB, puth, rhsd, rbsB, rhsC, rbsD, rhaT, saph, sopB sap, sbp, sdaC, stdh 1, stld 2, st tdeC,
tnaB, med el kA, trkG, trkH, tx, tyef, ugpd, wgpB, ugpC, Lgpk, wad, xapB, xylE, xylf, xylG, xyiH,
fruF (56), gntS (57), matD (43), pouE (49), sar (56)
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Define «; = 0 for irreversible internal fluxes,
a; = - for reversible internal fluxes (use biochemical literature)

Transport fluxes for PO,%, NH;, CO,, SO,#, K*, Na* were unrestrained.

For other metabolites 0 <v, <v™ except for those that are able to leave the
metabolic network (i.e. acetate, ethanol, lactate, succinate, formate, pyruvate etc.)

Find particular metabolic flux distribution in feasible set by linear programming.
LP finds a solution that minimizes a particular metabolic objective —Z (subject to

the imposed constraints) where e.g.
Z = EC" "V, = <c-v>

When written in this way, the flux balance analysis (FBA) method finds the
solution that maximizes the sum of all fluxes = gives maximal biomass.

Edwards & Palsson, PNAS 97, 5528 (2000)
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Examine changes in the metabolic capabilities caused by hypothetical gene
deletions.

To simulate a gene deletion, the flux through the corresponding enzymatic
reaction was restricted to zero.

Compare optimal value of mutant (Z, ..¢) to the ,wild-type“ objective Z
VA

mutant

Z
to determine the systemic effect of the gene deletion.

Edwards & Palsson
PNAS 97, 5528 (2000)
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038
-0.3

(Black) Flux distribution for the wild-type.

(Red) zwf- mutant. Biomass yield is 99% of
wild-type result.

(Blue) zwf- pnt- mutant. Biomass yield is
92% of wildtype result.

Note how E.coli in silico circumvents
removal of one critical reaction (red arrow)
by increasing the flux through the
alternative G6P — PGP reaction.

Edwards & Palsson PNAS 97, 5528 (2000)
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Gene deletions in central intermediary metabolism
Maximal biomass yields .
on glucose for all
possible single gene

1.2 1

cyoABCD
aceEF
ppc
PYKAF
mdh
sdhABCD
sucAB
sucCD
aceA
aceB
acs
adhE
cydABCD
ftp
frdABCD
glk
idh
maeB
ndh
PCKA
pfIAC
pntAB
psA
sktA

fumABC
gnd

pal

2wf
taB

pts

Pgi

ackAB
pta

1_

2
deletions in the central ~ § °°° B g § &
metabolic pathways Ng 06 1 . N
(gycolysis, pentose o
phosphate pathway 02 - )

H ‘é% s g 3
(PPP); TCA, respiration)_ 0.0 - Qo o 3

The results were generated in a simulated aerobic environment with glucose as the carbon
source. The transport fluxes were constrained as follows: glucose = 10 mmol/g-dry weight
(DW) per h; oxygen = 15 mmol/g-DW per h.

The maximal yields were calculated by using FBA with the objective of maximizing growth.

Yellow bars: gene deletions that reduced the maximal biomass yield of Z to less than

95% of the in silico wild type Z,,.

mutant

Edwards & Palsson PNAS 97, 5528 (2000)
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The essential gene products were involved in the 3-carbon stage of glycolysis, 3
reactions of the TCA cycle, and several points within the PPP.

The remainder of the central metabolic genes could be removed while E.coli in
silico maintained the potential to support cellular growth.

This suggests that a large number of the central metabolic genes can be removed
without eliminating the capability of the metabolic network to support growth under
the conditions considered.

Edwards & Palsson PNAS 97, 5528 (2000)
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Table 2. Comparison of the predicted mutant growth

characteristics from the gene deletlon study to published
experimental results with single mutants

Gene glc gl SLcC ac

+ and — means growth or no growth. aceA
. acef -/

+ means that suppressor mutations have sceEr |
ac +1+

been observed that allow the mutant acn

acs ++
strain to grow. >
fha
. . fip +1+ -]
4 virtual growth media: frd
gap —/-
glc: glucose, gl: glycerol, succ: ok I+
i gl -1- ~-I-
succinate, ac: acetate. and
.,77.dh11
ndh
In 68 of 79 cases, the prediction was ot
consistent with exp. predictions. pak
pal
pitAB
ppcs

Red and yellow circles: predicted pta X " |

pts
mutants that eliminate or reduce growth. g )
sdh4BCD +i+ —/- -
sucAl +1+ -+ -7

Edwards & Palsson tkEAB -
tpi* * i+ -1~

PNAS 97, 5528 (2000) unc

+
zwf +/+ +/+ +4

I+ 4+ 4+ |+ | 4+ + | +
+ 4+ + |+ + 4+ + |+

.+ .+
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FBA analysis constructs the optimal network utilization simply using the
stoichiometry of metabolic reactions and capacity constraints.

For E.coli the in silico results are mostly consistent with experimental data.

FBA shows that the E.coli metabolic network contains relatively few critical gene
products in central metabolism.

However, the ability to adjust to different environments (growth conditions) may be
diminished by gene deletions.

FBA identifies ,the best" the cell can do, not how the cell actually behaves under a
given set of conditions. Here, survival was equated with growth.

FBA does not directly consider regulation or regulatory constraints on the
metabolic network. This can be treated separately (see future lecture).

Edwards & Palsson PNAS 97, 5528 (2000)
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A torch is directed at an open door
and shines into a dark room ...

What area is lighted ?

Instead of marking all lighted points
individually,
it would be sufficient to characterize

the ,extreme rays" that go through the
- corners of the door.
The lighted area is the area between

the extreme rays = linear
combinations of the extreme rays.
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introduced into metabolic analysis by the lab of Bernard Palsson

(Dept. of Bioengineering, UC San Diego). The publications of this lab

are available at http://gcrg.ucsd.edu/publications/index.html ! b,

The extreme pathway
technique is based '
on the stoichiometric ~—5t () ——(5) L—,.’j_’@

matrix representation \

of metabolic networks. @___,
System boundary b

e

All external fluxes are

defined as pointing outwards.
Mass balance constraints i ,
b Internal flux constraints
s
M- 0 0O 0 - -
. 0 1 0 05 0 ; 20, j=1..6
| 1 0 0 0 =1 0o 0 0
0 1 -1 -1 1 -1 g 0 o 1o
0 ¢ 0 1 10 0 o0 -l }j 0 Exchange flux constraints
L0 o 0 0 1 0 0 0 -1 b‘ 0]
Schilling, Letscher, Palsson, t: —00S b, S4eo, j=1,..,4
. (S-v=0) 25
J. theor. Biol. 203, 229 (2000) b,
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Idea — extreme pathways

Shaded area: Shaded area: EitherS - x>0
x20 x;20Ax,20 (S acts as rotation matrix)

or find optimal vectors
# change coordinate system
from x,, x,to ry, 1.

Duality of two matrices Shaded area:
SandR. ry20ar,20

Edwards & Palsson PNAS 97, 5528 (2000)
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The algorithm to determine the set of extreme pathways for a reaction network
follows the pinciples of algorithms for finding the extremal rays/ generating
vectors of convex polyhedral cones.

Combine n x n identity matrix (1) with the transpose of the stoichiometric
matrix ST. | serves for bookkeeping.

TO —
-1 0 0 0 0 0 -1 0 0
1 -1 1 0 0 o0 o -1 0 | 0 0 | —1
0 1 -1 -1 1 -1 o © 0 i l 0 0 —1 0
0 1 -1 0 0 o -1 ©
0 0 0o 0o 0 1 o0 0 0 -1 [ 1 -1 0 0 0

T =

Schilling, Letscher, Palsson,
J. theor. Biol. 203, 229 (2000)
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Examine constraints on each of the exchange fluxes as given by

o =b;<f
If the exchange flux is constrained to be positive — do nothing.
If the exchange flux is constrained to be negative — multiply the
corresponding row of the initial matrix by -1.
If the exchange flux is unconstrained — move the entire row to a temporary
matrix T®), This completes the first tableau T©.

T and T®) for the example reaction system are shown on the previous slide.
Each element of these matrices will be designated 7.

Starting with i = 1 and T(® = T(-1) the next tableau is generated in the following
way:

Schilling, Letscher, Palsson,
J. theor. Biol. 203, 229 (2000)
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(1) Identify all metabolites that do not have an unconstrained exchange flux
associated with them.

The total number of such metabolites is denoted by wu.

The example system contains only one such metabolite, namely C (u = 1).

What is the main idea? L.
- We want to find balanced extreme pathways
that don‘t change the concentrations of
metabolites when flux flows through

(input fluxes are channelled to products not to Syombomndesy D=
accumulation of intermediates).

- The stochiometrix matrix describes the coupling of each reaction to the
concentration of metabolites X.

- Now we need to balance combinations of reactions that leave concentrations
unchanged. Pathways applied to metabolites should not change their
concentrations — the matrix entries

need to be brought to 0. Schilling, Letscher, Palsson,
J. theor. Biol. 203, 229 (2000)
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(2) Begin forming the new matrix T® by copying

all rows from T( -1 which already contain a zero in

the column of ST that corresponds to the first

metabolite identified in step 1, denoted by index C.

(Here 3rd column of ST.) A BC D E

T = 1 -1 1 of O

Schilling, Letscher, Palsson, J. theor. Biol. 203, 229 (2000)
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(3) Of the remaining rows in T(-1) add together

all possible combinations of rows which contain

values of the opposite sign in column C, such that

the addition produces a zero in this column.

TO) =

T =

Schilling, et al.
JTB 203, 229

15. Lecture WS 2012/13

1 -1 1 0 0
1 o 1] 1 0 0

1 0 1( -1 0 0

1 0 0| -1 1 0

1 0 of 1 -1 0

1 0 0f -1 0 1

1 0 0 0 0 o] -1 1 0 0 0
0 1 1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 o -1 0 1 0
0 1 0 0 0 1 o -1 0 0 1
0 0 1 0 1 0 0 1 0o -1 0
0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0o -1 1
3 4 5 6 7 8 9 10 M

Bioinformatics Ill
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(4) For all rows added to T() in steps 2 and 3 check that no row exists that is a
non-negative combination of any other rows in T .

One method for this works is as follows:
let A(i) = set of column indices j for which the elements of row j = 0.

For the example above Then check to determine if there exists
A(1) ={2,3,4,5,6,9,10,11} another row (h) for which A(i) is a
A(2)={1,4,56,7,8,9,10,11} subset of A(h).

A@3) ={1,3,5,6,7,9,11}

A4)={1,3,4,5,7,9,10} If A(i) C A(h), i =h

A(5) ={1,2,4,6,7,9,11} where

A(6) ={1,2,3,6,7,8,9,10,11} A@)={j:T,;=0,1=<j=(n+tm)}
A(7)={1,2,3,4,7,8,9} then row i must be eliminated from T®
Schilling et al.

JTB 203, 229
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(5) With the formation of T() complete steps 2 — 4 for all of the metabolites that do
not have an unconstrained exchange flux operating on the metabolite,
incrementing i by one up to u. The final tableau will be T,

Note that the number of rows in T will be equal to k, the number of extreme
pathways.

Schilling et al.
JTB 203, 229
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(6) Next we append T to the bottom of Tt. (In the example here u = 1.)
This results in the following tableau:

T(E) =

Schilling et al.
JTB 203, 229

erereresreranalranenensarananfanansnsanaranasdananrananenansdransanananensardrannanansasanafensaransnnaranensaransanananfarararansaransdenraransaranany
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(7) Starting in the n+7 column (or the first non-zero column on the right side),
if T, ,,+7) = O then add the corresponding non-zero row from T(®)to row i so as to
produce 0 in the n+7-th column.

This is done by simply multiplying the corresponding row in T®) by T, (n+1) @nd
adding this row to row /.

Repeat this procedure for each of the rows in the upper portion of the tableau so
as to create zeros in the entire upper portion of the (n+17) column.

When finished, remove the row in T(®) corresponding to the exchange flux for the
metabolite just balanced.

Schilling et al.
JTB 203, 229
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(8) Follow the same procedure as in step (7) for each of the columns on the right
side of the tableau containing non-zero entries.

(In our example we need to perform step (7) for every column except the middle
column of the right side which correponds to metabolite C.)

The final tableau T(na) will contain the transpose of the matrix P containing the
extreme pathways in place of the original identity matrix.

Schilling et al.
JTB 203, 229
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T(final) —

PT =

Schilling et al.
JTB 203, 229
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2 pathways pg and p; are not shown in the bottom fig.

because all exchange fluxes with the exterior are 0.

Such pathways have no net overall effect on the

functional capabilities of the network.

They belong to the cycling of reactions v,/vs and v,/vs.

\
- —>
l-"3
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vV, V, V3 V, V5 Vg b, b, by b,
1] of o of o| of -1| 1| 0] O
of 1| 1| o] ol of of of o O
of 1| o 1] o of of 1| 1] o0
of 1] of o| of 1| of -1| of 1
of o 1| o| 1| o o 1| 1] o©
of of of 1| 1| of of of o O
of of of of 1| 1| of of 1| 1
Schilling et al.

JTB 203, 229
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System boundary
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pathways
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In the matrix P of extreme pathways, each column is an EP and each row
corresponds to a reaction in the network.

The numerical value of the i,j-th element corresponds to the relative flux level
through the /-th reaction in the j-th EP.

Reaction Network A
bs
_______________________________________________ Stoichiometric Matrix Pathway Matrix
' :
byp : EP, EP, EP,
B 5 ib v, v vy vy vs v by by, by 22 2) v
—p 24 Ly 2B 2 c —Y% 5 g *" 1 0 0 0 0 0 +1 0 o0\4 1o1| w
' : #41 -2 -2 0 0 0 0 0 o[B8 01 0| v
! 0 +1. 0 0 -1 -1 0 0o 0|C 01 1| v
v cof | ,
g v; 0 ' S=[0 0 1 -1+1 0 0 0 0|D P=|0 0 1| v
vy ! 0 0 0 +1 0 +1 0 -1 0|E 100 Vg
- 0 +1 +1 0 0 0 0 0 -1|bp 22 2 b,
i 0 0 -1 +1 -1 0 0 0 0)cof 1 11| b,
byp D ! 111 b,
™ |
= % =i S, S EPy
o o )
H 4 H A H
*za—»znic—»s—@» - 2A—> 2B - »(C »E—:p» -»u—»nic E ) s
: ot ® " | m\\ /”f/ G U/
w D wp D w D

Papin, Price, Palsson,
Genome Res. 12, 1889 (2002)
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After normalizing P to a matrix with entries 0 or 1,
the symmetric Pathway Length Matrix P ,, can be calculated:

P, =P -P

where the values along the diagonal correspond to the length of the EPs.

Pathway Length
2 2 2) BEER Comments:
1 0 1 1 0 1 1) The lengths of EP,, EP,,and
EP; are 6, 6, and 7, respectively,
00170 0 1.0 EP EP.EP, the highlighted diagonal elements
0 11 0 1 1 . (e 4 EP, of the final matrix.
e LA ‘ e=r0 9 | l ol 6 5 |Ep, 2) EP, and EP; have a shared
1 00 100 7)EP, length of 5 (indicated by the
2 2 2 1 1 1 circle). As seen in the schematics
111 111 above, they share reactions v, v,
b, b, and b,
(111 111 2

The off-diagonal terms of P, are the number of reactions that a pair of extreme
pathways have in common.
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One can also compute a reaction participation matrix Py, from P:

P, =P-P’

AN
Properties of pathway matrix

where the diagonal correspond to the number of pathways in which the given

reaction participates.

22
10
01
01
P=(0 0
10
2 2
11
11
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Reaction Participation
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<
N

N - == N
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Comments: C

1) The number of extreme pathways
in which each reaction participates is
indicated in the diagonal elements,
as highlighted in the final matrix.
These can then be expressed as a
percentage of the total number of
extreme pathways. For example,
reaction v, has a participation value
of 3. Since there are 3 extreme
pathways, this can be expressed as
100% reaction participation.

2) The off diagonal terms can
indicate correlated groups of
reactions. Reactions v, b,, b, and
b; participate in 3 pathways. They
also have a shared participation of 3,
meaning they act as a correlated
group (indicated by circles).




EP Analysis of H. pylori and H. influenza

Table 1. Number of Reactions Involved in the Production

Amino acid synthesis in Heliobacter pylori vs. of the Indicated Target Product

H. pylori Essential Utilized
Heliobacter influenza studied by EP analysis e e o | meew
Tryptophan 32 105
Tyrosine 28 101
Cysteine 25 102
Table 4. Summary of the Statistical Analyses of Extreme Pathway Lengths Glycine 22 97
Lysine 22 102
4. ovior o LT Serine 16 91
. pylor Threonine 14 96
Target product Number of EPs  average  maximum  minimum  coefficient of variation Asparagine 13 9
Aspanagine 340 44 54 28 15% AplCEr Lk o
Aspartic Acid 491 43 52 24 14% Glutamic Add 7 91
Cysteine 1022 59 71 45 10% Clutamics % 91
Glutamine 315 41 53 23 18% - - .
Glutamic Acid 493 41 53 25 17% Equimolar Amino Acids 85 140
Glycine 377 51 60 38 10% E. coli Ratio Amino Acids 85 140
il 1] e = i s H. influenzae Essential Utilized
Serine 355 45 54 3 12% Target product reactions reactions
Threonine 469 48 60 31 14% e
Tryptophan 1958 64 73 51 6% Histidine 51 112
Tyrosine 1008 58 68 44 7% Tryptophan 4 108
Equimalar Amino Acids 6032 106 12 99 2% Phenylalanine 36 108
E. coli Ratio Amino Acids 5553 106 n2 99 2% Lyr?}:!ne. 32 } 82
ethionine
Pathway length Isoleucine 3] 108
H. infiuenzae Lysine 3] 108
Target product Number of EPs  average  maximum  minimum  coefficient of variation Glycine 29 82
Alani 1739 36 49 18 10% Threonine 2 1o
anine ]
Asparagine 445 39 52 29 12% ?:ﬁfg mne gg gg
Glutamine 690 7 46 28 1% P ride 2 97
Glycine 456 29 48 35 7% a m:n'fm . . 21 102
Histidine 1507 65 74 61 3% Proli 18 103
Isoleucine 1480 47 61 37 9% ez
Leucine 3884 42 55 3] 10% Valine 17 102
Lysine 1168 47 61 37 9% Alanine 12 99
Methionine 1343 48 63 40 8%
Phenylalanine 1758 51 64 43 7% See Fig. 3 for the indicated network inputs and outputs. Essential
';;_0.""9 2258 ;g :; §g :éx reactions refers to the number of reactions thatwere used in every
ine extreme pathway (region | in Fig. 4). Utilized reactions refers to
Threonine 1318 42 35 32 10% the number of reactions that were used at least once in the set of
Tryptophan 3540 58 69 49 6% extreme pathways for the production of the associated product
s L = o o i (region Il in Fig. 4). The individual amino acids are sorted in de-
e scending order according to the number of essential reactions.
- T e ) - Equimolar amino acids refers to the set of amino acids in
The coefficient of variation is the standard deviation normalized to the average (expressed as a percent). Equimolar equimolar ratios. £ colfratio amino acids refers to the set of amino
amino acids refers to the set of amino acids in equimolar ratios. £. colf ratioamino acids refers to the set of amino adds acids in ratios analogous to those seen in £. colf biomass.

in ratios analogous to those seen in £ colf biomass. EPs, extreme pathways.

Papin, Price, Palsson, Genome Res. 12, 1889 (2002)
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Calculation of EPs for increasingly large networks is computationally intensive and
results in the generation of large data sets.

Even for integrated genome-scale models for microbes under simple conditions,
EP analysis can generate thousands or even millions of vectors!

It turned out that the number of reactions that participate in EPs that produce a

particular product is usually poorly correlated to the product yield and the molecular
complexity of the product.

Possible way out?

Matrix diagonalisation — eigenvectors: only possible for quadratic n x n matrices
with rank n.

Papin, Price, Palsson, Genome Res. 12, 1889 (2002)
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Suppose M is an m x n matrix with real or complex entries.
Then there exists a factorization of the form
M=U2ZXV*" where
U : m x m unitary matrix, (U*U = UU* =)
2 . is an m x n matrix with nonnegative numbers on the diagonal and zeros off

the diagonal,
V* . the transpose of V, is an n x n unitary matrix of real or complex numbers.

Such a factorization is called a singular-value decomposition of M.

U describes the rows of M with respect to the base vectors associated with the
singular values.

V describes the columns of M with respect to the base vectors associated with the
singular values. 2 contains the singular values.

One commonly insists that the values ;; be ordered in non-increasing fashion. The,
the diagonal matrix Z is uniquely determined by M (but not U and V).
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For a given EP matrix P &} "™, SVD decomposes P into 3 matrices

o0\ .
P=U \Y
0 0

where U &X' " : orthonormal matrix of the left singular vectors,
V &> an analogous orthonormal matrix of the right singular vectors,
X & .a diagonal matrix containing the singular values c._, . arranged in
descending order where ris the rank of P.

i=1..r

The first r columns of U and V, referred to as the left and right singular vectors, or
modes, are unique and form the orthonormal basis for the column space and row
space of P.

The singular values are the square roots of the eigenvalues of PTP. The magnitude
of the singular values in X indicate the relative contribution of the singular vectors in
U and V in reconstructing P.

E.g. the second singular value contributes less to the construction of P than the first

singular value etc. _
Price et al. Biophys J 84, 794 (2003)
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The first mode (as the other modes) corresponds to a valid biochemical pathway
through the network. A

Convex cone defined by extreme pathways

A symmetric cone with the 1t principal mode

and the relationship with the 1% principal through its center.
mode.
. . . 1st mode
The first mode will point
into the portions of the
cone with highest density B
An asymmetric cone with the 1 principal mode
Of E PS . pulled towards the space with a higher density of

extreme pathways.

The 2" and 3rd modes characterize the C The 2" mode represents the direction of
directions of principal variance in the plane second most variance. Consequently, “soft
orthogonal to the 1%t principal mode. edges” can influence where the 2" mode
points.
34 mod
EPz i 2nd mode
2nd mode 3 mode D

Price et al. Biophys J 84, 794 (2003)
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Cumulative fractional
contributions for the

SVD of the EP matrices of
H. influenza and H. pylori.

This plot represents the

contribution of the first
n modes to the overall

description of the system.

Ca. 20 modes allow
describing most of the
metabolic activity in the
Network.

Price et al. Biophys J 84, 794 (2003)
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100
_____________________________________________________________________ Scrit
90 |
—~
X
= 80 ,
g H. influenzae H. pylori
= No. of EPs _Rank_Scrit No. of EPs Rank_Scrit
_8 70 k Alanine . 4934 38 23
o Asparagine 3640 32 22 1465 43 18
-E Aspartic Acid 3885 32 22 1616 43 18
o 60 L Cysteine — — - 2147 48 18
O Glutamine 3885 34 23 1440 43 18
E Glutamic Acid --- - - 1618 42 18
c 50 - Glycine 3651 30 22 1502 44 18
o Histidine 4702 49 22
“6 Isoleucine 4675 47 22
E 40 | Leucine 7079 38 23
[T Lysine 4363 47 22 1736 44 18
) Methionine 4538 43 22 - --- --
= 30 F Phenylalanine 4953 35 22
"a . : Proline 5819 42 24 1992 45 18
= /[0 :H. influenzae Serine 3885 32 22 1480 43 18
E 20 / i Threonine 4513 35 22 1594 43 18
5 . ‘H. py/or/ Tryptophan 6735 34 22 3083 53 18
O Tyrosine 4953 35 22 2133 49 18
10 Valine 4934 39 23 —
Average 4686 378 223 1817 45 18
St. Dev 998 57 0.6 453 3.2 0
0 ! ! L ! 1 1 ! !
0 5 10 15 20 25 30 35 40

Mode Number (n)

Cumulative fractional contribution : sum of the first n fractional
singular values. This value represents the contribution of the first n
modes to the overall description of the system. The rank of the
respective extreme pathway matrix is shown for nonessential amino
acids. S_;;: number of singular values that account for 95% of the
variance in the matrices. Entries with “- - -” correspond to essential
amino acids.
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Extreme Pathway Analysis is a standard technique for analysis of metabolic
networks.

Number of EPs can become extremely large — hard to interpret.

EP is an excellent basis for studying systematic effects of reaction cut sets.

SVD could facilitate analysis of EPs. Has not been widely used sofar.

It will be very important to consider the interplay of metabolic and regulatory
networks.
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